
Reliable and Interpretable AI - HS2018
github.com/manuelbre

Bayes’ Rule p(θ|x) = p(x|θ)p(θ)
p(x) = p(x|θ)p(θ)∫

θ̃ p(x|θ̃)p(θ̃)dθ̃

Gaussian p(X|µ, σ) = 1
σ
√

2π
exp[− (X−µ)2

2σ2]

p(x|µ,Σ) = 1√
2π
d

1√
|Σ|

exp[−1
2(x− µ)TΣ−1(x− µ)]

ln(p(x|µ,Σ)) = −d
2 ln(2π)− 1

2 ln |Σ| − 1
2(y − µ)TΣ(y − µ)

Expected value E[X] =
∫
X xp(x)dx =

∑
x∈X xp(x)

E[aX] = aE[X]; E[XY]
indep.
= E[X]E[Y]

E[X + Y] = E[X] + E[Y]
Variance V ar[X] =

∫
x(x− µ)2p(x)dx

V ar[X] = E[(X − E[X])2] = E[X2]− E[X]2

Norm

‖x‖p :=

(∑n
i=1 |xi|

p

)1/p

‖x‖2 :=
√
x2

1 + · · ·+ x2
n

‖x‖1 := |x1|+ · · ·+ |xn|.
‖x‖∞ := maxi |xi|
Efficient projections only exists for L1,L2 and L∞ norms.
1 Deep Learning
Loss

Cross-entropy loss(x, true label) = − log
(

exp(x[truelabel])∑
j exp(x[j])

)
= − log (softmax(x[truelabel])

= −x[truelabel]+ log
(∑

j exp(x[j])
)

, where x is the logit

output of the NN.

NegativeLogLikelihoodLoss NLLLoss(logs, true label) =
−logs[true label], where for logs the following should
be used to make it equal to the Cross-entropy loss:

logs = log(softmax(x))
2 Adverserial Examples
Targeted FGSM (Fast Gradient Sign Method)
Intuition: Goal is to perturbe the image such that the NN
missclassifies the image to target label t. Therefore reduce
the loss of the target label.
0. Target label t, true label s, generally t 6= s
1. Compute perturbation: η = ε · sign (∇x losst(x))

∇x losst =
(
∂ losst
∂x1

, . . . , ∂ losst
∂xn

)
,where losst is the entry of the
cross entropy loss vector for
the target label and x is the
image vector.

2. Perturb the input: x′ = x− η
3. Check if: f (x′) = t, where f (x)

is classification result of the
NN for x.

Untargeted FGSM (Fast Gradient Sign Method)
0. True label s
1. Compute perturbation: η = ε · sign (∇x losss(x))

∇x losss =
(
∂ losss
∂x1

, . . . , ∂ losss
∂xn

)
2. Perturb the input: x′ = x+ η
3. Check if: f (x′) 6=s
PGD (Projected Gradient Descent)
Take k steps of FGSM each of size ε. After each step
project onto S(x). By projecting, we mean that we find
the closest point inside the S(x) ball (e.g. L∞ ball). Here,
closest is defined according to some norm (e.g. L∞). In the
region of S(X) we want all point to be classified with the
same label.
S(x) = {x′| ‖x− x′‖∞ < ε}
Note that the S(x) ball is of size ε which is different than the
εstep of the FGSM step and normally it holds that εstep < ε.
Projecting on the L∞ ball is the same as clamping the val-
ues: x′projected = clamp(x′,min = x− ε,max = x+ ε)

Note that the resulting x′projected can be inside the L∞ ball.
Minimization Problem for Defense:

find θ
minimize ρ(θ)
where ρ(θ) = E(x,y)∼D

[
maxx′∈S(x)L (θ, x′, y)

]
in practice ρ(θ) = 1

|Da|
∑

(x,y)∈Da L(θ, x, y)

,

where Da is dataset of adverserial examples
For which ρ(θ) is the empirical risk (Loss) and the outer
optimization (min) problem (Defense): Find θ that mini-

mizes the high loss → train robust classifier (with normal
SGD methode θ′ = θ − εlearning rate · ∇θρ(θ).)
Further, maxx′∈S(x)L (θ, x′, y) the inner optimization (max)

problem (Attack): Find adverserial x′ achieves high loss →
adverserial attack.
Optimization Problem
Objective is to have a small perturbation η, such that the
image is missclassified. Large perturbation is not wanted:

find η
minimize ‖η‖p
such that f(x+ η) = t

x+ η ∈ [0, 1]n

In general this is a hard problem to optimize with gradient
descent. Therefore ease the constrains.

1. Use objective function:
obj(x+ η) ≤ 0 ⇒ f(x+ η) = t
A correct objective function is a function that has
obj(x′) ≤ 0 ⇐⇒ p(t) ≥ 0.5

Sound objective functions for 2-class NN:
obj (x′) = losst (x′)− 1
obj (x′) = max (0, 0.5− softmax (x′)t)
For k-class NN this is:
objk(x′) = − logk (softmax (x′)t)−1 = C ·losst (x′)−1,
where C = 1

log2(k) for cross-entropy loss with log2.

2. Replace norm with proxy function because the gradient
of e.g. the inf norm is zero for most values except the
maximum value.
Replace ‖η‖∞ with

∑
i max (0, (ηi − τ))

If all entries are less then τ then the entire expression is
zero. Note: When τ is large, the gradient is similar to
the gradient of ‖η‖∞. Start with large τ and lower after
each iteration.

3. Clamp perturbed image back to box domain after opti-
mization.

Then the optimization becomes:
find η
minimize ‖η‖p + c · obj(x+ η)
such that x+ η ∈ [0, 1]n

Diffing Networks
Given two NN trained to learn same function. Perturb Input
x such that class(f1(x′)) 6= class(f2(x′))
Use the following objective function, where fi(x

′)t is the
softmax output of of NN i w.r.t.
while class (f1(x)) = class (f2(x)) :
obj(x) = f1(x)t − f2(x)t → Use as Loss

x = x+ ε · ∂obj(x)
∂x → Maximize Loss

return x

3 Logic
Goal: Want to query NN such that some logical constrains
are satisfied.
Problem: Formulating this as a constrained problem is hard
to solve and times out for large NN.
Solution: Translate logical constrain into loss.
Translations
∀x, if T(φ)(x) = 0⇒ φ(x) satisfied,
where φ(x) is logical formula
Use the following constrains to generate loss function.
Logical Term Translation Logic Negation (¬)

t1 = t2 |t1 − t2| t1 < t2 ∨ t2 < t1

t1 ≤ t2 max (0, t1 − t2) t1 > t2

t1 < t2 T (t1 + ε ≤ t2) t1 ≥ t2
t1 6= t2 T (t1 < t2 ∨ t2 < t1) t1 = t2
ϕ ∨ ψ T (ϕ) · T (ψ) ¬ϕ ∧ ¬ψ
ϕ ∧ ψ T (ϕ) + T (ψ) ¬ϕ ∨ ¬ψ
Problem: When dealing with real values in logical domain
and floats in loss domain one has to assign ε to smallest
machine value. Thereafter Translation is only valid in one
direction (T(φ)(x) = 0 ⇒ φ(x) satisfied). It no longer
holds that when φ(x) satisfied, that the loss is 0.
E.g. t1 < t2 ⇒ T (φ) = max(0, t1 + ε− t2)
Use, t1 = t2 − ε

2 . It holds that t1 < t2 but Translation is
not satisfied since T (φ) = max(0, t2 − ε

2 − t2) = ε
2 6= 0

Therefore, T(φ)(x) = 0⇒ φ(x) satisfied,
but φ(x)satisfied 6=⇒ T(φ)(x) = 0
Example
Goal: Find an image i which gets classified to 9 where the
image i is within some distance of the image deer.

0. Logical Formula:
φ(i) =

∧k
j=1,j 6=9 NN(i)[j] < NN(i)[9]∧‖i−deer ‖∞ < 25

∧ ‖i− deer ‖∞ > 5

1. Translation into loss:

T (φ) =
∑k

j=1,j 6=9
max(0,NN(i)[j] + ε−NN(i)[9]

+ max(0, ‖i− deer ‖∞ + ε− 25)

+ max(0,5 + ε− ‖i− deer ‖∞)

2. Train Network with SGD

Train NN with Logic
0. Goal: Want to enforce property φ. Find weights for NN,

such that expected value of the property increases:
find θ
maximize ρ(θ)
where ρ(θ) = Es−D[∀z · φ(z, s, θ)]

1. Translate into loss:
find θ
minimize ρ(θ)
where ρ(θ) = Es∼D [T(φ) (z worst , s, θ)]

and z worst = arg minZ(T(¬φ)(z, s, θ))
Inner minimization: Find worst violation of property.
Outer minimization: Find weight such that worst viola-
tion is minimized.
Intuitively, we are trying to get the worst possible vio-
lation of the formula and then to find a network that
minimizes its effect.

2. Solve inner minimization by splitting loss:
e.g. loss(z, x, θ) = max (0, ‖x− z‖∞ − ε)

+ max (0, NNθ(z)[3]− δ)

→ split loss!

2.1. Solve with PGD:
minz loss(z, x, θ) = max (0, NNθ(z)[3]− δ)

2.2. Project z back onto the L∞(x, ε) ball

4 Certifay AI - Abstract Domains
Sound: Correct Approximation of NN.
Precise: Approximation is superset of NN, but should not
approximate too much, otherwise can not verify NN.
Efficient: Efficient to compute
Interval Domain
Input x is in the form of x = [a, b].

Operation Rules
Addition: x1 + x2 = [x1[0] + x2[0], x1[1] + x2[1]]
Substract.: [x1, x2]− [y1, y2] = [x1 − y2, x2 − y1]
Addition Scalar: x1 + a = [x1[0] + a, x1[1] + a]
Multipl.: [x1, x2] · [y1, y2] = [min(x1y1, x1y2, x2y1, x2y2),

max(x1y1, x1y2, x2y1, x2y2)]
Multipl Scalar: x1 · a = [l, u],
with l = min(x[0] · a, x[1] · a), u = max(x[0] · a, x[1] · a)
Funct.: f([y1, y2]) = [min {f(y1), f(y2)} ,

max {f(y1), f(y2)}]
Lower Equal: ≤ ([l1, u1] , [l2, u2]) = ([l1, u1] ui [−∞, u2]

, [l1,∞] ui [l2, u2])
Zonotope Abstrac Domain

m̂ = am0 +
∑k

i=1 a
m
i εi

εi : noise terms ranging [−1, 1] shared between abstract
neurons
ani : real number that controls magnitude of noise
Centered around am0

Operation Rules
Multiplication with scalar(
an0 +

∑k
i=1 a

n
i εi

)
· C =

(
C · an0 +

∑k
i=1C · ani εi

)
,C ∈ R

Multiplication of two variable

(
an0 +

k∑
i=1

ani εi

)
·

(
am0 +

k∑
i=1

ami εi

)
= (an0 · am0) +

k∑
i=1

(ani · am0 + ami · an0) · εi +
k∑
i=1

k∑
j=1

ami · anj ∗ εi · εj

where εi · εj becomes new variable εi,j and
εi,j ∈ [−1, 1] if i 6= j
εi,j ∈ [0, 1] if i = j

Summation(
an0 +

k∑
i=1

ani εi

)
+

(
am0 +

k∑
i=1

ami εi

)
= (an0 + am0)

+
k∑
i=1

(ani + ami) · εi

Join
Operation is not closed. Example of the Operation:

ReLU
f#
ReLU = ReLU#

2 (b) ◦ ReLU#
1 (a) (Affine)

ReLU#
i (xi) (ψ) = ψ{xi≥0} t ψ{xi<0} ,

where ψ{xi≥0} = (ψ u {xi ≥ 0}) , for which u is not de-
fined.

and ψ{xi<0} =

{
[[xi = 0]] (ψ) if (ψ ∩ {xi < 0}) 6=⊥

⊥ otherwise

Box

zbox =

[(
an0 +

k∑
i=1

ani · sign(ani) · (−1)

)
,(

an0 +

k∑
i=1

ani · sign(ani)

)]
4.1 Train provable robust NN

find θ
minimize ρ(θ)
where ρ(θ) = E(xy)∼D

[
maxz∈γ(NN∗(α(S(x))) L(θ, z, y)

]

Set of z can be large. Instead of enumerate the set first
transform it. For each zq use the following:
dq = zq − zy and then uq = max (box (dq)) where uq is the
upper bound of the polytope dq transformed into the box
domain. Therefore,
L(z, y) = maxq 6=y (zq − zy) = maxq(uq)
5 Visualize CNN
Early layers are Gabor-filter-like filters for edges.
Later layers have more complex, abstract patterns.

Feature Visualization
Template that the NN is looking for.
First layers as Images:
Interpret weights of layers as images. Only works for layers
with up to 3 channels.
Visualization by Optimization:

1. Initialize input image with noise.

2. Maximize response of a channel of a certain later. For
that define score, i.e. score (x) = mean (layern[:, :; , 3])

3. Use SGD to update input image and add regularization
term so that image is constraint to look like an image:
x← x+ η∇x score(x) +

∑
t λtRt(x)

Regularization: E.g. penalyze high frequencies

Early layers produce strong line patterns.
While later layers show higher level concepts.

Attribution
Location/pixels that are important for NN decision.
Grad-CAM
Highlight region of image that activates layer for some label
s.

Where, LS = ReLU

(∑
k αkS︸︷︷︸
Importance
of class s

· layern[0, :; ; k])︸ ︷︷ ︸
Spatial Activations

)
Meaningful Perturbations
Learn which part of image can be perturbed such that the
NN will predict wrong label.

Non Negative Matrix Factorization (NMF)
WH = V
W ∈ Rr×k, H ∈ Rk×c, V ∈ Rr×c
Columns in H correspond to patterns in V. Whereas rows
in W contain weights for those patterns.

Use NMF on post-ReLU activation of last convolutional
layer. Thereafter use feature visualization with help of op-
timization to visualize the patterns. Can also be used for
attribution by thresholding the prototypes and combining
them.
6 Probabilistic Programming

P (Ai | B) = P (B|Ai)P (Ai)∑
j
P (B|Aj)P (Aj)

·

Distributions x := Distribution
uniform(a,b)
uniformInt(a,b)
gauss(mean,variance)
bernoulli(p)
poisson(mean)

Obvervations observe (x >= 0.5)
Examples
Run a psi program with psi dice.psi --expectation
The --expectation flag is used to get the probability.
Without the flag the exact distribution (PDF) is returned.

1 def main(){ // didItRain
2 cloudy := flip(0.5);
3 rain := 0; sprinkler := 0;
4

5 if (cloudy){
6 rain = flip(0.8);
7 sprinkler = flip(0.1);
8 }else{
9 rain = flip(0.2);

10 sprinkler = flip(0.5);
11 }
12

13 wetGrass := rain || sprinkler;
14

15 observe(wetGrass);
16 return rain==1; // Probability that it rains,
17 // given grass is wet.
18 }

1 def main(){ // Dice
2 n := 40;
3 sum := 0;
4 for i in [0..n){
5 dice := uniformInt(1,6);
6 sum += dice;
7 }
8 average := sum / n;
9 return average > 4; // Prob. that average of 40...

10 // dice throws is above 4.
11 }

1 def main(){ // Dice 2
2 n := 20;
3 sum := 0;
4 n_6 := 0;
5 for i in [0..n){
6 roll := uniformInt(1,6);
7 sum += roll;
8 if roll == 6{
9 n_6 += 1;

10 }
11 }
12 average := sum / n;
13 observe(n_6 >= 10);
14 eturn average > 4; // Prob. that average of 20...
15 // dice throws is above 4, given
16 // at least 10 rolls are a 6.
17 }

1 def main(){ \\ Program with expectation of Pi.
2 x := uniform(0,1);
3 y := uniform(0,1);
4 within_radius := x*x+y*y <= 1;
5 return 4*within_radius; \\Prob. that point ...
6 \\is within radius.
7 }

Differential Privacy
Epsilon - Differential Privacy
Pr[F (x)∈Φ]
Pr[F (x′)∈Φ] ≤ exp(ε)

, where F (x) is the output of the database query includ-
ing randomization, x′ is a database that differs on a single
element w.r.t. to x and Φ is the secret.
7 Programming by Examples (PBE)
A new frontier in AI where one learns an interpretable pro-
gram from user-provided examples.
Requires very few input-output examples. Assumes the
given examples are representatives.
PBE problem definition
Given: A domain specific Language (DSL) & set of input-
output examples.
Goal: Learn a function over the DSL which is consistent
with the provided examples.

