
Chapter 1

Ensemble spaces

Here we summarize the work in progress for a general theory of states and processes that is
applicable to any physical system. The tentative core concept is the ensemble, therefore we
want to find definitional requirements for ensembles and then find suitable assumptions to
recover the different theories (e.g. classical, quantum and thermodynamics).

Conceptually, we want to argue that physical theories are, and can only be, about en-
sembles. At a practical level, most of the time we can only prepare and measure statistical
properties as we do not have perfect control over any system. The cases where properties
can be prepared with one hundred percent reliability can still be understood as ensembles of
identical preparations, though one can argue for an ensemble of external conditions or internal
dynamics. At a conceptual level, the goal of physics is to write laws that apply all the time:
every time that one prepares a system according to a particular procedure, lets it evolve in
particular conditions, he will obtain a particular result. That is, the idea of repeatability of
experimental results implicitly assumes that the objects of scientific inquiry are not single
instances, but the infinite collections of all reproducible instances.

1.1 Ensembles

TODO: Preamble that argues the justification with physics examples.

Axiom 1.1 (Axiom of ensembles). The state of a system is represented by an ensemble,
which represents all possible preparations of equivalent systems prepared according to the
same procedure. The set of all possible ensembles for a particular system is an ensemble
space. Formally, an ensemble space is a T0 second countable topological space where each
element is called an ensemble.

Justification. In physics, ensembles are usually defined as probability distributions over
states. This is conceptually problematic. Any actual physical preparation is always asso-
ciated with some uncertainty. That is, the system will never be replicated exactly. This
is true even in quantum mechanics: while we can always prepare a hydrogen atom in the
ground state, we can never prepare an atom in the same exact position with the same exact
velocity. The ability to prepare ensembles in which the position and the excitation of the
atom can be assumed to be uncorrelated is what allows us to concentrate on one of the
properties. Therefore, ensembles are the only thing that can actually be prepared in prac-

1



2 CHAPTER 1. ENSEMBLE SPACES

tice. Pure states, then, should not be taken as primitive notions but should be understood
as an idealized ensemble.

From a more conceptual level, reproducibility is baked into the requirement of experi-
mental verifiability. A physical law, then, must be understood as describing a relationship
that always exist whenever the same set of circumstances is replicated. Given that we need
to always be able to replicate those circumstances “one more time”, the relationship is
about countably infinite similar preparations: an ensemble. Therefore, to the extent that
physics is about reproducible experimental results, the basic description of a system is
in terms of ensembles. This justifies the use of ensembles as the fundamental object to
describe the state of a system.a

Ensembles are experimentally defined objects, and therefore they are possibilities of an
experimental domain. Therefore an ensemble space is a T0 second countable topological
space where each element is an ensemble and the topology is induced by the verifiable
statements.

aNote that reproducibility also already implies that all properties that characterize an ensemble must
be relative to the procedure. If the properties depended, for example, on absolute space or absolute time,
then different practitioners would not be able to prepare the same ensemble.

A general theory of ensembles will need to be able to recover classical and quantum spaces
under appropriate physically meaningful assumptions. Here we review these cases and give the
appropriate mathematical definitions, highlighting potential issues, as these serve as models
and examples for a general theory.

There are two aspects that are common to all cases and will be the target of generalization:
statistical mixing (captured by a convex structure) and entropy (captured by a strictly concave
function). Note: all logs are assumed in base 2.

Discrete classical theory

Definition 1.2. The ensemble space of a discrete classical theory is a simplex with the
standard convex structure and the Shannon entropy. The simplex can have finitely or countably
many vertices.

That is, a discrete classical ensemble space is a set E containing n points {si}
n
i=1 and for

which every element e ∈ E is characterized by a unique convex combination e = ∑i pisi such
that ∑i pi = 1. The space is closed under convex combinations of finitely many elements. The
entropy is given by S(e) = −∑i pi log pi.

Remark. The correct closure under convex combinations of countably many elements is
not clear.

Finite case

The space of classical distributions over a discrete space corresponds to a simplex (https:
//en.wikipedia.org/wiki/Simplex). In the finite case, the pure states S = {si}

n
i=1 ⊂ E are finitely

many and each ensemble e = ∑pisi is uniquely identified by a decomposition of pure states.
Effectively, each ensemble is a probability distribution over the pure states. Mathematically,
each point of the space is a convex combination of the vertices. The simplex has a center
point, which corresponds to the maximally mixed state, a uniform distribution over all pure
states.

https://en.wikipedia.org/wiki/Simplex
https://en.wikipedia.org/wiki/Simplex
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The entropy is given by the Shannon entropy −∑i pi log pi. This means that the entropy
of each pure state is zero and the entropy of the maximally mixed state is logn where n is
the number of pure states. The entropy increases as we go from pure states to the maximally
mixed state. The level sets (i.e. the fibers) of the entropy form a series of concentric “shells”.

The fact that all pure states have the same entropy is an additional hypothesis that cannot
work in general. To see this, consider the case where the state is defined by the number of
molecules for two substances. This space is the product of two independent variables na and
nb. If we have a uniform distribution over Na cases of na and Nb cases of nb, the total number
of cases is NaNb. Therefore the entropy of the joint state is the sum of the entropy of the
marginals. However, if we pair na with the total number of molecules n(a+b) we have a problem.
The issue is that variable n(a+b) corresponds to a variable number of joint cases. Therefore the
case where the ensemble space is a simplex but the entropy is not the Shannon entropy (e.g.
is the Shannon entropy plus the contributions of entropy from each vertex) is a physically
meaningful case that should be possible in the general theory.

Countable case

The countable case is not well-defined mathematically.

The obvious extension is to include all series {pi} ∈ [0,1] that converge to one. That is,
the space of all probability measures over a countable discrete space. Since we cannot create
a uniform distribution over infinitely many cases, there is no center point. Effectively, there
is a “hole” in the middle. More precisely, the space is not topologically closed in the sense it
does not contain all the limit points.

[TODO] It may be useful to characterize this “hole” and the limit points. There should
be at least one limit point for each series {pi} that converges to a finite p < 1. Intuitively, we
can keep that part of the distribution constant while we spread the rest uniformly to all cases.
Each should reach a different limit point.

However, the space of all probability measures is too large. Note that the entropy is not
finite for all convergent pi (i.e. infinite convex combinations). For details, see https://arxiv.
org/pdf/1212.5630.pdf. Given that we want the entropy to exist and be finite for all ensembles,
this generalization (like in https://ncatlab.org/nlab/show/superconvex+space ) does not seem
physically warranted.

Also note that expectation values are not guaranteed to be finite either, and requiring a
particular observable to be finite further restricts the space. This restriction may be desirable
for another reason: a discrete ensemble space has no notion of the ordering of the pure states.
Physically, this would mean that the states with 1, 100, or 1 trillion particles are “equally
distant” (i.e. all infinite permutations are allowed). Requiring the expectation of the number
of particles to be finite (e.g. ∑iN(i)pi < ∞) should effectively encode the infinite ordering
in the rate of convergence of the probability distributions (i.e. not all infinite permutations
would be allowed).

No uncountable case

The uncountably infinite case is not physically relevant (i.e. no second countable discrete
topology, cases are not experimentally decidable). Also note that any set of real numbers
whose sum is finite can have only countably many non-zero elements. To understand why,
note that there can only be finitely many terms above any particular positive value if their
sum is to remain finite. Effectively, the uncountable case would be stitching together infinitely

https://arxiv.org/pdf/1212.5630.pdf
https://arxiv.org/pdf/1212.5630.pdf
https://ncatlab.org/nlab/show/superconvex+space
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many countable cases.

Continuous classical theory

Definition 1.3. The ensemble space of a continuous classical theory is the convex space
given by the probability distributions (i.e. probability measures) over phase space (i.e. a sym-
plectic manifold) that allow a continuous probability density (i.e. the Radon-Nikodym deriva-
tive exists - the probability measures are absolutely continuous with respect to the Liouville
measure - and is continuous). Formally, let (X,ω) be a symplectic manifold. The ensemble
space is given by E = {ρ ∈ C(X) ∣ ∫X ρdµ = 1}. The entropy is given by the Shannon/Gibbs
entropy calculated using the probability density (i.e. the Radon-Nikodym derivative between
the probability measure and the Liouville measure). That is, S(ρ) = − ∫X ρ log ρdµ.

In the continuous case, the space of ensembles is the space of continuous integrable func-
tions over a symplectic manifold (e.g. over phase space) that integrate to one. That is, if X
is a symplectic manifold, then E = {ρ ∈ C(X) ∣ ∫X ρ(x)dµ = 1} where µ = ∫ ω

n is the Liouville
measure. The space does not include the pure states, as they correspond to delta distributions
S = {δx}x∈X : they are limit points. In some sense, a distribution can be understood as a con-
vex integral of pure states: ρ(x) = ∫X ρ(y)δx(y)dµ. Even in this case, each ensemble can be
understood as a unique probability distribution (density in this case) over all pure states. The
symplectic nature of the manifold is required to assign a frame invariant density to states and
a frame invariant notion of independence between DOFs, as we saw in the classical mechanics
section of reverse physics.

The fact that pure states are not part of the space, but limits, means we need a more
sophisticated definition of pure states than simply the extreme points of the convex space of
ensembles.

The entropy is given by − ∫ ρ log ρdµ where µ is the Liouville measure and ρ is the prob-
ability density over canonical coordinates. If a different measure is used, or if the coordinates
are not canonical, the formula gives the wrong result.

Similarly to the infinite discrete case, the entropy can be infinite and expectation values
can be infinite. The added complication is the frame invariance: it would not make sense to
have the expectation for position in one frame to be finite while infinite in another. Requiring
all functions of position/momentum to have finite expectation restricts the distributions to
those with finite support. Requiring all polynomial functions of position/momentum to have
finite expectation restricts the distributions to those that decay faster than any polynomial.

Unlike the discrete classical case, subspaces and dimensionality of subspaces cannot be
defined without the entropy. The issue is that we need a measure on the set of pure states,
and the convex structure cannot provide it. The entropy, however, does as the supremum of
the entropy for all distributions with support U is logµ(U). As we will see, the entropy can
be used to both identify subspaces and recover the Liouville measure.

Note that we exclude discontinuous distributions as starting from the space of discontin-
uous distributions does not allow one to recover the topology of the base space. Suppose, in
fact, to have the space of all distributions over the real line that integrate to one. Now imagine
switching the interval [0,1) with the interval [1,2). This is an isomorphism on the space of
discontinuous distributions. Therefore given the space of distributions, we cannot recover the
topology of the real line. Now take the space of continuous functions that integrate to one.
Take those with support [0,1) ∪ [2,3). This is the set of convex combinations of the distri-
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butions with support [0,1) and [2,3) precisely because the sets are not contiguous and the
distributions will have to go to zero at the boundary. However, the distributions with support
[0,2) are not just the convex combinations of those with support [0,1) and [1,2) because this
will include the continuous functions that have a non-zero value at 1.

[TODO] It may be interesting to study the shell of zero entropy states. For example, it
should not be path connected: all uniform distributions with support of the same finite size (in
terms of the Liouville measure) will have the same entropy. The region, however, need not be
contiguous. Since we cannot continuously transform a single region into two disjoint regions,
there will be different distributions at zero entropy that cannot be transformed continuously.

Quantum theory

Definition 1.4. The ensemble space of a quantum theory is modeled by the convex space
given by the density operators (i.e. positive semi-definite self-adjoint operators with trace one)
of a Hilbert space equipped with the von Neumann entropy.

That is, given a Hilbert space H, the ensemble space is the space of positive semi-definite
self-adjoint operators with trace one M(H). The space of pure states is given by the projective
space P (H). The entropy of an ensemble ρ ∈ M(H) is given by the von Neumann entropy
S(ρ) = − tr(ρ log ρ).

Finite dimensional case

The simplest non-trivial case is the qubit, for which the Bloch ball is the space of ensembles
M(H). The interior of the Bloch ball corresponds to mixtures while the surface corresponds
to the pure states S = P (H) = {∣ψ⟩⟨ψ∣}ψ∈H. In quantum ensemble spaces there is no unique de-
composition. Note that the space is exactly characterized by knowing which different mixtures
provide the same ensemble.

The multiple decompositions make the ensemble space behave in a way that is a hybrid
between the classical discrete and continuous. Pure states are properly a part of the ensemble
space, as in the discrete case, and we can describe each mixture in terms of finitely many pure
states. However, the pure states are a continuum, therefore we can also define probability
densities over the space, convex integrals. For example, for a single qubit, the maximally
mixed state (the center of the ball) can be equally described as the equal mixture of two
opposite states (e.g. spin up and spin down, or spin left and spin right). However, it can also
be described as the equal mixture of the whole sphere.

Note that complex projective spaces are symplectic, which is what allows one to define
frame invariant densities. The goal is to have one argument applied to the generic definition
as to why the space of pure states must be symplectic. Also note that the two dimensional
sphere is the only symplectic sphere. By homogeneity, we should be able to argue that the space
is symmetric around the maximally mixed state, and is therefore a sphere. The symplectic
requirement would select dimension two. Note that real and quaternionic spaces would be
excluded by this argument.

The von Neumann entropy for the maximally mixed state is logn where n is the dimen-
sionality of the Hilbert space. Again we see that the maximum entropy gives us a measure of
the size of the space. Note that, to calculate the von Neumann entropy, we are diagonalizing
the density matrix ρ. This means finding a set of orthogonal pure states si such that ρ = ∑pisi
is a convex combination. Note that the convex hull of a set of n orthogonal pure states is an
n-dimensional simplex whose center is the maximally mixed state. Therefore, we are looking
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for a simplex that contains ρ and the maximally mixed state. In the two dimensional case, ρ is
an interior point of the Bloch ball. Take the line that connects ρ to the center. The two points
of the sphere are the extreme points for the decomposition. The distance from the points will
be proportional to the probability. Because of this property, the von Neumann entropy is the
smallest Shannon entropy between all possible decompositions.

Countably infinite dimensional case

The countable infinite dimensional case presents similar problems as the classical case, and
adds others. As in the classical infinite cases, the maximally mixed state (i.e. uniform dis-
tribution) is not in the convex space and the entropy is not finite for all infinite convex
combinations. As in the classical continuous case, there is the issue of finite expectation of
position/momentum in all frames. The problem is compounded by the fact that one cannot re-
quire finite expectation for all functions of position and momentum: finite support in position
automatically implies infinite support on momentum, since the distribution in momentum is
the Fourier transform of that in position.

The Hilbert space for a discrete variable with infinite range (e.g. number of particles) and
a continuous variable (e.g. position/momentum) is the same. The first is defined as the space
of square convergent complex sequences l2 while the second is the space of square integrable
complex functions L2. Given that L2 allows a countable basis, the two are isomorphic. This
also means that all spaces with finitely many degrees of freedom are also isomorphic. This
makes the problem of infinite expectations even more problematic.

Note that Schwartz spaces have finite expectation for all polynomial functions of position
and momentum. Given that infinite permutations can change the rate of convergence, the
Schwartz space has an idea of what is further away from the origin, unlike Hilbert spaces.
[TODO] It is not yet clear to us whether the Schwartz space for one DOF is the same as the
one for two DOFs.

1.2 Mixtures and convex spaces

Definition 1.5. Given a real number p ∈ [0,1], its complement is defined as p̄ = 1 − p.

Axiom 1.6 (Axiom of mixture). An ensemble space E is equipped with an operation + ∶

[0,1] × E × E → E called mixing, noted with the infix notation pe1 + p̄e2, with the following
properties:

• Continuity: pe1 + p̄e2 is continuous in all its arguments (i.e. p, e1 and e2)
• Identity: 1e1 + 0e2 = e1

• Idempotence: pe1 + p̄e1 = e1 for all p ∈ [0,1]
• Commutativity: pe1 + p̄e2 = p̄e2 + pe1 for all p ∈ [0,1]

• Associativity: p1e1 + p̄1 ((
p3
p̄1

)e2 +
p3
p̄1
e3) = p̄3 (

p1
p̄3
e1 + (

p1
p̄3

)e2)+ p3e3 for all p1, p3 ∈ [0,1]

Justification. This axiom captures the ability to create a mixture merely by selecting
between the output of different processes.

Given that mixing represents an experimental relationship, and all experimental relation-
ships must be continuous in the natural topology, mixing must be a continuous function. Note
that p is a continuous quantity, and therefore the natural topology is the one of the reals.
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Let e1 and e2 be the ensembles that represent the output of two different processes P1

and P2. Let a selector Sp be a process that outputs two symbols, the first with probability p
and the second with probability p̄. Then we can create another process P that, depending on
the selector, outputs either the output of P1 or P2. Therefore we are justified in assuming the
mixing operation among ensembles.

If p = 1, the output of P will always be the output of P1. This justifies the identity. If P1

and P2 are the same process, then, again, the output of P will always be the output of P1.
This justifies the idempotence. As long as the same probability is matched to the same output,
the process P is identical. This justifies commutativity. If we are mixing three processes P1,
P2 and P3, as long as the final probabilities are the same, it does not matter if we mix P1 and
P2 first or P2 and P3. This justifies associativity.

Remark. Given symmetry and associativity, we can write p1e1 + p2e2 + p3e3 where p2 =

p̄1(
p3
p̄1

) = p̄3(
p1
p̄3

) = 1 − p1 − p3 = (p1 + p3). We can also extend to mixtures of finitely many

elements ∑piei where ∑i pi = 1.

Corollary 1.7. An ensemble space is a convex space.

Remark. Basic definitions for convex spaces are taken from https://ncatlab.org/nlab/
show/convex+space and https://arxiv.org/abs/0903.5522. The notation and terminology will
be slightly different to better map to physics ideas.

Definition 1.8. Let E be an ensemble space. Let ρ = ∑i piei where ρ,{ei} ∈ E and pi ∈ (0,1]
such that ∑pi = 1. We say that ρ is a mixture of {ei} and each ei is a component of ρ.

Remark. In terms of the convex space, all the mixtures between two elements corresponds
to the segment between them; all the mixtures between three elements correspond to the
triangle formed by the three elements and so on. An element e1 is a component of a different
element e2 if the segment can be continued on the side of e2. Note that two elements can be
a component of each other. If two elements are not a component of each other, then they are
the extreme points of the line that connect the two.

Definition 1.9. Let E be an ensemble space and e1, e2 ∈ E. We say that they have a common
component if we can find e3 ∈ E such that e1 = p1e3 + p̄1e4 and e2 = p2e3 + p̄2e5 for some
e4, e5 ∈ E and p1, p2 ∈ (0,1). They are distinct, noted e1 ⊥ e2, otherwise.

Remark. In terms of convex spaces, two distinct ensembles are always the extreme points of
the line that connects them. Additionally, for any other ensemble e, one of the two ensembles
must be the extreme point of the line that connects it to e.

Corollary 1.10. The previous definitions obey the following:

1. every ensemble has a common component with itself, therefore every ensemble is not
distinct from itself

2. distinctness is a irreflexive symmetric relation
3. if e1 is a component of e2, then e1 and e2 have a common component

Proof. 1. Since by idempotence e = pe+ p̄e for any p, we can satisfy the definition by setting
e1 = e2 = e3 = e4 = e5 = e. Therefore every ensemble has a common component with itself and
every ensemble is not distinct from itself.

https://ncatlab.org/nlab/show/convex+space
https://ncatlab.org/nlab/show/convex+space
https://arxiv.org/abs/0903.5522
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2. The previous property shows that distinctness is irreflexive. The definition of common
component is symmetric and therefore so is distinctness.

3. By idempotence, we can write e1 = p1e1+p̄1e1 for some p1 ∈ (0,1). Since e1 is a component
of e2, we can write e2 = p2e1 + p̄2e3 for some p2 ∈ (0,1) and e3 ∈ E . Therefore e1 and e2 have a
common component.

Conjecture 1.11. Let e, e1, e2 ∈ E. If e is distinct from a mixture of e1 and e2 then it is
distinct from all mixtures of e1 and e2.

Remark. Note that if e ⊥ pe1 + p̄e2 for some p, it is not necessarily true that e ⊥ e1 and
e ⊥ e2. Conversely, if even if e ⊥ e1 and e ⊥ e2, it is not necessarily distinct from all mixtures
of e1 and e2.

For a physical example, consider the Bloch sphere and the states x+, x−, z+, and z−. These
are all distinct ensembles. We have 1

2x
+ + 1

2x
− = 1

2z
+ + 1

2z
−. Therefore a mixture of x+ and x−

has a common component with z+.

Definition 1.12. Let ρ = pe1 + p̄e2 with p ∈ (0,1). Then we say that e2 is a p-complement
of e1 towards ρ. An ensemble space is complemented if all p-complements are unique for all
p ∈ (0,1).

Proposition 1.13. An ensemble space is complemented if and only if it is a convex subset of
a real vector space for which mixtures are linear combination.

Proof. Theorem 4 in https://arxiv.org/abs/1105.1270 states that a convex space embeds
into a real vector space with cλ(x, y) = λx + λ̄y if and only if

cλ(x, y) = cλ(x, z) ∀λ ∈ (0,1) Ô⇒ y = z.

This is exactly the condition that the λ-complement is unique.

Proposition 1.14. Discrete classical ensemble spaces, continuous classical ensemble spaces
and quantum ensemble spaces satisfy the axiom of mixture and are complemented ensemble
spaces.

Proof. The space of probability measures, discrete or continuous, E is a convex subset of the
vector space of finite signed measures. This means that it is closed under convex combinations:

∑piei for all {ei} ⊆ E and ∑pi = 1. The properties of mixing are inherited from the properties
of linear combinations. Therefore the discrete and continuous classical ensemble spaces satisfy
the axiom of mixture. Moreover, E is a convex subset of a vector space, it is complemented
by proposition 1.13.

Similarly, the space of positive semi-definite self-adjoint operators with trace one is a
convex subset of the vector space of self-adjoint operators. Therefore it is closed under convex
combinations and it will satisfy the axiom of mixture. Moreover, it is complemented convex
by proposition 1.13.

Remark. Since all current physical ensemble spaces are complemented, it is not yet clear
whether an ensemble space must be complemented or not. It is difficult to justify as it is a claim
on existence of more refined ensembles. It may very well be that this is just an assumption on
the decomposition, which may fail in new physical conditions (e.g. at Planck scale). It may
also be something that the strict concavity of the entropy requires.

https://arxiv.org/abs/1105.1270
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1.3 Entropy

Definition 1.15. Given the coefficients {pi} ∈ [0,1] such that ∑pi = 1, the entropy of the
coefficients (also known as Shannon entropy) is defined as I({pi}) = −∑pi log pi.

Axiom 1.16 (Axiom of entropy). An ensemble space E is equipped a a function S ∶ E → R
called entropy with the following properties

• Continuity
• Strict concavity: S(p1e1 + p2e2) ≥ p1S(e1) + p2S(e2) with the equality holding if and

only if e1 = e2

• Upper variability bound: S(p1e1+p2e2) ≤ I(p1, p2)+p1S(e1)+p2S(e2); if the equality
hold then, e1 and e2 are disjunct, noted e1 á e2

Justification. The entropy quantifies the variability of the elements within the ensemble.
This justifies the existence of the entropy.

Small changes in the ensemble should produce small changes in the variability, which
justifies continuity. Mixing different ensembles will increase the variability, which justifies
concavity. Mixing the same ensemble, however, should not increase the variability, which
justifies strict concavity.

The variability increase is maximal when the two ensembles are disjunct, meaning they
have no elements in common. In this case, the increase in variability is given only by the
coefficients and must follow the Shannon entropy as it is the only continuous indicator of
variability that is linear in probability. This justifies the upper bound.

Remark. In https://arxiv.org/abs/1912.02012 we showed how the Shannon entropy quan-
tifies the variability of elements within a distribution. Is it possible to rederive I from require-
ments on convex spaces instead of distributions in particular? This would make the axiom
less ad-hoc.

Axiom 1.17 (Axiom of entropic disjunctness). The entropy function of an ensemble space
obeys the following properties

• Disjunctness implies distinctness: e1 á e2 implies e1 ⊥ e2

• Mixtures preserve disjunctness: let e1 = pe2 + p̄e3, then e4 á e1 if and only if e4 á e2

and e4 á e3

Justification. If two ensembles are disjunct, they have no elements in common. Therefore
there will be no common component with the two. We are justified to assume that disjunctness
implies distinctness.

Suppose an ensemble e1 is disjunct from the mixture of two ensembles e2 and e3. That it
has no elements in common with the mixture, which means it has no elements in common with
either of them. Therefore e1 is disjunct from both e2 and e3. Now suppose e1 is disjunct from
both e2 and e3. That it means it has no elements in common with either of them, and therefore
it does not have any elements in common with their mixture. Therefore e1 is disjunct from
the mixture of two ensembles e2 and e3. We are justified to assume that mixtures preserve
disjunctness.

Remark. It is unclear whether or not these properties can be proven by the axiom of
mixture. It is possible to prove that two disjunct ensembles are not one the component of the
other. The entropy of the coefficients (i.e. the Shannon entropy) has a vertical asymptote at

https://arxiv.org/abs/1912.02012
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each end. If two elements are disjunct, the entropy along the segment that connects the two
follows that function plus a linear function, which does not change the vertical asymptotes.
Therefore the segment cannot be extended while preserving the convexity of the entropy, and
therefore the two distinct elements must the extremes of the line that connects the two. This
is necessary for distinctness, but not sufficient. Maybe, extending the argument, one can at
least prove that disjunctness implies distinctness.

Proposition 1.18. The discrete classical ensemble spaces, continuous classical ensemble
spaces and quantum ensemble spaces satisfies the axiom of mixture and the axiom of entropic
disjunctness.

Proof. In both classical cases, the entropy is a function of only the probabilities of the
decomposition in terms of pure states. The function is continuous in terms of those variables
as x logx is a continuous function. [TODO find short proof of convexity and maximum bound]

In the quantum case, the entropy is a continuous function of the density operator as the
trace, multiplication and logarithm of an operator are all continuous functions. [TODO find
short proof of convexity and maximum bound]

Remark. There should be an interplay between convexity and entropy which limits either
the space or the possible entropy. For example, consider a line. It is a convex space with no
extreme points. We can parameterize the space with a variable x such that the mixture of
two ensembles is identified by the average x. Entropy can be written as S(x). Since S(x) is
strictly concave over an infinite range, it will tend to minus infinity either when x tends to
infinity or minus infinity. Now take a line that intersects the curve. This will intersect it at
only two points. By strict convexity, there is only going to be a single point with maximum
vertical distance to the line, which has to be greater than zero. Now imagine moving the line
down by one vertical unit. The vertical distance now is greater than one. This means that
the average entropy can increase more than one during mixture, which violates the upper
variability bound. Therefore a line cannot be an ensemble space.

Note that an open segment is absolutely fine. We can, in fact, imagine a two state discrete
classical ensemble space with the endpoint removed. This suggests that the convex space
knows something about the geometry (probably parallelism and ratio of length - i.e. the affine
structure).

Conjecture 1.19. Let e1, e2 ∈ E be such that pe + p̄e1 = pe + p̄e2 for some p ∈ (0,1) and e ∈ E.
Then e1 and e2 are not disjunct.

Remark. It seems very unlikely that differences in states that can be obscured by mixing
would correspond to disjunct states. The more general question is whether the strict concavity
of the entropy allows non-complemented spaces.

Definition 1.20. Two sets of ensembles U,V ⊆ E are disjunct if e1 á e2 for all e1 ∈ U and
e2 ∈ V .

Definition 1.21. An ensemble space E is reducible (or classical) if distinct ensembles are
also disjunct. That is, e1 ⊥ e2 implies e1 á e2.

Justification. Given that e1 á e2 implies e1 ⊥ e2, classical spaces add the opposite impli-
cation. Therefore they exclude the case where two ensembles are disjunct but not distinct.
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This case describes two ensembles that have elements in common, but there is no ensemble
corresponding to those common elements. That is, we cannot refine the ensembles into three
distinct ones: one with only elements of the first, one with only elements of the second and
one with elements of both. In other words, we cannot reduce the coarser description of the
system into finer distinct descriptions. In the excluded case, then, the coarser description is
irreducible into finer ensembles. This justifies the definition.

As we prove below, that case does not exist in classical mechanics, but exists in quantum
mechanics. This justifies calling the property classical.

Remark. The above property should ultimately be responsible for the single decomposition
in terms of pure states.

Proposition 1.22. Continuous and discrete classical ensemble spaces are reducible.

Proof. In both cases, ensembles are probability measures: the first over the Borel algebra
of a symplectic manifold; the second over the power set of countably many elements. In both
cases, the upper bound of the entropy is maximized if and only if the probability measures
being combined have disjoint support. This means that two ensembles are disjunct if and
only if the respective probability measures have disjoint support. Intuitively, two probability
distributions can have a common sub-distribution if and only if they overlap. Therefore two
ensembles representing probability measures with disjoint support are exactly ensembles that
are distinct. Therefore, in both cases, the ensemble space is reducible.

1.4 Measures on the ensemble space

Proposition 1.23 (Exponential entropy subadditivity). Let e1, e2 ∈ E. Let S1 = S(e1) and
S2 = S(e2). Let e = pe1 + p̄e2 for some p ∈ [0,1] and S = S(e). Then 2S ≤ 2S1 + 2S2, with the

equality if and only if e1 and e2 are disjunct and p = 2S1

2S1+2S2
.

Proof. If p is fixed, the upper variability bound of entropy is saturated only if e1 and e2 are
disjunct by definition. The entropy maximum for the mixed ensemble can only be achieved
when the elements are disjunct, for some value of p.

Now fix S1 and S2. The entropy of the mixture depends only on p, so we need to find the
p that maximizes the expression.

0 =
dS

dp
=
d

dp
S(e) =

d

dp
(−p log p − p̄ log p̄ + pS1 + p̄S2)

= − log p − 1 + log p̄ + 1 + S1 − S2

log
p

p̄
= log 2S1 − log 2S2

log
p

1 − p
= log

2S1

2S2

p2S2 = (1 − p)2S1

p(2S1 + 2S2) = 2S1

p =
2S1

2S1 + 2S2

(1.24)
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Having found the value of p that maximizes the entropy, we can calculate the maximum
entropy.

p̄ = 1 −
2S1

2S1 + 2S2
=

2S2

2S1 + 2S2

S = S(e) = −p log p − p̄ log p̄ + pS1 + p̄S2

= −
2S1

2S1 + 2S2
log

2S1

2S1 + 2S2
−

2S2

2S1 + 2S2
log

2S2

2S1 + 2S2

+
2S1

2S1 + 2S2
log 2S1 +

2S2

2S1 + 2S2
log 2S2

=
2S1

2S1 + 2S2
log (2S1 + 2S2) +

2S2

2S1 + 2S2
log (2S1 + 2S2)

=
2S1 + 2S2

2S1 + 2S2
log (2S1 + 2S2)

log 2S = log (2S1 + 2S2)

2S = 2S1 + 2S2

(1.25)

Therefore the maximum entropy obtainable through a mixture is S = log(2S1 + 2S2) which is

obtained when e1 and e2 are disjunct and p = 2S1

2S1+2S2
.

Definition 1.26. Let U ⊆ E be the subset of an ensemble space. The convex hull of U , noted
hull(U) is the set of all possible mixtures that can be constructed with elements contained in
U .

Corollary 1.27. The convex hull has the following properties

1. U ⊆ hull(U)

2. U ⊆ V Ô⇒ hull(U) ⊆ hull(V )

3. hull(hull(U)) = hull(U)

and is therefore a closure operations

Proof. 1. Every element of U is trivially a mixture of elements of U . Therefore U ⊆ hull(U).

2. Let e ∈ hull(U). Then it is a mixture of some elements of U . Since U ⊆ V , then e is also
the mixture of some elements of V and therefore e ∈ hull(V ).

3. Since mixing is associative and commutative, a mixture of mixtures of U can be reep-
ressed as a mixture of U . Therefore for all e ∈ hull(hull(U)) we have e ∈ hull(U).

Definition 1.28. Let U ⊆ E be the subset of an ensemble space. The dimension of U is
defined as dim(U) = sup(2S(hull(U))) if U ≠ ∅ and dim(U) = 0 otherwise.

Proposition 1.29. The dimension is a set function that is

1. non negative: dim(U) ∈ [0,+∞]

2. monotone: U ⊆ V Ô⇒ dim(U) ≤ dim(V )

3. subadditive: dim(U ∪ V ) ≤ dim(U) + dim(V )

4. additive over disjunct sets: U á V Ô⇒ dim(U ∪ V ) = dim(U) + dim(V )
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Proof. 1. The dimension takes a subset of E and returns a real value and is therefore a set
function. The exponential can only return non-negative values, therefore the dimension of a
set is non-negative.

2. Let U,V ⊆ E such that U ⊆ V . If U = ∅, we have dim(U) = 0. Since dim(V ) is non-
negative, dim(U) ≤ dim(V ). If U ≠ ∅, hull(U) ⊆ hull(V ) and therefore 2S(hull(U)) ⊆ 2S(hull(V )).
This means that the supremum of the first set cannot be greater than the supremum of the
second set, and therefore dim(U) ≤ dim(V ). The dimension is a monotone set function.

3. Let U,V ⊆ E and let e ∈ hull(U∪V ). Then we can write e = pu+p̄v for some p ∈ [0,1], u ∈ U
and v ∈ V . By 1.23 and the definition of dimension, 2S(e) = 2S(u) + 2S(v) ≤ dim(U) + dim(V ).
Since this is true for any element of hull(U ∪ V ), the supremum of the exponential entropy
cannot exceed the sum of the dimensions. Therefore dim(U ∪ V ) ≤ dim(U) + dim(V ), the
dimension is subadditive.

4. Let U,V ⊆ E be two disjunct subsets. Let {ui} ⊂ U be a sequence of ensembles such
that 2S(ui) → dim(U) and let {vi} ⊂ V be a sequence of ensembles such that 2S(vi) → dim(V ).

Consider ei = piui + p̄ivi where pi =
2S(ui)

2S(ui)+2S(vi) . Then, by 1.23, 2S(ei) = 2S(ui) + 2S(vi). This

means that 2S(ei) → dim(U)+dim(V ). Therefore dim(U ∪V ) ≥ dim(U)+dim(V ). Combining
with the previous result, dim(U∪V ) = dim(U)+dim(V ). Therefore dimension, as set function,
is additive over disjunct sets of ensembles.

Definition 1.30. Let e ∈ E. The probability measure for e is defined as pe(U) = sup({p ∈
[0,1] ∣∃ e1 ∈ hull(U), e2 ∈ E s.t. e = pe1 + p̄e2}) if U ≠ ∅ and pe(U) = 0 otherwise.

Proposition 1.31. The probability measure for an ensemble is

1. non negative and unit bounded: pe(U) ∈ [0,1]
2. monotone: U ⊆ V Ô⇒ pe(U) ≤ pe(V )

3. subadditive: pe(U ∪ V ) ≤ pe(U) + pe(V )

Proof. 1. The probability measure takes a subset of E and returns a real value and is
therefore a set function. The coefficients used in mixtures are real values between zero and
one. The supremum of a set of numbers between zero and one is between zero and one, and
therefore the probability measure for an ensembles is non negative and unit bounded..

2. Let U,V ⊆ E such that U ⊆ V . If U = ∅, we have pe(U) = 0. Since pe(V ) is non-negative,
pe(U) ≤ pe(V ). If U ≠ ∅, hull(U) ⊆ hull(V ) and therefore {p ∈ [0,1] ∣∃ e1 ∈ hull(U), e2 ∈

E s.t. e = pe1 + p̄e2} ⊆ {p ∈ [0,1] ∣∃ e1 ∈ hull(V ), e2 ∈ E s.t. e = pe1 + p̄e2}. This means that
the supremum of the first set cannot be greater than the supremum of the second set, and
therefore pe(U) ≤ pe(V ). The probability measure is a monotone set function.

3. Let U,V ⊆ E and let p ∈ [0,1] such that e = pe1+ p̄e2 for some e1 ∈ hull(U ∪V ) and e2 ∈ E .
Since e1 ∈ hull(U ∪V ), we can write e1 = λu+ λ̄v for some λ ∈ [0,1], u ∈ U and v ∈ V . Therefore
we have e = pλu+pλ̄v+ p̄e2. By the definition of probability measure, we must have pλ ≤ pe(U)

and pλ̄ ≤ pe(V ), therefore p = pλ + pλ̄ ≤ pe(U) + pe(V ). Since pe(U ∪ V ) is the supremum for
a set of ps for which the expression always holds, we have pe(U ∪ V ) ≤ pe(U) + pe(V ). The
probability measure is subadditive.

1.5 Entropic geometry

We now show that entropy imposes a geometric structure on the ensemble space.
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Definition 1.32. Given two ensembles e1, e2 ∈ E, the mixing entropy, also called Jensen-
Shannon divergence, is the increase in entropy associated to their mixture. That is:

MS(e1, e2) = S (
1

2
e1 +

1

2
e2) − (

1

2
S(e1) +

1

2
S(e2)) .

Corollary 1.33. The mixing entropy obeys the following bounds

0 ≤MS(e1, e2) ≤ 1.

The lower bound is satisfied if and only if e1 = e2 and the upper bound is satisfied if and only
if e1 á e2.

Proof. The bounds descend directly from the bounds on entropy. By strict concavity,
S(p1e1+p2e2) ≥ p1S(e1)+p2S(e2), which means S(p1e1+p2e2)−p1S(e1)−p2S(e2) ≥ 0, and in
particular S(1

2e1 +
1
2e2) −

1
2S(e1) −

1
2S(e2) =MS(e1, e2) ≥ 0. By strict concavity, the equality

holds if and only if e1 = e2

By the upper variability bound, S(p1e1+p2e2) ≤ I(p1, p2)+p1S(e1)+p2S(e2), which means
S(p1e1+p2e2)−p1S(e1)−p2S(e2) ≤ I(p1, p2), and in particular S(1

2e1+
1
2e2)−

1
2S(e1)−

1
2S(e2) =

MS(e1, e2) ≤ I(
1
2 ,

1
2) = 1. Given that e1 and e2 are disjunct by definition if they saturate the

upper variability bound, the equality holds if and only if e1 and e2 are disjunct.

Proposition 1.34. In discrete and continuous classical cases, the mixing entropy coincides
with the Jensen-Shannon divergence. In quantum spaces it coincindes with the quantum Jensen-
Shannon divergence.

Proof. Looking at the definitions, for example at https://en.wikipedia.org/wiki/Jensen%
E2%80%93Shannon divergence, one can see that

JSD(e1, e2) = S (
1

2
e1 +

1

2
e2) −

1

2
(S(e1) + S(e2)) =MS(e1, e2)

. The same is true for the quantum case:

QJSD(e1, e2) = S (
1

2
e1 +

1

2
e2) −

1

2
(S(e1) + S(e2)) =MS(e1, e2)

.

Definition 1.35. An ensemble space is geometric if it is complemented and has a twice
differentiable entropy with respect to the mixing coefficients.

Corollary 1.36. A geometric ensemble space is a convex subset of a smooth vector space.

Proof. Since a geometric ensemble space is complemented, it embeds into a real vector
space. The differentiable structure is imposed by requiring that any parameter used to define
families of ensembles must be twice differentiable with respect to the entropy.

Remark. These requirements are useful to leverage all definitions of differential geometry,
which require a local vector space structure and differentiability. It may be the case that
convex structure of the ensemble space is enough, and that the differentiability of the entropy
can be derived by showing the continuity of the mixing entropy.

For now, we are going to assume the above. This is already a generalization as we work
with a generic vector space and not a manifold. The hope is that this can be a rigorous
foundation for classical and quantum field theories.

https://en.wikipedia.org/wiki/Jensen%E2%80%93Shannon_divergence
https://en.wikipedia.org/wiki/Jensen%E2%80%93Shannon_divergence
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Definition 1.37. Given a geometric ensemble e ∈ E, the tangent space at e, noted Te, is
the space of all infinitesimal variations δe. The norm of a variation δe ∈ Te is given by

∥δe∥e =
√
MS(e, e + δe).

The metric tensor (i.e. the inner product between two variations δe1, δe2 ∈ Te ) is given by

ge(δe1, δe2) =
1

2
(∥δe1 + δe2∥

2
e − ∥δe1∥

2
e − ∥δe2∥

2
e) .

Theorem 1.38. Let E be a geometric ensemble space. Then

∥δe∥2
e = −

1

8

∂2S

∂e2
(δe, δe)

and

ge(δe1, δe2) = −
1

8

∂2S

∂e2
(δe1, δe2).

Let V ⊆ E be a finite dimensional subregion. Then V is a Riemannian manifold with ge as the
metric tensor and ∥⋅∥e as the norm.

Proof. To recover the first two expression, we simply have to calculate the leading term.
Since the entropy is twice differentiable, we can expand it as

S(e + δe) = S(e) +
∂S

∂e
δe +

1

2

∂2S

∂e2
δeδe +O(δe3

). (1.39)

Expanding the definition of MS, we have

MS(e, e + δe) = S (
1

2
e +

1

2
(e + δe)) −

1

2
S(e) −

1

2
S(e + δe)

= S (e +
1

2
δe) −

1

2
S(e) −

1

2
S(e + δe)

= S(e) +
∂S

∂e

1

2
δe +

1

2

∂2S

∂e2

1

2
δe

1

2
δe +O(δe3

)

−
1

2
S(e) −

1

2
(S(e) +

∂S

∂e
δe +

1

2

∂2S

∂e2
δeδe +O(δe3

))

= S(e) +
1

2

∂S

∂e
δe +

1

8

∂2S

∂e2
δeδe

− S(e) −
1

2

∂S

∂e
δe −

1

4

∂2S

∂e2
+O(δe3

)

= −
1

8

∂2S

∂e2
δeδe +O(δe3

).

(1.40)

Therefore

∥δe∥2
=MS(e, e + δe) = −

1

8

∂2S

∂e2
(δe, δe).
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We can now substitute the norm to the definition of metric tensor. We have

ge(δe1, δe2) =
1

2
(∥δe1 + δe2∥

2
− ∥δe1∥

2
− ∥δe2∥

2)

=
1

2
(−

1

8

∂2S

∂e2
(δe1 + δe2, δe1 + δe2) +

1

8

∂2S

∂e2
(δe1, δe1) +

1

8

∂2S

∂e2
(δe2, δe2))

= −
1

16
(
∂2S

∂e2
(δe1, δe1) +

∂2S

∂e2
(δe1, δe2) +

∂2S

∂e2
(δe2, δe1) +

∂2S

∂e2
(δe2, δe2)

−
∂2S

∂e2
(δe1, δe1) −

∂2S

∂e2
(δe2, δe2))

= −
1

8

∂2S

∂e2
(δe1, δe2)

(1.41)

Let us now take a finite dimensional region V ⊆ E . Since V is a finite dimensional subregion
of a real vector space, it will be a manifold. It will have a smooth structure inherited from
the ensemble space.

Let us now show that g is a metric tensor. Restricted to V , g∣V is the Hessian of the entropy
S. Therefore it is a symmetric rank two tensor which means a symmetric bilinear function
of the arguments. Since the entropy is strictly concave, the Hessian is negative definite and
therefore g is positive definite. Therefore (V, g∣V ) is a Riemannian manifold.

Remark. We have shown that, under very general conditions, a generalized ensemble space
is a geometric space, where the notion of distance and angle are fully defined by the entropy.
That is, all geometric structures in physics are entropic structures.

1.6 Ensemble subspaces

We now want to define a notion of subspace in a way that recovers the notions of subspaces
we have in both classical and quantum mechanics. Given that orthogonality in all three cases
corresponds to ensembles being disjunct, disjunct ensembles will need to belong to different
subspaces. The idea is to reconstruct subspaces only from the disjunct relationship.

Irreflexive symmetric relations and topped ∩-structures

We will first prove a more general set of results, on a generic set (not necessarily an ensemble
space) with an irreflexive symmetric relation (not necessarily disjunctness of ensembles). This
will give us a more general tool to investigate possible different notion of subspaces.

Definition 1.42. Let X be a set and R ⊆X ×X a symmetric relation. Given a subset U ⊆X,
we define the R-complement to be

URC = {a ∈X ∣∀b ∈ U,aRb}.

Proposition 1.43. Let X be a set and R ⊆X ×X a symmetric relation. Then:

1. U ⊆ V Ô⇒ V RC ⊆ URC

2. U ⊆ (URC)RC

3. URC = ((URC)RC)RC

4. URC = (V RC)RC ⇐⇒ (URC)RC = V RC
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5. (⋃i∈I Ui)
RC = ⋂i∈I(Ui)

RC

6. ∅RC =X

Proof. 1. Suppose a ∈ V RC . Then, by definition, ∀b ∈ V, aRb. Since U ⊂ V , it is also true
that ∀b ∈ U,aRb. Therefore a ∈ URC by definition. Since a was arbitrary, V RC ⊆ URC .

2. By expanding the definition of complement, we have (URC)RC = {a ∈X ∣∀b ∈ URC , aRb} =
{a ∈X ∣∀b ∈ {c ∈X ∣∀d ∈ U, cRd}, aRb} = {a ∈X ∣∀b ∈X s.t.(∀d ∈ U, bRd), aRb}.

Let a ∈ U and let b ∈ X such that ∀d ∈ U, bRd. Since a ∈ U and bRd for all b ∈ U , we have
bRa in particular. Since R is symmetric, aRb. Given that b was arbitrary, we conclude that
∀b ∈ X s.t.(∀d ∈ U, bRd), aRb. Therefore a ∈ (URC)RC by definition of complement. Given
that a was arbitrary, U ∈ (URC)RC .

3. We again expand the definition and have ((URC)RC)RC = {a ∈X ∣∀b ∈ (URC)RC , aRb}.
Let x ∈ ((URC)RC)RC . Then ∀b ∈ (URC)RC , xRb by definition of the complement. Since

by 1. U ⊂ (URC)RC , we can restrict the previous expression to only the elements of U , and
therefore ∀b ∈ U,xRb. But this means that x ∈ URC by definition of the complement. Since
x was arbitrary, ((URC)RC)RC ⊆ URC . But by 1., we also have URC ⊆ ((URC)RC)RC since
URC is just a set onto which we can apply the complement twice . By two-way containment,
we have URC = ((URC)RC)RC .

4. Let U,V ⊆ X such that URC = (V RC)RC . Applying the complement on each side,
(URC)RC = ((V RC)RC)RC . By the previous property ((V RC)RC)RC = V RC and therefore
(URC)RC = V RC . Switching U and V proves the other direction.

5. We have:

(⋃
i∈I

Ui)
RC

= {a ∈X ∣∀b ∈⋃
i∈I

Ui, aRb}

= {a ∈X ∣∀Ui,∀b ∈ Ui, aRb}

= {a ∈X ∣∀Ui, a ∈ {c ∈X ∣∀b ∈ Ui, cRb}}

=⋂
i∈I

{c ∈X ∣∀b ∈ Ui, cRb}

=⋂
i∈I

(Ui)
RC

Note that this property does not rely on the symmetry of R.
6. Let a ∈ X. There is no b ∈ ∅ such that aRb. Therefore ∀b ∈ ∅, aRb. This means that

a ∈ ∅RC . Since a was arbitrary, X = ∅RC .

Proposition 1.44. Let X be a set and R ⊆X ×X a symmetric and irreflexive relation. Then

1. U ∩URC = ∅

2. XRC = ∅

Proof. 1. Let a ∈ U . Since R is irreflexive, aRa is false. Therefore it is not true that, for all
b ∈ U , aRb. This means that a ∉ URC . Since that a was arbitrary, U ∩URC∅.

2. Suppose a ∈ XRC . Then for all b ∈ X, aRb. In particular, we would have aRa, which
can’t be true since R is irreflexive. Therefore a ∉XRC and, since a is arbitrary, XRC = ∅.

Definition 1.45. Let X be a set and R ⊆ X × X a symmetric relation. Let U ⊆ X. The
R-subspace generated by U is ⟨U⟩R = (URC)RC . An R-subspace of X is a set U ⊆X such



18 CHAPTER 1. ENSEMBLE SPACES

that U = ⟨U⟩R. The lattice of R-subspaces is the set L = {U ⊆ X ∣U = ⟨U⟩R} ordered by
inclusion.

Corollary 1.46. The lattice of R-subspaces L is a topped ⋂-structure on X and therefore is
also a complete lattice.

Proof. The set L is a collection of subsets of X. Let {Ui}i∈I ⊆ L be a non-empty family.
Then, using the definition of subspace, and the third and fifth properties of 1.43, we have

⋂
i∈I

Ui =⋂
i∈I

(URCi )
RC

= (⋃
i∈I

URCi )
RC

= (((⋃
i∈I

(URCi )
RC

)
RC

)
RC

= ((⋂
i∈I

(URCi )
RC

)
RC

)
RC

= ((⋂
i∈I

Ui)
RC

)
RC .

Therefore ⋂i∈I Ui ∈ L. This means L is an ⋂-structure. Using the second property of 1.44,
X = ∅RC = (XRC)RC . Therefore L is a topped ⋂-structure. This also means that it is a
complete lattice.

Corollary 1.47. The R-subspace operator satisfies the following properties

1. U ⊆ ⟨U⟩R

2. U ⊆ V Ô⇒ ⟨U⟩R ⊆ ⟨V ⟩R

3. ⟨⟨U⟩R⟩R = ⟨U⟩R

and is therefore a closure operation.

Proof. 1. The first property is true by the second property of 1.44.

2. Using the first property of 1.44 we have U ⊆ V implies V RC ⊆ URC which in turns
implies (URC)RC ⊆ (V RC)RC . Therefore ⟨U⟩R ⊆ ⟨V ⟩R.

3. Using the fifth property of 1.44 we have ⟨⟨U⟩R⟩R = (((URC)RC)RC)RC = (URC)RC =

⟨U⟩R.

Proposition 1.48. Let X be a set and R ⊆X ×X a symmetric and irreflexive relation. Then

1. ⟨U⟩R is the smallest R-subspace containing U
2. if U,V ∈ L then U = V RC ⇐⇒ URC = V

Proof. 1. Let U ⊆ X and V ∈ L such that U ⊆ V and V ⊆ ⟨U⟩R. Since U ⊆ V , using the
second property of 1.47, ⟨U⟩R ⊆ ⟨V ⟩R = V . Since V ⊆ ⟨U⟩R and ⟨U⟩R ⊆ V , ⟨U⟩R = V . This
means that no R-subspace that contains U is smaller than ⟨U⟩R.

2. Since U,V ∈ L, U = (URC)RC = V RC which, by the fourth property of 1.43, implies
URC = (V RC)RC = V . Switching U and V proves the other direction.

Proposition 1.49. Let X be an inner product space and R = {(a, b) ∣ ⟨a, b⟩ = 0}. Then:

1. R is an irreflexive and symmetric relation
2. URC = U⊥

3. ⟨U⟩R = clX(span(U))
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Proof. 1. Given that the inner product is symmetric, so will be R. Given that no vector is
orthogonal to itself, R is irreflexive.

2. The orthogonal complex is defined as U⊥ = {a ∈ X ∣∀b ∈ U, ⟨a, b⟩ = 0}. Since aRb ⇐⇒
⟨a, b⟩ = 0, URC = U⊥.

3. We have ⟨U⟩R = (U⊥)⊥ which returns the smallest closed subspace that contains U .
This shows that full structure of subspaces of an inner product space can be fully recovered

only from pairwise orthogonality.

Subspaces of ensemble spaces and states

We will now use the previous results where X is an ensemble space and R is the disjunct
relation between two ensembles.

Proposition 1.50. Let E be an ensemble space, disjunctness á is an irreflexive symmetric
relation.

Proof. Since any ensemble is not distinct from itself, it is neither disjunct from itself.
Therefore disjunctness is irreflexive. Two elements are disjunct if they satureate the upper
entropy bound. This does not depend on their order. Therefore disjunctness is symmetric.

Definition 1.51. Let E be an ensemble space and X ⊆ E be a subset. The disjunct com-
plement Xá ⊆ E is the set of all ensembles that are disjunct from all elements of X. An
ensemble subspace is a subset X ∈ E such that X = (Xá)á.

Remark. Since subspaces are subsets of the ensembles space, the dimension and probability
measure are automatically defined on subspaces.

Conjecture 1.52. Let E be a discrete classical ensemble space. Then

1. the lattice of subspaces L is the set of all possible simplexes generated by all possible
combinations of extreme points

2. the dimension of each subspace is the number of extreme points

Proof. Let E be a discrete classical ensemble space. Then each ensemble is a sequence pi
such that ∑i pi = 1. The dimensionality of the space fixes the range of i. Note that, given that
the space is discrete, the collection pi can be understood as a continuous function of the pure
elements.

Note that two probability distributions will be disjunct if and only if their supports are
disjoint. Therefore disjunctness for a discrete classical ensemble space is the same as having
disjoint support. This means that a subspace is given by all possible probability distributions
over a subset of all pure states.

If U is the set of all probability distributions over n cases, the distribution with highest
entropy is achieved by a continuous distribution and will be S(pi) = logn. Therefore the
dimension of U will be n.

Conjecture 1.53. Let E be a continuous classical ensemble space. Then

1. the lattice of subspaces L is the set of all subspaces of continuous probability densities
with support within an open set that is the interior of its own closure

2. the dimension of each subspace is the Liouville measure
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Proof. Let E be a continuous classical ensemble space. Then each ensemble is a continuous
function for a symplectic manifold X that integrates to one. Since the function is continuous,
its support must be an open set.

Consider two continuous functions that integrate to one. They will be disjunct if and only
if their supports are disjoint. Therefore disjunctness for a continuous classical ensemble space
is the same as having disjoint support.

Take a set of ensembles U ⊆ E . An ensemble will be disjunct from all ensembles in U if
and only if its support is disjoint from the union of all the supports of all the elements of U .
Therefore Uá is the set of all ensembles whose support is a subset of the exterior of the union
of all supports of elements of U . With a similar logic, (Uá)á is the set of all ensembles whose
support is a subset of the exterior of the support of elements of Uá. This corresponds to the
interior of the closure of the union of all supports of elements of U . Therefore, any subspace
is a set of all continuous probability densities with support within an open set V ⊂X that is
the interior of its own closure.

Now take an open set V ⊆X that is the interior of its own closure and consider the space U
of all continuous probability densities that have support within V . Then Uá is the subspace of
all continuous probability densities that have support within ext(V ) and (Uá)á is the subspace
of all continuous probability densities that have support within ext(ext(V )) = int(V ) = V .
Therefore U is a subspace.

Let U ∈ L be a ensemble subspace. If e ∈ U , then S(e) ≤ dim(U). Moreover, there must
be a sequence ei such that S(ei) → dim(U). Let V ⊆ X be the open set corresponding to the
largest support of all elements in U . Then S(e) ≤ logµ(V ) as the highest entropy is given
by a uniform distribution over V . The uniform distribution is discontinuous, and therefore
is not a member of E . However, we can construct a sequence of continuous functions whose
limit is the uniform distribution. This would correspond to a sequence of ensembles for which
S(ei) → logµ(V ). Therefore logµ(V ) is the supremum of the entropy for the subspace, and
therefore the dimension is µ(V ), the Liouville measure.

Conjecture 1.54. Let E be a quantum ensemble space. Then

1. the lattice of subspaces L is the set of all possible density operators for each subspace of
the Hilbert space

2. the dimension of each subspace is the dimension of the corresponding Hilbert space

Definition 1.55. A pure state is a limit of an ensemble with the smallest entropy. Formally,
a pure state s ⊂ L is a non-empty collection of subspaces such that

1. if {Xi}i∈I ∈ s then ⋂i∈I Xi ∈ s
2. if X ∈ s and Y ∈ L such that X ⊆ Y , then Y ∈ s
3. if X ∈ s and Y ∈ L such that Y ⊆X and Y ≠ ∅, then there exists Z ∈ s such that Z ⊂X.

The set of all pure states for an ensemble space is noted S(E).

Definition 1.56. The set of states of a subspace X ∈ L is the set supp(X) = {s ∈ S(E) ∣X ∈ s}.
The topology of the pure states is the topology over the set of pure states generated by the set
of states of all subspaces.

Definition 1.57.
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Definition 1.58. Given an ensemble space E, its state space is the set of all pure states
S(E) equipped with

1. the topology generated by the set of states of all subspaces
2. the measure

Probability context

Definition 1.59. A probability context is a set of subspaces C ⊆ L such that

1. if {Xi}i∈I ∈ C then ⋂i∈I Xi ∈ C and ⋁i∈I Xi ∈ C
2. if X,Y ∈ C, then either X ⊂ Y , Y ⊂X or X á Y
3. if X,Y ∈ C, then X ∨ Y ∈ C

Conjecture 1.60. Let E be a discrete finite classical ensemble space. Then

1. the lattice of subspaces L is the set of all possible simplexes generated by all possible
combinations of extreme points

2. the dimension of each subspace is the number of extreme points
3. the pure states are the extreme points.

Conjecture 1.61. Let E be a continuous classical ensemble space. Then

1. the lattice of subspaces L is the set of all subspaces of probability measures with support
over an open set U

2. the dimension of each subspace is the Liouville measure
3. the pure states are the points of the symplectic manifold.

Conjecture 1.62. Let E be a quantum ensemble space. Then

1. the lattice of subspaces L is the set of all possible density operators for each subspace of
the Hilbert space

2. the dimension of each subspace is the dimension of the corresponding Hilbert space
3. the pure states are the subspaces of dimension one (i.e. the rays of the Hilbert space).

Conjecture 1.63. Let E be a reducible ensemble space and X,Y ⊆ E two subspaces. Then
dim(X ∨ Y ) = dim(X) + dim(Y ).

Definition 1.64. An ensemble is decomposable if it is the mixture of two or more compo-
nents. An ensemble space is infinitesimally decomposable if all ensembles are decompos-
able. An ensemble space is finitely decomposable if any ensemble can be decomposed into
elements that are not decomposable.

Proposition 1.65. The discrete classical ensemble space and the quantum ensemble space
are finitely decomposable. The continuous classical space is infinitesimally decomposable.

Proof. Pure states in discrete classical and quantum ensembles can no longer be decom-
posed, and every other ensemble is the mixture of pure states. Therefore these spaces are
finitely decomposable.

The ensembles of a continuous classical ensemble spaces are probability distributions that
are continuous and therefore must have finite support. However, given any finite support, we
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can always find distribution with smaller support and therefore decompose any distribution
in the sum of two distribution. Therefore the space is infinitesimally decomposable.

Conjecture 1.66. An ensemble space E is a finite discrete classical ensemble space if and
only if the following properties are all satisfied

1. E is reducible (i.e. classical)
2. every state with zero entropy is non-decomposable
3. the entropy is bounded

Proof. Let us first show that all finite discrete classical

Remark. The non-decomposable ensembles are exactly the extreme points of the convex
space.

1.7 Lessons learned

Subspaces from convex structure

Insight 1.67. Convex structure, by itself, cannot define subspaces.

Initially, we tried recovering the notion of subspaces purely from the convex structure. We
did make some progress in the finite dimensional case, but ultimately this does not work. The
ultimate problem is that it cannot be generalized to the classical continuous case. The problem
of rate of convergence is described below in the example. Even if that problem is fixed, there
would be nothing to determine the dimensionality of U , and we could create convex maps
that “stretch” the space.

The attempt was the following:

Definition 1.68. Let E be a convex space and X ⊆ E be a subset. We say that X is a subspace
of E if it contains all the convex combinations and all the components of its elements. That
is, for every e1, e2, e3 ∈ E and λ ∈ (0,1) such that pe1 + p̄e2 = e3 we have:

• e1, e2 ∈X implies e3 ∈X
• e3 ∈X implies e1, e2 ∈X

Definition 1.69. Let E be a convex space and X ⊆ E. The convex span of X, noted
cospan(X), is the smallest subspace containing X.

Remark. As defined, the convex span of two elements will include all their possible mixtures
(i.e. the segment that connects them), all possible decompositions (i.e. all lines that pass
through them) plus, recursively, all other mixtures and decompositions that can be reached
from those. Physically, the idea is that not all ensembles, pure states in particular, cannot
be physically realized. Therefore, the inclusion of pure states in our convex space stems from
a theoretical idealization useful to decompose and study the problem. It makes sense, then,
that a subspace comes with all its idealizations.

Example 1.70. Classical discrete subspaces. Let S be a set of n possible discrete states and
let E the space of probability distributions over the set S (i.e. E is an n-simplex and S are its
extreme points). A subspace X of E is a convex hull of a subset U of S. That is, a subspace
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of E is the space of probability distributions over a subset of the cases. Geometrically, it is
one of the sides (possibly recursively) of the simplex.

To see this, first note that the convex hull X of any subset U of extreme points S is a
subspace. In fact, it will contain all convex combinations of U , and any element can only be
decomposed in convex combinations of U . Second, note that only convex hulls of a subset of
extreme points can be a subspace. In fact, any element of E can be expressed as a non-trivial
convex combination of a set of extreme points U . Therefore, if an element is present in a
subspace X, then U ⊂X, which means all elements of the convex hull of U are in X.

Remark. The definition does not entirely work in the continuous case. Let S be a symplectic
manifold and let E be the space of probability distributions over S (i.e. the space of continuous
functions over S that are integrable and integrate to one). We would like to have a definition
for which a subspace of E is a set of functions whose support is a subset of an open region
U ⊆ S. That is, a subspace contains all probability distributions defined over a subset of the
cases. One problem is that continuity forces the function to go to zero on the boundary of U ,
and the speed of the convergence cannot be change with a finite convex combination. That is,
the convex combination of functions that go down like an exponential will also go down like
an exponential. The issue seems to be related to finding the correct closure for infinite convex
combinations in the definition of convex space.

Example 1.71. Quantum subspaces. Let H be an n-dimensional Hilbert space and let E be the
space of density matrices (i.e. positive semi-definite self-adjoint operators with trace one). A
subspace X of E is the space of density matrices of a subspace U of H. That is, a subspace of
E is the space of mixed states over a subspace of pure states.

To see this, first note that the space of density matrices X of a subspace U of H is a
subspace of E . In fact, X it will contain all convex combinations of its elements. Moreover,
any element x ∈ X can only be decomposed in a convex combination of pure states of U .
Therefore any convex decomposition of x has all its elements in X. Second, note that only the
space of density matrices X of a subspace U of H is a subspace of E . In fact, any element x of E
can be expressed as a non-trivial convex combination of orthogonal pure states, its eigenstates.
These elements will span a subspace U of H. From those elements, we can construct an equal
mixture which represents the maximally mixed states and, mathematically, is the identity
operator I/m divided by the number of elements m ≤ n of U . The equal mixture of any
orthogonal basis of U will also give the maximally mixed state. Therefore, given an element
x, any subspace that contain x will also contain a basis of U , the maximally mixed state I/n,
all possible basis of U , which means all the pure states, and finally all convex combinations
of the pure states, which means all possible density matrices, all possible mixed states.

Definition 1.72. A convex space E is closed if it contains all its extreme points.

Definition 1.73. Let E be a convex space and X ⊂ E be a subspace of E. The dimension of
X, noted dim(X), is the minimum number of extreme points whose convex span is X.

Conjecture 1.74. Let E be closed convex space of finite dimensions. Then:

• E is a simplex if and only if every two dimensional subspace is a line segment
• the set of extreme points of E is a complex projective space if and only if every two

dimensional subspace is a two dimensional sphere (E is the space of density matrices).
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Remark. The only if is easy to show based on the discussion above. The if part does
not actually work. Take 6 points in a 4 dimensional euclidean space such that the form two
triangles that intersect at a single point. All two dimensional convex spaces will be segments.
However, the whole convex hull is not a simplex.
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