
Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1. Introduktion
Programmering, grundkurs (pgk)

Björn Regnell

Datavetenskap, LTH, Lunds universitet
https://lunduniversity.github.io/pgk

EDAB05, Lp1-2, HT2025

Kompilerad den 11 januari 2026

1 / 87

https://lunduniversity.github.io/pgk

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

1 Introduktion
Om kursen
Att lära denna läsvecka w01
Om programmering
De enklaste beståndsdelarna: litteraler, uttryck, variabler
Funktioner
Logik
Satser
Kontrollstrukturer
Veckans uppgifter

2 / 87

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Om kursen

Om kursen

3 / 87

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Vem går pgk?

D1|C1: Nybörjare på Datateknik|Infocom, kursen är
obligatorisk men du ska ändå självregistrera dig i Ladok.
Dx|Cx: Äldre LTH-studenter som är omregistrerade i
senare årskurs eller bytt till Datateknik|Infocom

4 / 87

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Viktiga länkar

Kursens öppna hemsida:
https://lunduniversity.github.io/pgk

Här finns det mesta, t.ex. dessa bilder, annat kursmaterial,
hur du installerar verktyg på din egen dator etc.
Lär dig hitta på hemsidan redan nu.
Kursens slutna sida bakom inloggningsvägg:
https://canvas.education.lu.se/courses/31677

Här finns administrativ information om efterbeställning av
bokpaket, gruppindelning, föreläsningsdeltagarlista, hemlig
invit till Discord-server etc.
Håll koll på ”anslag” i Canvas så du inte missar något.
Du måste ha studentkonto, läs noga här:
https://www.student.lth.se/ny-student/

5 / 87

https://lunduniversity.github.io/pgk
https://canvas.education.lu.se/courses/31677
https://www.student.lth.se/ny-student/

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Vad lär du dig?

Grundläggande principer för programmering:
Sekvens, Alternativ, Repetition, Abstraktion (SARA)
=⇒ Inga förkunskaper i programmering krävs!
Implementation av algoritmer
Tänka i abstraktioner, dela upp problem i delproblem
Förståelse för flera olika angreppssätt:

imperativ programmering
objektorientering
funktionsprogrammering

Det moderna programmeringsspråket Scala
Utvecklingsverktyg (editor, kompilator, utvecklingsmiljö)
Implementera, granska, testa, felsöka

6 / 87

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Progression
Kursens koncept avancerar steg för steg:

Kontrollstrukturer
Funktioner
Objekt
Datastrukturer
Algoritmer
Nästlade strukturer
Mer avancerade abstraktionsmekanismer

Komposition
Polymorfism
Kontextuella abstraktioner

Vi itererar över koncepten & fördjupar förståelsen efter hand.

7 / 87

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Veckoöversikt
W Modul Övn Lab
W01 Introduktion expressions kojo
W02 Program och kontrollstrukturer programs –
W03 Funktioner och abstraktion functions irritext
W04 Objekt och inkapsling objects blockmole
W05 Klasser och datamodellering classes blockbattle0
W06 Mönster och felhantering patterns blockbattle1
W07 Sekvenser och enumerationer sequences shuffle
TP – – –
W08 Nästlade och generiska strukturer matrices life
W09 Mängder och tabeller lookup words
W10 Arv och komposition inheritance snake0
W11 Varians och kontextparametrar context snake1
W12 Fördjupning, Projekt extra Projekt0
W13 Repetition examprep Projekt1
W14 MUNTLIGT PROV Munta Munta
TP VALFRI TENTAMEN – –

8 / 87

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Kursutveckling och förnyelse

Scala är förstaspråk på Datateknik (D) sedan 2016.
Den största förnyelsen av den inledande programmeringskursen
sedan vi införde Java 1997.
Scala är förstaspråk på InfoCom (C) sedan 2021.
Scala 3 sedan 2021 med stora förenklingar för nybörjare + nya
avancerade koncept för proffsen.
Ny examination från 2021: muntligt prov + valfri tenta
Kursmaterialet är öppen källkod och fritt tillgängligt.
Studentmedverkan i kursutvecklingen:

Mer än 90 personer har bidragit på github.com/lunduniversity/introprog
Se alla förbättringar sen förra året här:
github.com/lunduniversity/introprog/commits
Du är hjärtligt välkommen att bidra! Se instruktioner i kompendiet.

9 / 87

https://github.com/lunduniversity/introprog
https://github.com/lunduniversity/introprog/commits

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Historik förstaspråk på D & C vid LTH

Scala 2016 (D), 2021 (C)
Java 1997 (D), 2001 (C), InfoCom-programmet grundas
Simula 1990 (D)
Pascal 1982 (D, E), Datateknik-programmet grundas
Fortran, Algol (F, E, ...) förhistoria med hålkortsprogrammering

Scalas uppfinnare Professor Martin Odersky vid EPFL i Lausanne, Schweiz, har
även skrivit stora delar av Java-kompilatorn, och var en gång i tiden doktorand för Prof.
Niklaus Wirth, som låg bakom Algol, Pascal, Modula m.m. Första versionen av Scala
kom 2004. https://en.wikipedia.org/wiki/Scala_(programming_language)

10 / 87

https://en.wikipedia.org/wiki/Scala_(programming_language)

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Historik förstaspråk på D & C vid LTH

Scala 2016 (D), 2021 (C)
Java 1997 (D), 2001 (C), InfoCom-programmet grundas
Simula 1990 (D)
Pascal 1982 (D, E), Datateknik-programmet grundas
Fortran, Algol (F, E, ...) förhistoria med hålkortsprogrammering

Scalas uppfinnare Professor Martin Odersky vid EPFL i Lausanne, Schweiz, har
även skrivit stora delar av Java-kompilatorn, och var en gång i tiden doktorand för Prof.
Niklaus Wirth, som låg bakom Algol, Pascal, Modula m.m. Första versionen av Scala
kom 2004. https://en.wikipedia.org/wiki/Scala_(programming_language)

10 / 87

https://en.wikipedia.org/wiki/Scala_(programming_language)

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Varför Scala som förstaspråk?

Varför Scala?
1 Enkel och enhetlig syntax => lätt att skriva
2 Enkel och enhetlig semantik => lätt att fatta
3 Kombinerar flera angreppssätt => jämföra lösningar
4 Stark typning + statisk typning => färre buggar
5 Typhärledning => koncis kod
6 Scala Read-Evaluate-Print-Loop => lätt att experimentera
7 Skalbart från lätt till avancerat => nybörjare + fördjupning
8 Scala är öppen källkod + massor av fria kodbibliotek1
9 Effektivitet: avancerad, mogen teknik => snabba program
10 Stor industriell spridning: Netflix, LinkedIn, Twitter, Spotify,

PayPal, Klarna, Sony, AirBNB, UBS, The Guardian, ...
11 Scala och Java fungerar utmärkt tillsammans:

Java-bibliotek kan användas direkt i ditt Scala-program, och
Java är det mest använda (?) språket på planeten Jorden

1https://index.scala-lang.org/
11 / 87

https://index.scala-lang.org/

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Hur lär du dig?

Genom praktiskt eget arbete: Lära genom att göra!
Övningar: applicera koncept på olika sätt
Laborationer: kombinera flera koncept till en helhet

Genom studier av kursens teori: Skapa förståelse!
Genom samarbete med dina kurskamrater: Gå djupare!

12 / 87

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Kurslitteratur

Kompendium med övningar & laborationer, trycks till självkostnad enl.
beställning, se info bakom Canvas-väggen.
Finns tillgänglig elektroniskt för fri nedladdning i pdf.
Föreläsningsbilder på kurshemsidan.
https://lunduniversity.github.io/pgk/#litteratur-prog

13 / 87

https://lunduniversity.github.io/pgk/#litteratur-prog

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Bokpaketet

UTHÄMTNING av beställda men ej uthämtade bokpaket sker på rasten i
E:A i kl 14 i morgon tisdag

Se info i Canvas
Swischa i förväg enl. info i Canvas så du snabbt kan visa bevis på
betalning vid uthämtning.
Kompendiet och snabbreferens trycks här i E-huset och säljs av
institutionen till självkostnadspris. För efterbeställning se Cavnvas.
Snabbreferensen finns också i pdf men du behöver ha en tryckt
version eftersom det är enda tillåtna hjälpmedlet på tentamen.
Säljs separat, se info i Canvas ”Efterbeställning snabbreferens”.

14 / 87

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Föreläsningsanteckningar

Föreläsningbilder uppdateras under kursens gång, se
hemsida.
Fram till mån kl 13 aktuell vecka är de bilder som ligger ute
under pågående uppdatering och kan således ändras.
Latex-koden och ändringshistorik finns här:
github.com/lunduniversity/introprog/tree/master/slides
Kom gärna med förslag på innehåll och tips på
förbättringar!

15 / 87

https://github.com/lunduniversity/introprog/tree/master/slides

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Personal 2025

Kursansvarig: Professor Björn Regnell, bjorn.regnell@cs.lth.se, E:2413
Bitr. kursansv.: Adjunkt Mattias Nordahl, mattias.nordal@cs.lth.se, E:21??
Handledare: teknologer anställda som s.k. amanuenser, 2025 (24 st)

Alicia Lind, Alice Ward, Annie Predel, Astrid Hammarberg,
Axel Friberger, Ebbe Flisbäck, Elias Åradsson, Hampus
Edén, Johan Ekberg, Johannes Nydahl, Julius Gustafsson
Bivrén, Karl Sellergren, Linus Ljung, Lovisa Löfgren, Maja
Blomgren, Maximilian Uggla, Melker Widén, Moa
Gassilewski, Moa Jansson, Naima Khan, Samuel Jollivet,
Sara Reimers, Viggo Bergdahl, William Sonesson

Kursadmin: Birger Swahn, birger.swahn@cs.lth.se, rum E:2179
E-huset 2:a våningen södra höghustrapphuset
https://fileadmin.cs.lth.se/cs/Bilder/rum/E2179.gif

16 / 87

https://fileadmin.cs.lth.se/cs/Bilder/rum/E2179.gif

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Kursmoment — varför?
Föreläsningar: skapa översikt, ge struktur, förklara teori, svara på frågor,
motivera varför.
Övningar: bearbeta teorin steg för steg, grundövningar för alla, extraövningar
om du vill/behöver öva mer, fördjupningsövningar om du vill gå djupare;
förberedelse inför laborationerna.
Laborationer: obligatoriska, sätta samman teorins delar i ett större program;
lösningar redovisas för handledare; gk på alla för att få munta.
Resurstider: få hjälp med övningar och laborationsförberedelser av handledare,
fråga vad du vill.
Samarbetsgrupper: grupplärande genom samarbete, hjälpa varandra.
Individuell projektuppgift: obligatorisk, du visar att du kan skapa ett större
program självständigt; redovisas för handledare.
Muntligt prov: obligatoriskt, ska klaras för godkänt på kursen; du visar att du
har tillräcklig förståelse för kursens koncept för att klara nästa kurs.
Tentamen: Valfri för överbetyg men alla uppmuntras att försöka. Du måste vara
godkänd på alla obligaotriska moment för att få tenta. Tentan görs med papper,
penna och snabbreferensen som enda hjälpmedel. Anmälan krävs.

17 / 87

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Detta är bara början...

Exempel på efterföljande kurser som bygger vidare på denna:
Programmeringsteknik – fördjupningskurs
Objektorienterad modellering och design
Programvaruutveckling i grupp
Algoritmer, datastrukturer och komplexitet
Funktionsprogrammering

18 / 87

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Förkunskaper

Förkunskaper 6= Förmåga
Varken kompetens eller personliga egenskaper är statiska
”Programmeringskompetens” är inte en enda enkel
förmåga utan en komplex sammansättning av flera olika
förmågor som utvecklas genom hela livet
Ett innovativt utvecklarteam behöver många olika
kompetenser för att vara framgångsrikt

19 / 87

Stor spridning i förkunskaper

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Samarbetgrupper

Ni delas in i samarbetsgrupper om (4 to 6) personer baserat på
förkunskapsenkäten, så att olika förkunskapsnivåer sammanförs.
Diskutera i samarbetsgruppen hur ni kan plugga tillsammans på ett bra
sätt under hela kursen.
En av laborationerna (snake) i lp2 är en mer omfattande grupplabb
och kommer att göras i din samarbetsgrupp.

21 / 87

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Varför studera i samarbetsgrupper?

Huvudsyfte: Djupinriktat lärande!
Pedagogisk forskning visar att lärandet blir mer djupinriktat
om det sker i utbyte med andra.
Ett studiesammanhang med höga ambitioner och
respektfull gemenskap gör att alla lär sig mer.
Varför ska du som redan kan mycket aktivt dela med dig av
dina kunskaper?

Förstå bättre själv genom att förklara för andra.
Träna din pedagogiska förmåga.
Förbered dig för ditt kommande yrkesliv som
mjukvaruutvecklare.

22 / 87

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Samarbetskontrakt
Gör ett skriftligt samarbetskontrakt gärna med dessa och ev.
andra punkter som ni också tycker bör ingå:

1 Återkommande mötestider per vecka
2 Kom i tid till gruppmöten
3 Var väl förberedd genom självstudier inför gruppmöten
4 Hjälp varandra att förstå, men ta inte över och lös allt
5 Ha ett respektfullt bemötande även om ni har olika åsikter
6 Inkludera alla i gemenskapen

Diskutera hur ni ska uppfylla dessa innan alla skriver på.
Var och en tar med en egen pappersutskrift av
samarbetskontraktet där alla skrivit på och visar för
handledare på första labben.
Om arbetet i samarbetsgruppen inte fungerar ska ni mejla
kursansvarig och boka mötestid för konsultation!

23 / 87

https://github.com/lunduniversity/introprog/tree/master/study-groups

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Dina frågor är viktiga!

Det finns bättre och sämre frågor vad gäller hur mycket
man kan lära sig av svaret, men all undran är en chans
att i dialog utbyta erfarenheter och lärande.
Den som frågar vill veta och berättar genom frågan något
om nuvarande kunskapsläge.
Den som svarar får chansen att reflektera över vad som
kan vara svårt och olika vägar till djupare förståelse.
I en hälsosam lärandemiljö är det helt tryggt att visa att
man ännu inte förstår, att man gjort ”fel”, att man har mer
att lära, etc.
Det är viktigt att våga försöka även om det blir ”fel”:
det är ju då man lär sig!

24 / 87

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Plagiatregler

Läs dessa regler noga och diskutera i
samarbetsgrupperna:

https://cs.lth.se/utbildning/samarbete-eller-fusk/
Föreskrifter angående obligatoriska moment

Ni ska lära er genom eget arbete och bra samarbete.
Samarbete gör att man lär sig bättre, men man lär sig inte
av att kopiera andras lösningar.
Plagiering är förbjuden och kan medföra
disciplinärende och avstängning.
Du får INTE lägga ut laborationslösningar öppet på github
eller på annan plats där någon annan kan komma åt dem!
Det är INTE tillåtet att använda artificiell intelligens för
kodgenerering i denna kurs.

25 / 87

https://cs.lth.se/utbildning/samarbete-eller-fusk/
https://cs.lth.se/utbildning/foereskrifter-angaaende-obligatoriska-moment/

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Varför ingen AI?

Det är inte tillåtet att använda AI för att generera lösningar.
Det är mycket viktigt att du lär dig koda självständigt.
Därför ska du visa dina kodkunskaper på munta och tenta
med penna och papper.
Undersökningar visar att studenter som använder AI för att
ta genvägar lär sig sämre och lätt blir ytinriktade.
Du ska stänga av tillägget Copilot i VS Code när du arbetar
med denna kurs – fråga handledare hur.2

Att värdera kvaliteten på AI-genererad kod kräver djup
kunskap, så bättre vänta med att träna på att koda med AI.

2Disable copilot: https://stackoverflow.com/questions/75377406
26 / 87

https://stackoverflow.com/questions/75377406

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

En typisk kursvecka

1 Gå på föreläsningar på måndag–tisdag
2 Jobba individuellt med teori, övningar, labbförberedelser

på måndag–torsdag
3 Träffas regelbundet i samarbetsgruppen och hjälp

varandra att förstå mer och fördjupa lärandet, förslagsvis
på återkommande tider varje vecka då alla i gruppen kan

4 Kom till resurstiderna och få hjälp och tips av handledare
och kurskamrater på onsdag–torsdag

5 Genomför den obligatoriska laborationen på fredag
Se detaljerna och undantagen i schemat i TimeEdit

27 / 87

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Övningar

Programmering lär man sig bäst genom att programmera...
Genom veckans övningarna i kompendiet bearbetar du teorins olika
delar via egna undersökningar med Scala REPL som viktigaste
verktyg.
Fokusera på att förstå vad som händer när du kör din kod. Om du bara
rusar vidare utan reflektion lär du dig inte alls lika bra.
Till de flesta övningar finns facit. Titta inte på facit förrän du själv gjort
ett försök. Det finns ofta många olika sätt att åstadkomma samma sak,
och din lösningsvariant kan vara lika bra som den i facit – använd REPL
för att verifiera att din lösning fungerar. Diskutera med handledare om
du är osäker på vad som är en mer eller mindre bra lösning.
Skapa en miljö för koncentration och lärande på djupet. Stäng telefon,
be kompisar i datorsalen att inte prata för högt, etc.

28 / 87

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Laborationer
På laborationerna sammanför du veckans koncept till en helhet i ett
större program och kollar att du kan grunderna inför kommande veckor.
Labbarna är individuella (utom en) och obligatoriska.
Gör övningarna och labbförberedelserna noga innan själva labben –
detta är ofta helt nödvändigt för att du ska hinna klart. Dina
labbförberedelser kontrolleras av handledare under labben.
Blir du sjuk eller har annat giltigt förhinder?
Anmäl det före labben till bjorn.regnell@cs.lth.se (prog) eller
mattias.nordahl@cs.lth.se (dod),
få hjälp på resurstid och redovisa på resurstid (eller labbtid, när
handledaren har tid över)
Hinner du inte med hela labben? Se till att handledaren noterar
”kompletteras”, och fortsätt på resurstid och ev. uppsamlingstider.
Läs noga kapitel ”Anvisningar” i kompendiet!
Laborationstiderna är gruppindelade enligt schemat. Du ska gå till den
tid och den sal som motsvarar din grupp som visas i kaptenalloc
Du hittar vilken grupp du tillhör i Canvas.

29 / 87

bjorn.regnell@cs.lth.se
mattias.nordahl@cs.lth.se
https://fileadmin.cs.lth.se/pgk/kaptenalloc/

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Ge din hjärna rätt förutsättningar för programmering

30 / 87

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Att lära denna läsvecka w01

Att lära denna läsvecka w01

31 / 87

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Att lära denna läsvecka w01

Modul Introduktion: Övn expressions → Labb kojo

� sekvens
� alternativ
� repetition
� abstraktion
� editera
� kompilera
� exekvera
� datorns delar
� virtuell maskin
� litteral
� värde
� uttryck
� identifierare
� variabel

� typ
� tilldelning
� namn
� val
� var
� def
� definiera och anropa
funktion
� funktionshuvud
� funktionskropp
� procedur
� inbyggda grundtyper
� println
� typen Unit

� enhetsvärdet ()
� stränginterpolatorn s
� aritmetik
� slumptal
� logiska uttryck
� de Morgans lagar
� if
� true
� false
� while
� for
� dod: operativsystem

32 / 87

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Om programmering

Om programmering

33 / 87

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Systemutveckling i praktiken

Inte bara kodning: kravbeslut, releaseplanering, design,
test, versionshantering, kontinuerlig integration,
driftsättning, återkoppling från dagens användare, ekonomi
& investering, gissa om morgondagens användare, ...
Teamwork: Inte ensamma hjältar utan autonoma team i
decentraliserade organisationer med innovationsuppdrag
Snabbhet: Att koda innebär att hela tiden uppfinna nya
”byggstenar” som ökar organisationens förmåga att snabbt
skapa värde med hjälp av mjukvara. Öppen källkod.
Skapa kraftfulla API:er. (API=application programming
interface, byggstenar för att bygga appar)
Livslångt lärande: Lär nytt och dela med dig hela tiden.
Exempel på pedagogisk utmaning: hjälp andra förstå och
använda ditt API =⇒ Samarbetskultur

34 / 87

Vad är en dator?

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Hur fungerar en dator?

Indata-enhet

CPU

Utdata-enhet

Minne med minnesceller

address innehåll
0 42
1 13
2 18
3 21
4 55
5 64
6 48
... ...

Minnet innehåller endast heltal som
representerar data och instruktioner.

36 / 87

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Vad är programmering?

Programmering innebär att ge instruktioner till en maskin.
Ett programmeringsspråk används av människor för att
skriva källkod som kan översättas av en kompilator till
maskinspråk som i sin tur exekveras av en dator.

Ada Lovelace publicerade det första
programmet redan på 1800-talet ämnat för en
kugghjulsdator.

sv.wikipedia.org/wiki/Programmering
en.wikipedia.org/wiki/Computer_programming
Ha picknick i Ada Lovelace-parken på Brunnshög!

37 / 87

https://sv.wikipedia.org/wiki/Programmering
https://en.wikipedia.org/wiki/Computer_programming
http://kartor.lund.se/wiki/lundanamn/index.php/Ada_Lovelace-parken

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Vad är en kompilator?

Källkod För
människor

Kompilator

Maskinkod För
maskiner

Grace Hopper uppfann kompilatorn 1952.
en.wikipedia.org/wiki/Grace_Hopper

38 / 87

https://en.wikipedia.org/wiki/Grace_Hopper

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Virtuell maskin (VM) == abstrakt hårdvara

En VM är en ”dator”
implementerad i mjukvara
som kan tolka en abstrakt
”maskinkod” som
översätts under körning
till den verkliga
maskinens konkreta
maskinkod.
Med en VM blir källkoden
plattformsoberoende
och fungerar på många
olika maskiner.
Exempel JVM:
Java Virtual Machine

Källkod

Kompilator

Abstrakt ”maskinkod”

VM interpreterar

Konkret maskinkod
39 / 87

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Vad består ett program av?

Text som följer entydiga språkregler (grammatik):
Syntax: textens konkreta utseende
Semantik: textens betydelse (vad maskinen gör/beräknar)

Nyckelord: ord med speciell betydelse, t.ex. if, while
Deklarationer: definitioner av nya ord: def gurka = 42

Satser är instruktioner som gör något: print("hej")
Uttryck är instruktioner som beräknar ett resultat: 1 + 1

Data är information som behandlas: t.ex. heltalet 42
Instruktioner ordnas i kodstrukturer: SARA

Sekvens: ordningen spelar roll för vad som händer
Alternativ: olika resultat beroende på uttrycks värde
Repetition: instruktioner upprepas många gånger
Abstraktion: nya byggblock skapas för att återanvändas

40 / 87

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Exempel på programmeringsspråk
Det finns massor med olika språk och det kommer ständigt nya.

Java
C
C++
C#
Python
JavaScript
Scala
Rust
Go
Kotlin
...

Några topplistor:
Redmonk
PYPL
TIOBE

41 / 87

https://redmonk.com/sogrady/2025/06/18/language-rankings-1-25/
http://pypl.github.io/PYPL.html
https://www.tiobe.com/tiobe-index/

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Olika programmeringsparadigm

Det finns många olika programmeringsparadigm (sätt att
programmera på), till exempel:

imperativ programmering: programmet är uppbyggt av satser
som påverkar systemets tillstånd
objektorienterad programmering: en sorts imperativ
programmering där programmet består av objekt som kapslar in
data och erbjuder operationer som bearbetar dessa data
funktionsprogrammering: programmet är uppbyggt av
samverkande funktioner som undviker förändringar av data
deklarativ programmering, logikprogrammering: programmet
är uppbyggt av logiska uttryck som beskriver olika fakta eller villkor
och exekveringen utgörs av en bevisprocedur som söker efter
värden som uppfyller fakta och villkor

Denna kurs behandlar de tre första.

42 / 87

https://en.wikipedia.org/wiki/Programming_paradigm

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Hello world
Kör rad för rad i Scala REPL (Read-Evaluate-Print-Loop):

> scala
Welcome to Scala 3.7.2 (21.0.5, Java OpenJDK 64-Bit Server VM).
Type in expressions for evaluation. Or try :help.

scala> println("Hello World!")
Hello World!

@main framför valfri funktion anger var ett fristående program ska starta:

@main def hi = println("Hello world!")

Spara texten ovan i filen hello.scala och kompilera ditt program:

> scala compile hello.scala

Kör ditt program med scala run som kompilerar automatiskt vid behov.

> scala run hello.scala
Hello World!

43 / 87

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Hello world
Kör rad för rad i Scala REPL (Read-Evaluate-Print-Loop):

> scala
Welcome to Scala 3.7.2 (21.0.5, Java OpenJDK 64-Bit Server VM).
Type in expressions for evaluation. Or try :help.

scala> println("Hello World!")
Hello World!

@main framför valfri funktion anger var ett fristående program ska starta:

@main def hi = println("Hello world!")

Spara texten ovan i filen hello.scala och kompilera ditt program:

> scala compile hello.scala

Kör ditt program med scala run som kompilerar automatiskt vid behov.

> scala run hello.scala
Hello World!

43 / 87

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Utvecklingscykeln

editera; kompilera; hitta fel och förbättringar; editera; kompilera;
hitta fel och förbättringar; editera; kompilera; hitta fel och
förbättringar; editera; kompilera; hitta fel och förbättringar;
editera; kompilera; hitta fel och förbättringar; editera; kompilera;
hitta fel och förbättringar; ...
upprepa(1000){

editera
kompilera
testa

}

44 / 87

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Utvecklingsverktyg

Din verktygskunskap är mycket viktig för din produktivitet.
Lär dig kortkommandon för vanliga handgrepp.
Alla verktyg som behövs finns förinstallerade på LTH:s linuxdatorer.
Om din egen burk krånglar: kör på skolans burkar så du ej fördröjs!
Verktyg vi använder i kursen:

Scala REPL: från övn 1
Barnvänlig Scala-programmering med Kojo: Lab 1
Texteditor för kod, t.ex VS code: från övn 2
Kompilera och kör fristående program med scala: från övn 2

Andra verktyg som är bra att lära sig:
Git för versionshantering
GitHub för kodlagring – men inte av lösningar till labbar!
Linux/Ubuntu och nyttiga terminalkommando

45 / 87

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Installera verktyg på din egen dator

När du ska skriva kod i en editor, kompilera i terminalen och köra ditt program
som en fristående applikation, så behövs:

En editor: VS Code med tillägget Scala (Metals)
Körmiljön OpenJDK
Kommandoverktyg för terminalen: scala
Se instruktioner här:
https://lunduniversity.github.io/pgk/#verktyg

Läs mer i Appendix C.
Tips om du kör Windows: installera nya Windows Terminal
Installationshjälp:

1 Drop-in som institutionen ordnar på lunchtid.
2 Pluggkvällar som SRD ordnar.
3 #frågor-och-svar på vår Discord-server
4 Fråga handledare på resurstid (i mån av tid).

46 / 87

https://lunduniversity.github.io/pgk/#verktyg

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Scala Command Line Interface (CLI)

Utvecklingen av ett nytt kommandogränssnitt (eng.
Command Line Interface (CLI)) för Scala startades 2022 i
ett öppenkällkodsprojekt som leds av Virtuslab.
I augusti 2024 blev scala-cli det nya scala-kommandot.
(Före Scala 3.5 hette kommandot scala-cli.)
Läs mer i Appendix C och F, samt här:
https://scala-cli.virtuslab.org/

Du kan se vad Scala CLI kan göra via hjälp-optionen:

> scala help

scala-cli help är ”gamla” kommandot som också ingår i Scala-installationen.

47 / 87

https://scala-cli.virtuslab.org/

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Tips och trix med scala i terminalen

Skriv :help i REPL så får du se vilka kommando som finns.
Du kan avsluta REPL med :q eller trycka Ctrl+D.
Ett vertikalstreck visas om du trycker ENTER mitt i en ofullständigt
rad. Detta indikerar att du kan fortsätta skriva på ny rad innan tolkning
sker.
Om du vill att REPL ska vänta att tolka raden du skrivit och istället ge
dig ännu en rad, så tryck först ner ESC-tangenten och sedan ENTER.
Om du vill förhindra att REPL ger ny rad efter ENTER vid ofullständig
rad, så skriv ett semikolon och tryck ENTER.
Starta repl med punkt efter blanktecken om du vill ha tillgång till koden
i alla scala-filer i aktuell katalog i din REPL-session:
scala repl .

Kör med punkt efter blanktecken så kompileras och exekveras alla
scala-filer i aktuell katalog och eventuella underkataloger:
scala run .

48 / 87

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

De enklaste beståndsdelarna: litteraler, uttryck, variabler

De enklaste beståndsdelarna:
litteraler, uttryck, variabler

49 / 87

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Litteraler

En litteral representerar ett fixt värde i koden och används
för att skapa data som programmet ska bearbeta.
Exempel:
42 heltalslitteral
42.0 decimaltalslitteral
'!' teckenlitteral, omgärdas med ’enkelfnuttar’
"hej" stränglitteral, omgärdas med ”dubbelfnuttar”
true litteral för sanningsvärdet ”sant”

Literaler har en typ som avgör vad man kan göra med dem.

50 / 87

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Exempel på inbyggda datatyper i Scala

Alla värden, uttryck och variabler har en datatyp, t.ex.:
Int för heltal
Long för extra stora heltal (tar mer minne)
Double för decimaltal, så kallade flyttal med flytande decimalpunkt
String för strängar

Kompilatorn håller reda på att uttryck kombineras på ett typsäkert sätt.
Annars blir det kompileringsfel.
Scala och Java är s.k. statiskt typade språk, vilket innebär att kontroll
av typinformation sker vid kompilering (eng. compile time)3.
Scala-kompilatorn gör typhärledning: man slipper skriva typerna om
kompilatorn kan lista ut dem med hjälp av typerna hos deluttrycken.

3Andra språk, t.ex. Python och Javascript är dynamiskt typade och där
skjuts typkontrollen upp till körningsdags (eng. run time)
Vilka är för- och nackdelarna med statisk vs. dynamisk typning?

51 / 87

https://sv.wikipedia.org/wiki/Datatyp
https://sv.wikipedia.org/wiki/Typsystem
https://en.wikipedia.org/wiki/Type_inference

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Grundtyper i Scala

Dessa grundtyper (eng. basic types) finns inbyggda i Scala:

Svenskt namn Engelskt namn Grundtyper
heltalstyp integral type Byte, Short, Int, Long, Char
flyttalstyp floating point

number types
Float, Double

numeriska typer numeric types heltalstyper och flyttalstyper
strängtyp
(teckensekvens)

string type String

sanningsvärdestyp
(boolesk typ)

truth value type Boolean

52 / 87

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Grundtypernas omfång

Grundtyp Antal bitar Omfång: minsta & största värde
Byte 8 −27 ... 27 − 1
Short 16 −215 ... 215 − 1
Char 16 0 ... 216 − 1
Int 32 −231 ... 231 − 1
Long 64 −263 ... 263 − 1
Float 32 ± 3.4028235 · 1038

Double 64 ± 1.7976931348623157 · 10308

Grundtypen String lagras som en sekvens av 16-bitars tecken av typen
Char och kan vara av godtycklig längd (tills minnet tar slut).

53 / 87

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Uttryck

Ett uttryck består av en eller flera delar som efter
evaluering ger ett resultat.
Delar i ett uttryck kan t.ex. vara:
litteraler (42), operatorer (+), funktioner (math.sin), ...
Exempel:

Ett enkelt uttryck:
42.0
Sammansatta uttryck:
40 + 2
(20 + 1) * 2
math.sin(0.5 * math.Pi)
"hej" + " på " + "dej"

När programmet tolkas sker evaluering av uttrycket, vilket
ger ett resultat i form av ett värde som har en typ.

54 / 87

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Variabler

En variabel kan tilldelas värdet av ett enkelt eller sammansatt uttryck.
En variabel har ett variabelnamn, vars utformning följer språkets regler
för s.k. identifierare.
En ny variabel införs i en variabeldeklaration och då den kan ges ett
värde, initialiseras. Namnet användas som referens till värdet.
Exempel på variabeldeklarationer i Scala, notera nyckelordet val:

val a = 0.5 * math.Pi
val length = 42 * math.sin(a)
val exclamationMarks = "!!!"
val greetingSwedish = "Hej på dej" + exclamationMarks

Vid exekveringen av programmet lagras variablernas värden i minnet
och deras respektive värde hämtas ur minnet när de refereras.
Variabler som deklareras med val kan endast tilldelas ett värde en
enda gång, vid den initialisering som sker vid deklarationen.

55 / 87

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Regler för identifierare

Enkel identifierare: t.ex. gurka2Tomat
Börja med bokstav
...följt av bokstäver eller siffror
Kan även innehålla understreck

Operator-identifierare, t.ex. +:
Börjar med ett operatortecken, t.ex. + - * / : ? ~ #
Kan följas av fler operatortecken

En identifierare får inte vara ett reserverat ord, se
snabbreferensen för alla reserverade ord i Scala.
Bokstavlig identifierare: `kan innehålla allt`

Börjar och slutar med backticks ` `
Kan innehålla vad som helst (utom backticks)
Kan användas för att undvika krockar med reserverade ord:
`val`

56 / 87

https://fileadmin.cs.lth.se/pgk/quickref.pdf

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Att bygga strängar: konkatenering och interpolering

Man kan konkatenera strängar med operatorn +
"hej" + " på " + "dej"

Efter en sträng kan man konkatenera vilka uttryck som
helst; uttryck inom parentes evalueras först och värdet görs
sen om till en sträng före konkateneringen:
val x = 42
val msg = "Dubbla värdet av " + x + " är " + (x * 2) + "."

Man kan i Scala få hjälp av kompilatorn att övervaka
bygget av strängar med stränginterpolatorn s:
val msg = s"Dubbla värdet av $x är ${x * 2}."

57 / 87

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Heltalsaritmetik
De fyra räknesätten skrivs som i matematiken (vanlig precedens):

1 scala> 3 + 5 * 2 - 1
2 res0: Int = 12

Parenteser styr evalueringsordningen:

1 scala> (3 + 5) * (2 - 1)
2 val res1: Int = 8

Heltalsdivision sker med decimaler avkortade:

1 scala> 41 / 2
2 val res2: Int = 20

Moduloräkning med restoperatorn %

1 scala> 41 % 2
2 val res3: Int = 1

58 / 87

https://en.wikipedia.org/wiki/Order_of_operations
https://en.wikipedia.org/wiki/Modulo_operation

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Flyttalsaritmetik
Decimaltal representeras med s.k. flyttal av typen Double:

1 scala> math.Pi
2 val res4: Double = 3.141592653589793

Stora tal så som π ∗ 1012 skrivs:

1 scala> math.Pi * 1E12
2 val res5: Double = 3.141592653589793E12

Det finns inte oändligt antal decimaler vilket ger problem med avvrundingsfel:

1 scala> 0.1 + 0.2
2 val res6: Double = 0.30000000000000004
3

4 scala> 1E10 + 0.0000000000001
5 val res7: Double = 1.0E10
6

7 scala> BigDecimal("0.1") + BigDecimal("0.2") // BigDecimal funkar
8 val res8: BigDecimal = 0.3

Läs mer här: https://0.30000000000000004.com 59 / 87

https://sv.wikipedia.org/wiki/Flyttal
https://0.30000000000000004.com

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Funktioner

Funktioner

60 / 87

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Definiera namn på uttryck

Med nyckelordet def kan man låta ett namn betyda
samma sak som ett uttryck.
Exempel:
def gurklängd = 42 + x

Uttrycket till höger evalueras varje gång anrop sker,
d.v.s. varje gång namnet används på annat ställe i koden.
gurklängd

61 / 87

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Funktion, argument, parameter
En funktion räknar ut resultat baserat på indata som kallas argument.
Argument ges namn genom deklaration av parametrar.
Exempel på deklaration av en funktion med en parameter:

def dubblera(x: Int) = 2 * x

Parametrarnas typ måste beskrivas efter kolon.
Kompilatorn kan härleda returtypen, men den kan också med fördel,
för tydlighetens skull, anges explicit:

def dubblera(x: Int): Int = 2 * x

Observera att namnet x blir ett ”nytt fräscht” lokalt namn som bara
finns och syns ”inuti” funktionen och har inget med ev. andra x
utanför funktionen att göra.
Beräkningen sker först vid anrop av funktionen:

1 scala> dubblera(42)
2 res1: Int = 84

62 / 87

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Färdiga matte-funktioner i paketet scala.math

I paketet scala.math finns många användbara funktioner: t.ex.
math.random() ger slumptal mellan 0.0 och 0.99999999999999999

scala> val x = math.random()
x: Double = 0.27749191749889635

scala> val length = 42.0 * math.sin(math.Pi / 3.0)
length: Double = 36.373066958946424

Studera dokumentationen här:
https://www.scala-lang.org/api/current/scala/math.html#

Paketet scala.math delegerar ofta till Java-klassen java.lang.Math
som är dokumenterad här:
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/
java/lang/Math.html

63 / 87

https://www.scala-lang.org/api/current/scala/math.html#
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/Math.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/Math.html

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Logik

Logik

64 / 87

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Logiska uttryck

Datorn kan ”räkna” med sanning och falskhet:
s.k. booelsk algebra efter George Boole
Enkla logiska uttryck: (finns bara två stycken)

true
false

Sammansatta logiska uttryck med logiska operatorer:
&& och, || eller, ! icke, == likhet, != olikhet, relationer: > < >= <=

Exempel:
true && true
false || true
!false
42 == 43
42 != 43
(42 >= 43) || (1 + 1 == 2)

65 / 87

https://en.wikipedia.org/wiki/Boolean_algebra
https://en.wikipedia.org/wiki/George_Boole

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

De Morgans lagar

De Morgans lagar beskriver vad som händer om man negerar
ett logiskt uttryck. Kan användas för att göra förenklingar.

I alla deluttryck sammanbundna med && eller ||,
ändra alla && till || och omvänt.
Negera alla ingående deluttryck. En relation negeras
genom att man byter == mot !=, < mot >=, etc.

Exempel på förenkling där de Morgans lagar används upprepat:
! (a < b || (a == 1 && b == 1)) ⇐⇒
! (a < b) && ! (a == 1 && b == 1) ⇐⇒
! (a < b) && (! (a == 1) || ! (b == 1)) ⇐⇒
a >= b && (a != 1 || b != 1)

66 / 87

https://en.wikipedia.org/wiki/Augustus_De_Morgan

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Alternativ med if-uttryck

Ett if-uttryck börjar med nyckelordet if, följt av ett logiskt
uttryck (villkor) inom parentes och två grenar.
def slumpgrönsak = if math.random() < 0.8 then "gurka" else "tomat"

Uttrycket efter then blir resultatet om villkoret är true
Uttrycket efter else blir resultatet om villkoret är false
scala> slumpgrönsak
res13: String = gurka

scala> slumpgrönsak
res14: String = gurka

scala> slumpgrönsak
res15: String = tomat

67 / 87

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Satser

Satser

68 / 87

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Uttryck eller sats?

Skillnad mellan uttryck och sats:
Ett uttryck ger ett resultat. Exempel: 1+1
En sats har en effekt.
Exempel: utskrift, spara på fil, tilldela variabel nytt värde.

Skriv ett uttryck när du är intresserad av värdet som beräknas.
Skriv en sats när du vill att något ska göras.

Både satser och uttryck kan i sin tur innehålla satser och uttryck i godtyckligt
komplexa nästlade strukturer (mer om det senare).

69 / 87

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Variabeldeklaration och tilldelningssats
En variabeldeklaration medför att plats i datorns minne reserveras så att
värden av den typ som variabeln kan referera till får plats där.
Vid deklaration ska variabeln initialiseras med ett startvärde.
En val-deklaration ger en variabel som efter initialisering inte kan ändras.

Dessa deklarationer...

var x = 42
val y = x + 1

... ger detta innehåll någonstans i
minnet:
x 42
y 43

Med en tilldelningssats ges en tidigare var-deklarerad variabel ett nytt värde:

x = 13

Det gamla värdet försvinner för alltid och det nya värdet lagras istället:
x 13
y 43

Observera att y här inte påverkas av att x ändrade värde.
70 / 87

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Tilldelningssatser är inte matematisk likhet

Likhetstecknet används alltså för att tilldela variabler nya värden och
det är inte samma sak som matematisk likhet. Vad händer här?

x = x + 1

Denna syntax är ett arv från de gamla språken C, Fortran mfl.
I andra språk används t.ex.

x := x + 1 eller x <- x + 1

Denna syntax visar kanske bättre att tilldelning är en stegvis process:
1 Först beräknas uttrycket till höger om tilldelningstecknet.
2 Sedan ersätts värdet som variabelnamnet refererar till av det beräknade

uttrycket. Det gamla värdet försvinner för alltid.

71 / 87

https://en.wikipedia.org/wiki/Assignment_(computer_science)

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Förkortade tilldelningssatser

Det är vanligt att man vill tilldela en variabel ett nytt värde
som beror av det gamla, så som i
x = x + 1

Därför finns förkortade tilldelningssatser som gör så att
man sparar några tecken och det blir tydligare (?) vad som
sker (när man vant sig vid detta skrivsätt):
x += 1

Uttrycket ovan expanderas av kompilatorn till x = x + 1

72 / 87

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Exempel på förkortade tilldelningssatser

scala> var x = 42
val x: Int = 42

scala> x *= 2

scala> x
val res0: Int = 84

scala> x /= 3

scala> x
val res1: Int = 28

73 / 87

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Övning: Tilldelningar i sekvens

Rita hur minnet ser ut ef-
ter varje rad nedan:

1 var u = 42
2 var x = 10
3 var y = 2 * x + 1
4 x = 20
5 var z = y + x + y - x
6 x += 1; y *= 2

En variabel som ännu inte initierats har ett odefini-
erat värde, anges nedan med frågetecken.

rad 1 rad 2 rad 3 rad 4 rad 5 rad 6

u 42

x ?

y ?

z ?

74 / 87

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Variabler som ändrar värden kan vara knepiga

Kod som innehåller variabler som förändras över tid är
ofta svårare att läsa och begripa.
Många buggar beror på att variabler av misstag förändras
på felaktiga och oanade sätt.
Föränderliga värden blir speciellt svåra i kod som körs
jämlöpande (parallellt).
I kod som körs i skarpt läge med många användare (s.k.
produktionskod) är därför val att föredra, medan var
endast används om det verkligen behövs.
Alltså: räkna hellre ut nya värden än förändra befintliga.

75 / 87

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Kontrollstrukturer

Kontrollstrukturer

76 / 87

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Kontrollstrukturer: alternativ och repetition

Används för att kontrollera (förändra) sekvensen och skapa alternativa vägar
genom koden. Vägen bestäms vid körtid.

if-sats:

if math.random() < 0.8 then println("gurka") else println("tomat")

Olika sorters loopar för att repetera satser. Antalet repetitioner ges vid körtid.
while-sats: bra när man inte vet hur många gånger det kan bli.

while math.random() < 0.8 do println("gurka")

for-sats: bra när man vill ange antalet repetitioner:

for i <- 1 to 10 do println(s"gurka nr $i")

77 / 87

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Scala-2-syntax för kontrollstrukturer fungerar i Scala 3
I Scala 2 användes en gammal syntax för kontrollstrukturer som liknar mer
C/C++/Java. Den är tillåten i Scala 3, men nya mer lättlästa syntaxen är att
föredra.

Scala-2-syntax för alternativ: parenteser men inget then

if (math.random() < 0.8) println("gurka") else println("tomat")

Scala-2-syntax för repetition:
while-sats: parenteser men inget do

while (math.random() < 0.8) println("gurka")

for-sats: parenteser men inget do

for (i <- 1 to 10) println(s"gurka nr $i")

Kojo Desktop funkar ännu bara med Scala 2 och gamla syntaxen, men
Kojo kan även köras med Scala 3 (se Appendix A).

78 / 87

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Repetera många satser

Om du vill göra flera saker i sekvens inne i en repetition så kan du skriva flera
satser inom klammer-parenteser:

while math.random() < 0.8 do {
println("gurka")
println("tomat")

}

Du kan efter vissa nyckelord (t.ex. do, then, else) välja bort
klammer-parenteser (eng. optional braces).

while math.random() < 0.8 do
println("gurka")
println("tomat")

Då är det indenteringen som avgör vilka satser som ingår.
Detta fungerar i Scala 3 (men inte i Scala 2).

79 / 87

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Repetera många satser

Om du vill göra flera saker i sekvens inne i en repetition så kan du skriva flera
satser inom klammer-parenteser:

while math.random() < 0.8 do {
println("gurka")
println("tomat")

}

Du kan efter vissa nyckelord (t.ex. do, then, else) välja bort
klammer-parenteser (eng. optional braces).

while math.random() < 0.8 do
println("gurka")
println("tomat")

Då är det indenteringen som avgör vilka satser som ingår.
Detta fungerar i Scala 3 (men inte i Scala 2).

79 / 87

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Procedurer
En procedur är en funktion som gör något intressant, men som inte
lämnar något intressant returvärde.
Exempel på procedur i standardbiblioteket: println("hej")
Du deklarerar egna procedurer genom att ange Unit som
returvärdestyp. Då returneras värdet () som betyder ”inget”.

scala> def hej(x: String): Unit = println(s"Hej på dej $x!")
hej: (x: String)Unit

scala> hej("Herr Gurka")
Hej på dej Herr Gurka!

scala> val x = hej("Fru Tomat")
Hej på dej Fru Tomat!
x: Unit = ()

Det som görs kallas (sido)effekt. Ovan är utskriften själva effekten.
Även funktioner kan ha sidoeffekter. De kallas då oäkta funktioner.

80 / 87

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Problemlösning: nedbrytning i abstraktioner som sen
kombineras

En av de allra viktigaste principerna inom programmering är funktionell
nedbrytning där underprogram i form av funktioner och procedurer
skapas för att bli byggstenar som kombineras till mer avancerade
funktioner och procedurer.
Genom de namn som definieras skapas återanvändbara
abstraktioner som kapslar in det funktionen gör till ett ”byggblock”.
Bra ”byggblock” gör det lättare att lösa svåra programmeringsproblem.
Abstraktioner som beräknar eller gör en enda, väldefinierad sak är
enklare att använda, jämfört med de som gör många, helt olika saker.
Abstraktioner med välgenomtänkta namn är enklare att använda,
jämfört med kryptiska eller missvisande namn.

81 / 87

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Veckans uppgifter

Veckans uppgifter

82 / 87

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Övning expressions och labb kojo
På övningen kör du Scala REPL för att träna på SARA.
Läs i Appendix och på kursens hemsida under ”Verktyg”
om hur du installerar och får igång Scala REPL.
På laborationen använder du barnvänliga Kojo för träna på
SARA, med fokus på abstraktion.
Det finns två olika sätt att använda Kojo:

1 Grafikbiblioteket i kojo i ett fristående Scala program med
vscode och exekvering i terminalen, se Appendix A.
Fungerar fint med nya Scala 3.

2 Skrivbordsappen Kojo Desktop med inbyggd barnvänlig
editor (endast Scala 2, gammal syntax etc).

3 Webbappen http://kojo.lu.se/ direkt i webbläsare;
rekommenderas ej – endast Scala 2, mer begränsad.

Alternativ 1 rekommenderas, men om du försenas av tekniskt
strul, så kom igång med 2 så länge tills du fått hjälp.

83 / 87

http://kojo.lu.se/

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Köa med Sigrid
För att köa till handledare på plats i sal i pgk använd Sigrid.
(Se hemlig länk i Canvas, sprid ej länken på internet så vi slipper bottar).

Direkt när undervisningspasset börjar: starta en session
med ditt förnamn, kursnamn pgk och rummets namn. Gör
detta även om du inte behöver hjälp från start! Då kan
ambulanser se antal studenter i varje rum.
Inget lösenord behövs.
Två olika köer i varje rum: hjälpkö och redovisningskö

Ställ dig i hjälpkö om du vill få vägledning och ställa frågor
Ställ dig i redovisningskö om du är klar att redovisa en labb

Du måste klicka på Uppdatera – annars händer inget!
OBS! Köar inte+Uppdatera så fort handledare anländer!
Om du går på extra pass i mån av plats så kan du se vilket
rum som har kortast kö använd Sigrid Monitor.

84 / 87

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Sigrid in action

Så här ser det ut när student står i hjälpkö efter att först ha
klickat på Hjäälp!!! och sedan på Uppdatera-knappen:

GLÖM INTE Köar inte + Uppdatera när handledare anländer!
85 / 87

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Om veckans övning: expressions
Förstå vad som händer när satser exekveras och uttryck evalueras.
Känna till betydelsen av begreppen sekvens, alternativ, repetition och
abstraktion.
Känna till litteralerna för enkla värden, deras typer och omfång.
Kunna deklarera och använda variabler och tilldelning, samt kunna rita bilder av
minnessituationen då variablers värden förändras.
Förstå skillnaden mellan olika numeriska typer, kunna omvandla mellan dessa
och vara medveten om noggrannhetsproblem som kan uppstå.
Förstå booleska uttryck och värdena true och false, samt kunna förenkla
booleska uttryck.
Förstå skillnaden mellan heltalsdivision och flyttalsdivision, samt användning av
rest vid heltalsdivision.
Förstå precedensregler och användning av parenteser i uttryck.
Kunna använda if-satser och if-uttryck.
Kunna använda for-satser och while-satser.
Kunna använda math.random() för att generera slumptal i olika intervaller.
Kunna beskriva skillnader och likheter mellan en procedur och en funktion.

86 / 87

Föreläsning i ”Programmering, grundkurs”, Björn Regnell, senast uppdaterad: 11 januari 2026

Vecka 1: Introduktion

Om veckans labb: kojo

Kunna tillämpa och kombinera principerna sekvens,
alternativ, repetition, och abstraktion i skapandet av egna
program om minst 20 rader kod.
Kunna förklara vad ett program gör i termer av sekvens,
alternativ, repetition, och abstraktion.
Kunna formatera egna program så att de blir lätta att läsa
och förstå.
Kunna förklara vad en variabel är och kunna deklarera
oföränderliga och förändringsbara variabler, samt göra
tilldelningar.
Kunna genomföra upprepade varv i cykeln
editera-exekvera-felsöka/förbättra för att stegvis bygga upp
allt mer utvecklade program.

87 / 87

	Introduktion
	Om kursen
	Att lära denna läsvecka w01
	Om programmering
	De enklaste beståndsdelarna: litteraler, uttryck, variabler
	Funktioner
	Logik
	Satser
	Kontrollstrukturer
	Veckans uppgifter

