
Introduktion till programmering
med Scala

Kompendium 1
Första läsperioden: Modul 1 – 7

Björn Regnell

EDAB05, Lp1-2, HT 2025
Datavetenskap, LTH

Lunds universitet

Kompileringsdatum: 10 januari 2026
https://lunduniversity.github.io/pgk

https://lunduniversity.github.io/pgk

Editor: Björn Regnell

Contributors in alphabetical order: Anders Buhl, André Philipsson Eriksson, Anna
Axelsson, Anna Palmqvist Sjövall, Annie Predel, Anton Andersson, Benjamin Lind-
berg, Björn Regnell, Casper Schreiter, Cecilia Lindskog, Dag Hemberg, Elias Åradsson,
Elliot Bräck, Elsa Cervetti Ogestad, Emelie Engström, Emil Wihlander, Erik Bjäre-
holt, Erik Grampp, Evelyn Beck, Felix Ohrgren, Fredrik Danebjer, Fritjof Bengtsson,
Gustav Cedersjö, Henrik Olsson, Hjalmar Rutberg, Hussein Taher, Jakob Hök, Jakob
Sinclair, Johan Ravnborg, Johannes Nydahl, Jonas Danebjer, Jos Rosenqvist, Lovisa
Löfgren, Maj Stenmark, Maria Kulesh, Melker Widén, Måns Magnusson, Nicholas
Boyd Isacsson, Niklas Sandén, Oliver Levay, Oliver Persson, Oscar Sigurdsson, Oskar
Berg, Oskar Widmark, Patrik Persson, Per Holm, Philip Sadrian, Sandra Nilsson,
Sebastian Hegardt, Simon Persson, Stefan Jonsson, Theodor Lundqvist, Tim Borg-
lund, Tom Postema, Valthor Halldorsson, Viktor Claesson, Wilhelm Wanecek, William
Karlsson.

Home: https://lunduniversity.github.io/pgk

Repo: https://github.com/lunduniversity/introprog

This compendium is on-going work.
Contributions are welcome!
Contact: bjorn.regnell@cs.lth.se

Versions:
Scala 3.7.2
JDK 21
introprog-scalalib 1.4.0

You can use this work if you respect this LICENSE: CC BY-SA 4.0
http://creativecommons.org/licenses/by-sa/4.0/
Do not distribute solutions to lab assignments and projects.

Copyright © 2015-2025.
Björn Regnell, Dept. of Computer Science, LTH, Lund University.

https://lunduniversity.github.io/pgk
https://github.com/lunduniversity/introprog
bjorn.regnell@cs.lth.se
https://github.com/lunduniversity/introprog-scalalib/
http://creativecommons.org/licenses/by-sa/4.0/

Framstegsprotokoll

Genomförda övningar

Till varje laboration hör en övning med uppgifter som utgör förberedelse inför labben.
Du behöver minst behärska grunduppgifterna för att klara labben inom rimlig tid.
Om du känner att du behöver öva mer på grunderna, gör då även extrauppgifterna.
Om du vill fördjupa dig, gör fördjupningsuppgifterna som är på mer avancerad nivå.
Kryssa för nedan vilka övningar du har gjort, så blir det lättare för din handledare att
anpassa dialogen till de kunskaper du förvärvat hittills.

Övning Grund Extra Fördjupning

expressions � � �
programs � � �
functions � � �
objects � � �
classes � � �
patterns � � �
sequences � � �
matrices � � �
lookup � � �
inheritance � � �
context � � �
extra � � �
examprep � � �

iii

iv

Godkända obligatoriska moment

För att bli godkänd på laborationsuppgifterna och projektuppgiften måste du lösa
deluppgifterna och diskutera dina lösningar med en handledare. Denna diskussion är
din möjlighet att få feedback på dina lösningar. Ta vara på den! Se till att handledaren
noterar nedan när du har blivit godkänd på respektive obligatoriska moment. Spara
detta blad tills du fått slutbetyg i kursen.

Namn: .

Namnteckning: .

Lab kompl+datum,gk+datum Handl. underskr. + namnförtydl.

kojo .

irritext .

blockmole .

blockbattle0 .

blockbattle1 .

shuffle .

life .

words .

snake0 .

snake1 .

Projektuppgift .

� bank Om egendef., ge kort beskrivning här:

� music

� photo

� egendefinerad

Muntligt prov

� godkänd .

Förord

Programmering är inte bara ett sätt att ta makten över de människoskapade system
som är förutsättningen för vårt moderna samhälle och dess fortsatta digitalisering.
Programmering är också ett kraftfullt verktyg för tanken. Med kunskap i program-
meringens grunder kan du påbörja den livslånga läranderesa som det innebär att
vara systemutvecklare och abstraktionskonstnär. Programmeringsspråk och utveck-
lingsverktyg kommer och går, men de grundläggande koncepten bakom all mjukvara
består: sekvens, alternativ, repetition och abstraktion.

Detta kompendium utgör kursmaterial för en grundkurs i programmering, som
syftar till att ge en solid bas för ingenjörsstudenter och andra som vill utveckla system
med mjukvara. Materialet omfattar en termins studier på kvartsfart och förutsätter
kunskaper motsvarande gymnasienivå i svenska, matematik och engelska.

Kompendiet distribueras som öppen källkod. Det får användas fritt så länge
erkännande ges och eventuella ändringar publiceras under samma licens som ur-
sprungsmaterialet.

I kursrepot github.com/lunduniversity/introprog finns instruktioner om hur du
kan bidra till kursmaterialet.

Läromaterialet fokuserar på lärande genom praktiskt programmeringsarbete och
innehåller övningar och laborationer som är organiserade i moduler. Varje modul har
ett tema och en teoridel som bearbetas på föreläsningar.

I kursen använder vi programmeringsspråket Scala, som har enkel syntax och
möjliggör flera principiellt olika sätt att programmera på, i ett och samma språk. Vi
använder Scala för att illustrera grunderna i imperativ och objektorienterad program-
mering, tillsammans med elementär funktionsprogrammering.

Den kanske viktigaste framgångsfaktorn vid studier i programmering är att du
bejakar din egen upptäckarglädje och experimentlusta. Det fantastiska med program-
mering är att dina egna intellektuella konstruktioner faktiskt gör något som just
du har bestämt! Ta vara på det och prova dig fram genom att koda egna idéer – det
är kul när det funkar, men minst lika lärorikt är felsökning, buggrättande och alla
misslyckade försök som, ibland efter hårt arbete vänds till lyckade lösningar och
bestående lärdomar.

Välkommen till datavetenskapens fascinerande värld och hjärtligt lycka till med
dina studier!

Lund, 10 januari 2026, Björn Regnell

v

http://github.com/lunduniversity/introprog

vi

Innehåll

Framstegsprotokoll iii

Förord v

I Om kursen 1

-2 Kursens arkitektur 3
-2.0.1 Veckoöversikt . 3

-2.1 Om ditt lärande . 6
-2.1.1 Vad lär du dig? . 6
-2.1.2 Progression . 6
-2.1.3 Hur lär du dig? . 6
-2.1.4 Kursmoment — varför? . 7
-2.1.5 En typisk kursvecka . 7

-1 Anvisningar 9
-1.1 Samarbetsgrupper . 9

-1.1.1 Samarbetskontrakt . 10
-1.1.2 Grupplaboration . 10

-1.2 Föreläsningar . 11
-1.3 Övningar . 11
-1.4 Resurstider . 13
-1.5 Laborationer . 14
-1.6 Projektuppgift . 15
-1.7 Muntligt prov . 16
-1.8 Valfri tentamen . 17

0 Hur bidra till kursmaterialet? 19
0.1 Bidrag är varmt välkomna! . 19
0.2 Instruktioner . 19

0.2.1 Vad behövs för att kunna bidra? 19
0.2.2 Svenska eller engelska? . 19

0.3 Exempel . 20

II Moduler 23

1 Introduktion 25
1.1 Teori . 26

1.1.1 Hur fungerar en dator? . 26

vii

viii INNEHÅLL

1.1.2 Vad är programmering? . 26
1.1.3 Vad är en kompilator? . 26
1.1.4 Virtuell maskin (VM) == abstrakt hårdvara 27
1.1.5 Vad består ett program av? . 27
1.1.6 Exempel på programmeringsspråk 27
1.1.7 Olika programmeringsparadigm 28
1.1.8 Hello world . 28
1.1.9 Utvecklingscykeln . 29
1.1.10 Utvecklingsverktyg . 29
1.1.11 Installera verktyg på din egen dator 29
1.1.12 Scala Command Line Interface (CLI) 30
1.1.13 Tips och trix med scala i terminalen 30
1.1.14 Litteraler . 30
1.1.15 Exempel på inbyggda datatyper i Scala 31
1.1.16 Grundtyper i Scala . 31
1.1.17 Grundtypernas omfång . 32
1.1.18 Uttryck . 32
1.1.19 Variabler . 32
1.1.20 Regler för identifierare . 33
1.1.21 Att bygga strängar: konkatenering och interpolering 33
1.1.22 Heltalsaritmetik . 34
1.1.23 Flyttalsaritmetik . 34
1.1.24 Definiera namn på uttryck . 34
1.1.25 Funktion, argument, parameter 35
1.1.26 Färdiga matte-funktioner i paketet scala.math 35
1.1.27 Logiska uttryck . 36
1.1.28 De Morgans lagar . 36
1.1.29 Alternativ med if-uttryck . 36
1.1.30 Uttryck eller sats? . 37
1.1.31 Variabeldeklaration och tilldelningssats 37
1.1.32 Tilldelningssatser är inte matematisk likhet 38
1.1.33 Förkortade tilldelningssatser 38
1.1.34 Exempel på förkortade tilldelningssatser 38
1.1.35 Variabler som ändrar värden kan vara knepiga 39
1.1.36 Kontrollstrukturer: alternativ och repetition 39
1.1.37 Scala-2-syntax för kontrollstrukturer fungerar i Scala 3 . . . 39
1.1.38 Repetera många satser . 40
1.1.39 Procedurer . 40
1.1.40 Problemlösning: nedbrytning i abstraktioner som sen kombi-

neras . 41
1.1.41 Övning expressions och labb kojo 41
1.1.42 Köa med Sigrid . 41
1.1.43 Sigrid in action . 42

1.2 Övning expressions . 43
1.2.1 Grunduppgifter; förberedelse inför laboration 43
1.2.2 Extrauppgifter; träna mer . 50
1.2.3 Fördjupningsuppgifter; utmaningar 53

1.3 Laboration: kojo . 56
1.3.1 Obligatoriska uppgifter . 56
1.3.2 Kontrollfrågor . 59

INNEHÅLL ix

1.3.3 Frivilliga extrauppgifter . 60

2 Program och kontrollstrukturer 67
2.1 Teori . 68

2.1.1 Vad är en datastruktur? . 68
2.1.2 Några samlingar i scala.collection 68
2.1.3 Olika strukturer för att hantera data 69
2.1.4 Vad är en vektor? . 69
2.1.5 En konceptuell bild av en vektor 69
2.1.6 En samling strängar . 70
2.1.7 Vad är en kontrollstruktur? . 70
2.1.8 Loopa genom elementen i en vektor 71
2.1.9 Bygg ny samling från befintlig med for-yield-uttryck 71
2.1.10 Samlingen Range håller reda på intervall 71
2.1.11 Loopa med Range . 72
2.1.12 Loopa med Range skapad med to 72
2.1.13 Loopa genom en samling med en while-sats 72
2.1.14 Vad är en Array? . 73
2.1.15 Några likheter & skillnader mellan Vector och Array 73
2.1.16 Ett minimalt fristående program i Scala 74
2.1.17 Typsäkra argument till ett program med @main 74
2.1.18 Vad är en algoritm? . 75
2.1.19 Algoritmexempel: N-FAKULTET 75
2.1.20 Algoritmexempel: MIN . 75
2.1.21 Mall för funktionsdefinitioner 76
2.1.22 Bättre många små abstraktioner som gör en sak var 76
2.1.23 Vad är ett block? . 76
2.1.24 Namn i block blir lokala . 77
2.1.25 Parameter och argument . 77
2.1.26 Procedurer . 78
2.1.27 ”Ingenting” är faktiskt någonting i Scala 78
2.1.28 Problemlösning: nedbrytning i abstraktioner som sen kombi-

neras . 79
2.1.29 Exempel på funktionell nedbrytning 79
2.1.30 Varför abstraktion? . 79
2.1.31 Från källkod till maskinkod med JVM 80
2.1.32 Paket . 80
2.1.33 Import . 80
2.1.34 Jar-filer . 81

2.2 Övning programs . 82
2.2.1 Grunduppgifter . 82
2.2.2 Extrauppgifter; träna mer . 87
2.2.3 Fördjupningsuppgifter; utmaningar 89

3 Funktioner och abstraktion 91
3.1 Teori . 92

3.1.1 Vad är abstraktion? . 92
3.1.2 Exempel på abstraktionsmekanismer inom datavetenskapen 92
3.1.3 Funktion: deklaration och anrop 92
3.1.4 Deklarera funktioner, överlagring 93
3.1.5 Funktioner med defaultargument 93

x INNEHÅLL

3.1.6 Funktioner med namngivna argument 93
3.1.7 Enhetlig access . 94
3.1.8 Anropsstacken och objektheapen 94
3.1.9 Anropsstacken och aktiveringsposter 95
3.1.10 Vad är en stack trace? . 95
3.1.11 Hur läsa en stack trace? . 96
3.1.12 Lokala funktioner . 96
3.1.13 Funktioner är äkta värden i Scala 97
3.1.14 Funktionsvärden kan vara argument 97
3.1.15 Applicera funktioner på element i samlingar med map 97
3.1.16 Applicera funktioner på element i samlingar med map 98
3.1.17 Äkta funktioner . 98
3.1.18 Exempel på oäkta funktioner: slumptal 99
3.1.19 Slumptalsfrö: få samma slumptal varje gång 99
3.1.20 Anonyma funktioner . 99
3.1.21 Applicera anonyma funktioner på element i samlingar 100
3.1.22 Platshållarsyntax för anonyma funktioner 100
3.1.23 Exempel på platshållarsyntax med reduceLeft 101
3.1.24 Predikat, med och utan namn 101
3.1.25 Funktionsvärde vid tom parameterlista: använd ”thunk” . . 102
3.1.26 Hur fungerar egentligen upprepa i Kojo? 102
3.1.27 Multipla parameterlistor . 102
3.1.28 Värdeanrop och namnanrop . 103
3.1.29 Klammerparenteser vid ensam parameter 103
3.1.30 Skapa din egen kontrollstruktur 104
3.1.31 Kolon vid ensam parameter . 104
3.1.32 Stegade funktioner, ”Curry-funktioner” 104
3.1.33 Funktion med fångad variabelrymd: closure 105
3.1.34 Rekursiva funktioner . 105
3.1.35 Loopa med rekursion . 105
3.1.36 Rekursiva datastrukturer . 106
3.1.37 Kompilera om det som ändrats vid varje sparning 106

3.2 Övning functions . 107
3.2.1 Grunduppgifter; förberedelse inför laboration 107
3.2.2 Extrauppgifter; träna mer . 111
3.2.3 Fördjupningsuppgifter; utmaningar 114

3.3 Laboration: irritext . 117
3.3.1 Krav . 117
3.3.2 Tips för att komma igång . 118
3.3.3 Inspiration . 118

4 Objekt och inkapsling 121
4.1 Teori . 122

4.1.1 Vad rymmer sköldpaddan i Kojo i sitt tillstånd? 122
4.1.2 Vad är ett objekt? . 122
4.1.3 Deklarera, allokera, referera 122
4.1.4 Olika sätt att allokera objekt 123
4.1.5 Vad är ett singelobjekt? . 123
4.1.6 Allokering: minne reserveras med plats för data 124
4.1.7 Punktnotation, tillståndsförändring med tilldelning 124
4.1.8 Punktnotation och operatornotation 124

INNEHÅLL xi

4.1.9 Namnrymd och skuggning . 125
4.1.10 Inkapsling: att dölja interna delar 125
4.1.11 Idiom: Privata variabler med understreck vid ”krock” 126
4.1.12 Principen om enhetlig access 126
4.1.13 Exempel: singelobjektet med förändringsbart tillstånd 126
4.1.14 Exempel: tillstånd, attribut . 127
4.1.15 Tillståndsändring . 127
4.1.16 Modul . 128
4.1.17 Deklarera paket . 128
4.1.18 Kompilera paket . 128
4.1.19 Paket i REPL . 129
4.1.20 Vad är en tupel? . 129
4.1.21 Tupler som parametrar och returvärde. 129
4.1.22 Ett smidigt sätt att skapa 2-tupler med metoden -> 130
4.1.23 Typalias för att abstrahera typnamn 130
4.1.24 Lata variabler med fördröjd initialisering 131
4.1.25 Singelobjekt är lata . 131
4.1.26 Vad är skillnaden mellan val, var, def, lazy val? 131
4.1.27 Fallgrop: initialiseringsordning och defaultvärden 132
4.1.28 Programmeringsparadigm . 132
4.1.29 Funktioner är äkta objekt i Scala 133
4.1.30 Fördjupning: Äkta funktionsobjekt är av funktionstyp 133
4.1.31 Vad är en klass? . 133
4.1.32 Vad är en klass? . 133
4.1.33 Använda klassen Color . 134
4.1.34 Lägg till metoder i efterhand med extension 134
4.1.35 Kollektiva extensionsmetoder 135
4.1.36 Import av alla namn i en viss modul 135
4.1.37 Namnbyte vid import . 136
4.1.38 Exkludera (gömma) namn vid import 136
4.1.39 Lokal import-deklaration . 136
4.1.40 Export . 137
4.1.41 Använda dokumentation för färdiga klasser. 137
4.1.42 Vad är en jar-fil? . 137
4.1.43 Öppen källkod på Maven Central 138
4.1.44 Vad är classpath? . 138
4.1.45 Färdiga grafikmetoder i klassen PixelWindow 138
4.1.46 Automatiska beroenden med Scala CLI i REPL: 139
4.1.47 Köra program + kodbiblitek med Scala CLI 139
4.1.48 Kompilera om vid varje ändring 139

4.2 Övning objects . 141
4.2.1 Grunduppgifter; förberedelse inför laboration 141
4.2.2 Extrauppgifter; träna mer . 148
4.2.3 Fördjupningsuppgifter; utmaningar 150

4.3 Laboration: blockmole . 152
4.3.1 Bakgrund . 152
4.3.2 Obligatoriska uppgifter . 152
4.3.3 Kontrollfrågor . 157
4.3.4 Frivilliga extrauppgifter . 157

xii INNEHÅLL

5 Klasser och datamodellering 161
5.1 Teori . 162

5.1.1 En metafor för klass: Stämpel 162
5.1.2 Vad är en klass? . 162
5.1.3 Datamodellering . 162
5.1.4 Singelobjekt jämfört med klass 163
5.1.5 Förändring av objektets tillstånd 163
5.1.6 Bättre att initialisera med hjälp av klassparametrar 164
5.1.7 Klassdeklarationer och instansiering 164
5.1.8 Övning: en klass som representerar en person 164
5.1.9 Lösning: klassen Person . 165
5.1.10 Skapa egen najs toString . 165
5.1.11 Instansprivata klassparametrar 166
5.1.12 Case-klasser är som vanliga klasser med extra godis 166
5.1.13 Fördjupning: Styra synlighet med private[X] 167
5.1.14 Styra användningen av infixa alfanumeriska operatorer . . . 167
5.1.15 Övning: Klassen Complex . 167
5.1.16 Exempel: Klassen Complex . 168
5.1.17 Exempel: Principen om enhetlig access 168
5.1.18 Instansiering med direkt användning av new 169
5.1.19 Indirekt instansiering med fabriksmetoder 169
5.1.20 Hur förhindra direkt instansiering? 170
5.1.21 Kompanjonsobjekt med indirekt instansiering 170
5.1.22 Användning av kompanjonsobjekt med fabriksmetoder . . . 171
5.1.23 Alternativa direktinstansieringar med default-argument . . 171
5.1.24 Alternativa sätt att instansiera med fabriksmetod 171
5.1.25 Medlemmar som bara behövs i en enda upplaga 172
5.1.26 Medlemmar i singelobjekt är statiskt allokerade 172
5.1.27 Attribut i kompanjonsobjekt användas för sådant som är ge-

mensamt för alla instanser . 173
5.1.28 Övning: en läskig mutant . 173
5.1.29 Case-klasser . 173
5.1.30 Exempel: oföränderliga case-klassen Point 174
5.1.31 Vad är en konstruktor? . 174
5.1.32 Fördjupning: Hjälpkonstruktorer i Scala (ovanliga) 174
5.1.33 Fördjupning: Användning av hjälpkonstruktor 175
5.1.34 Referens saknas: null . 175
5.1.35 Exempel: null . 176
5.1.36 Defaultvärden under pågående konstruktion 176
5.1.37 Problem med initialisering av attribut vid konstruktion . . . 176
5.1.38 Vilka värden har attribut medan konstruktion pågår? 177
5.1.39 Hur undvika initialiseringsproblem vid konstruktion? 177
5.1.40 Be kompilatorn att varna vid initialiseringsproblem 178
5.1.41 Be kompilatorn ge fler bra varningar 178
5.1.42 Referensen this . 179
5.1.43 Getters och setters . 179
5.1.44 Java-exempel: Klassen JPerson 180
5.1.45 Motsvarande JPerson i Scala 180
5.1.46 Förhindra felaktiga attributvärden med setters 180
5.1.47 Getters och setters i Scala . 181

INNEHÅLL xiii

5.1.48 Referenslikhet eller innehållslikhet? 181
5.1.49 Exempel: referenslikhet och innehållslikhet 182
5.1.50 Referenslikhet och egna klasser 182
5.1.51 Case-klasser ger innehållslikhet 183
5.1.52 Likhet och case-klasser . 183
5.1.53 Sammanfattning case-klass-godis 183
5.1.54 Implementation saknas: ??? . 183
5.1.55 Exempel: ofärdig kod . 184

5.2 Övning classes . 185
5.2.1 Grunduppgifter; förberedelse inför laboration 185
5.2.2 Extrauppgifter; träna mer . 191
5.2.3 Fördjupningsuppgifter; utmaningar 195

5.3 Laboration: blockbattle0 . 200

6 Mönster och felhantering 201
6.1 Teori . 202

6.1.1 Bastypen för alla typer: Any . 202
6.1.2 Alla typer är subtyper till Any 202
6.1.3 Dina egna referenstyper är subtyper till AnyRef 202
6.1.4 Vad är matchning? . 203
6.1.5 Plocka isär ett objekt i sina beståndsdelar med mönster . . . 203
6.1.6 Kolla om det passar med nästlade if-uttryck 204
6.1.7 Kolla om det passar med match-uttryck 204
6.1.8 Syntax för match-uttryck . 204
6.1.9 Matchning med gard . 205
6.1.10 Matchning med variabelmönster 205
6.1.11 Matchning med eller-mönster 205
6.1.12 Matchning med typade mönster 206
6.1.13 Fördjupning: Unionstyper och typen Matchable 206
6.1.14 Konstruktormönster med case-klasser 207
6.1.15 Plocka isär samlingar med djupa mönster 207
6.1.16 Matchning på tupler . 208
6.1.17 Mönstermatchning och uppräkning med case-objekt 208
6.1.18 Mönstermatchning och förseglade typer 208
6.1.19 Mönstermatcha enumeration 209
6.1.20 Stora/små begynnelsebokstäver vid matchning 209
6.1.21 Stora/små begynnelsebokstäver vid matchning 210
6.1.22 Mönster på andra ställen än i match 210
6.1.23 Mönsterdelar och variabelt antal argument 211
6.1.24 Partiella funktioner och metoden collect 211
6.1.25 Fördjupning: metoden unapply 211
6.1.26 Hur hantera saknade värden? 212
6.1.27 En gemensam bastyp för ett värde som kanske saknas 212
6.1.28 Option för hantering av ev. saknade värden 212
6.1.29 Några smidiga metoder på Option 213
6.1.30 Några samlingsmetoder som ger en Option, övning 213
6.1.31 Några samlingsmetoder som ger en Option, svar 214
6.1.32 Vad är ett undantag (eng. exception)? 214
6.1.33 Orsaka undantag indirekt med require och assert 215
6.1.34 Kasta undantag direkt med primitiva throw 215
6.1.35 En gemensam bastyp för något som kan misslyckas 215

xiv INNEHÅLL

6.1.36 Hantera undantag som ett värde med Try 216
6.1.37 Primitiva try-catch-uttryck . 216
6.1.38 Undvik undantag om det går 217
6.1.39 Fördjupning: Kontrollerade undantag 217
6.1.40 Fördjupning: Implementera equals med match 218
6.1.41 Fördjupning: equals som fungerar för finala klasser 218
6.1.42 Fördjupning: Recept i 8 steg för arvssäker equals 219
6.1.43 Fördjupning: Säkrare likhetstest i Scala 3 219

6.2 Övning patterns . 221
6.2.1 Grunduppgifter; förberedelse inför laboration 221
6.2.2 Fördjupningsuppgifter; utmaningar 226

6.3 Laboration: blockbattle1 . 233
6.3.1 Bakgrund . 233
6.3.2 Obligatoriska krav . 234
6.3.3 Valbara krav – välj minst ett 234
6.3.4 Förberedelser inför redovisningen 234
6.3.5 Tips och förslag . 235

7 Sekvenser och enumerationer 239
7.1 Teori . 240

7.1.1 Vad är en sekvens? . 240
7.1.2 Exempel: En sträng är en sekvens av tecken 240
7.1.3 Iterera över element i en sekvens 240
7.1.4 Lägg till i början och i slutet av en sekvens 241
7.1.5 Egenskaper hos några sekvenssamlingar i Scala 241
7.1.6 Vilken sekvenssamling ska jag välja? 242
7.1.7 Några konstigheter med Array 242
7.1.8 Oföränderlig eller förändringsbar? 243
7.1.9 Vad är en sekvensalgoritm? . 243
7.1.10 Använda färdiga sekvenssamlingsmetoder 243
7.1.11 Några användbara samlingsmetoder vid implementation av

sekvensalgoritmer . 244
7.1.12 Uppdaterad sekvens med kraftfulla metoden patch 244
7.1.13 Använda for-uttryck för filtrering med hjälp av gard 245
7.1.14 Använda samlingsmetoden filter för filtrering 245
7.1.15 Vanliga sekvensproblem som funktionshuvuden 245
7.1.16 Implementation av sekvensproblem med for-uttryck eller

färdiga samlingsmetoder . 246
7.1.17 Implementation av sekvensproblem med map, filter 246
7.1.18 Hierarki av samlingstyper i scala.collection v2.13 246
7.1.19 Lämna det öppet: använd Seq 247
7.1.20 Implementation med generiska funktioner 247
7.1.21 Fördjupning: Använda Java-samlingar i Scala med CollectionConverters248
7.1.22 Fördjupning: Skapa generisk Array 248
7.1.23 Repeterade parametrar blir sekvens 249
7.1.24 Sekvenssamling som argument till repeterade parametrar . 249
7.1.25 Enumerationer har en ordning 249
7.1.26 Enumerationer kan ha parametrar och medlemmar 250
7.1.27 Enum kan motsvara fullfjädrade case-klasser 250
7.1.28 Enum och mönster-matchning 251
7.1.29 Fördelar med enum jämfört med uppräkning med heltal . . . 251

INNEHÅLL xv

7.1.30 Registrering . 252
7.1.31 Registrering av tärningskast i Array 252
7.1.32 Registrering av tärningskast i Array 252
7.1.33 Skapa lösningar på sekvensproblem från grunden 253
7.1.34 Skapa ny sekvenssamling eller ändra på plats? 253
7.1.35 Algoritm: SEQ-COPY . 253
7.1.36 Implementation av SEQ-COPY med while 254
7.1.37 Typ-alias för att abstrahera typnamn 254
7.1.38 Exempel: SEQ-INSERT/REMOVE-COPY 255
7.1.39 Pseudo-kod för SEQ-INSERT-COPY 255
7.1.40 Insättning/borttagning i kopia av primitiv Array 255
7.1.41 Exempel: PolygonWindow . 256
7.1.42 Implementera Polygon . 256
7.1.43 Exempel: PolygonArray, ändring på plats 257
7.1.44 Exempel: PolygonVector, variabel referens till oföränderlig

datastruktur . 257
7.1.45 Exempel: Polygon som oföränderlig case class 258
7.1.46 Att sortera och jämföra strängar lexikografiskt 258
7.1.47 Jämföra strängar: likhet . 259
7.1.48 Algoritmexempel: stränglikhet, pseudokod 259
7.1.49 Algoritmexempel: stränglikhet, implementation 260
7.1.50 Jämföra strängar: ”mindre än” 260
7.1.51 Jämföra strängar: ”mindre än” 260
7.1.52 Jämföra strängar: ”mindre än” 261
7.1.53 Sökning . 261
7.1.54 Linjärsökning: hitta index för elementet x 262
7.1.55 Sortering . 262
7.1.56 Algoritmisk komplexitet . 262
7.1.57 Det finns många olika sorteringsalgoritmer 263
7.1.58 Bogo sort . 263
7.1.59 Sortera till ny vektor med insättningssortering: pseudo-kod 263
7.1.60 Sortera till ny vektor med insättningssortering: implementation263
7.1.61 Sortera till ny samling med godtyckligt ordningspredikat . . 264
7.1.62 Insättningssortering på plats – pseudo-kod 264
7.1.63 Insättningssortering på plats – implementation 265

7.2 Övning sequences . 266
7.2.1 Grunduppgifter; förberedelse inför laboration 266
7.2.2 Extrauppgifter; träna mer . 274
7.2.3 Fördjupningsuppgifter; utmaningar 276

7.3 Laboration: shuffle . 281
7.3.1 Bakgrund . 281
7.3.2 Given kod . 282
7.3.3 Obligatoriska uppgifter . 286
7.3.4 Frivilliga extrauppgifter . 287
7.3.5 Bilder med exempel på olika pokerhänder 287

III Lösningar 289

L Lösningar till övningarna 291
L.1 Lösning expressions . 292

xvi INNEHÅLL

L.1.1 Grunduppgifter; förberedelse inför laboration 292
L.1.2 Extrauppgifter; träna mer . 299
L.1.3 Fördjupningsuppgifter; utmaningar 303

L.2 Lösning programs . 307
L.2.1 Grunduppgifter . 307
L.2.2 Extrauppgifter; träna mer . 311
L.2.3 Fördjupningsuppgifter; utmaningar 313

L.3 Lösning functions . 315
L.3.1 Extrauppgifter; träna mer . 318
L.3.2 Fördjupningsuppgifter; utmaningar 320

L.4 Lösning objects . 323
L.4.1 Grunduppgifter; förberedelse inför laboration 323
L.4.2 Extrauppgifter; träna mer . 330
L.4.3 Fördjupningsuppgifter; utmaningar 331

L.5 Lösning classes . 334
L.5.1 Grunduppgifter; förberedelse inför laboration 334
L.5.2 Extrauppgifter; träna mer . 337
L.5.3 Fördjupningsuppgifter; utmaningar 340

L.6 Lösning patterns . 346
L.6.1 Grunduppgifter; förberedelse inför laboration 346
L.6.2 Fördjupningsuppgifter; utmaningar 352

L.7 Lösning sequences . 356
L.7.1 Grunduppgifter; förberedelse inför laboration 356
L.7.2 Extrauppgifter; träna mer . 364
L.7.3 Fördjupningsuppgifter; utmaningar 368

Del I

Om kursen

1

Kapitel -2

Kursens arkitektur

-2.0.1 Veckoöversikt

W Modul Övn Lab
W01 Introduktion expressions kojo
W02 Program och kontrollstrukturer programs –
W03 Funktioner och abstraktion functions irritext
W04 Objekt och inkapsling objects blockmole
W05 Klasser och datamodellering classes blockbattle0
W06 Mönster och felhantering patterns blockbattle1
W07 Sekvenser och enumerationer sequences shuffle
TP – – –
W08 Nästlade och generiska strukturer matrices life
W09 Mängder och tabeller lookup words
W10 Arv och komposition inheritance snake0
W11 Varians och kontextparametrar context snake1
W12 Fördjupning, Projekt extra Projekt0
W13 Repetition examprep Projekt1
W14 MUNTLIGT PROV Munta Munta
TP VALFRI TENTAMEN – –

Kursen består av en modul per läsvecka med två föreläsningar, en övning och en
laboration (förutom några veckor som saknar labb och/eller övning eller har annan
aktivitet, se veckoöversikt). Föreläsningarna ger en översikt av den teori som ingår i
varje modul. Genom att göra övningarna bearbetar du teorin och förebereder dig inför
laborationerna. När du klarat övningen och laborationen i en modul är du redo att gå
vidare till nästa. Tabellen på nästa uppslag visar begrepp som ingår i varje modul.

Kursen är uppdelad i två läsperioder. Andra läsperioden avslutas med ett större
projekt, en muntlig tentamen och en valfri skriftlig tentamen.

3

4 KAPITEL -2. KURSENS ARKITEKTUR

W01 Introduktion sekvens, alternativ, repetition, abstraktion, editera, kompilera,
exekvera, datorns delar, virtuell maskin, litteral, värde,

uttryck, identifierare, variabel, typ, tilldelning, namn, val, var,
def, definiera och anropa funktion, funktionshuvud,

funktionskropp, procedur, inbyggda grundtyper, println, typen
Unit, enhetsvärdet (), stränginterpolatorn s, aritmetik,

slumptal, logiska uttryck, de Morgans lagar, if, true, false,
while, for, dod: operativsystem

W02 Program och
kontrollstruktu-
rer

huvudprogram, program-argument, indata,
scala.io.StdIn.readLine, kontrollstruktur, iterera över element

i samling, for-uttryck, yield, map, foreach, samling, sekvens,
indexering, Array, Vector, intervall, Range, algoritm,

implementation, pseudokod, algoritmexempel: SWAP, SUM,
MIN-MAX, MIN-INDEX, dod: versionshantering

W03 Funktioner och
abstraktion

abstraktion, funktion, parameter, argument, returtyp,
default-argument, namngivna argument, parameterlista,

funktionshuvud, funktionskropp, applicera funktion på alla
element i en samling, uppdelad parameterlista, skapa egen

kontrollstruktur, funktionsvärde, funktionstyp, äkta funktion,
stegad funktion, apply, anonyma funktioner, lambda, predikat,

aktiveringspost, anropsstacken, objektheapen, stack trace,
värdeandrop, namnanrop, klammerparentes och kolon vid

ensam parameter, rekursion, scala.util.Random, slumptalsfrö,
dod: typsättning

W04 Objekt och
inkapsling

modul, singelobjekt, punktnotation, tillstånd, medlem,
attribut, metod, paket, filstruktur, jar, classpath,

dokumentation, JDK, import, selektiv import, namnbyte vid
import, export, tupel, multipla returvärden, block, lokal

variabel, skuggning, lokal funktion, funktioner är objekt med
apply-metod, namnrymd, synlighet, privat medlem, inkapsling,
getter och setter, principen om enhetlig access, överlagring av

metoder, introprog.PixelWindow, initialisering, lazy val,
typalias, dod: maskinkod

W05 Klasser och
datamodelle-
ring

applikationsdomän, datamodell, objektorientering, klass,
instans, Any, isInstanceOf, toString, new, null, this,

accessregler, private, private[this], klassparameter, primär
konstruktor, fabriksmetod, alternativ konstruktor,

förändringsbar, oföränderlig, case-klass, kompanjonsobjekt,
referenslikhet, innehållslikhet, eq, ==

W06 Mönster och
felhantering

mönstermatchning, match, Option, throw, try, catch, Try,
unapply, sealed, flatten, flatMap, partiella funktioner, collect,

wildcard-mönster, variabelbindning i mönster,
sekvens-wildcard, bokstavliga mönster, implementera equals,

hashcode

5

W07 Sekvenser och
enumerationer

översikt av Scalas samlingsbibliotek och samlingsmetoder,
klasshierarkin i scala.collection, Iterable, Seq, List, ListBuffer,

ArrayBuffer, WrappedArray, sekvensalgoritm, algoritm:
SEQ-COPY, in-place vs copy, algoritm: SEQ-REVERSE,
registrering, algoritm: SEQ-REGISTER, linjärsökning,

algoritm: LINEAR-SEARCH, tidskomplexitet,
minneskomplexitet, översikt strängmetoder, StringBuilder,
ordning, inbyggda sökmetoder, find, indexOf, indexWhere,

inbyggda sorteringsmetoder, sorted, sortWith, sortBy,
repeterade parametrar

TP –

W08 Nästlade och
generiska
strukturer

matris, nästlad samling, nästlad for-sats, typparameter,
generisk funktion, generisk klass, fri och bunden typparameter,

generiska datastrukturer, generiska samlingar i Scala

W09 Mängder och
tabeller

innehållstest, mängd, Set, mutable.Set, nyckel-värde-tabell,
Map, mutable.Map, hash code, java.util.HashMap,

java.util.HashSet, persistens, serialisering, textfiler,
Source.fromFile, java.nio.file

W10 Arv och
komposition

arv, komposition, polymorfism, trait, extends, asInstanceOf,
with, inmixning supertyp, subtyp, bastyp, override, Scalas

typhierarki, Any, AnyRef, Object, AnyVal, Null, Nothing,
topptyp, bottentyp, referenstyper, värdetyper, accessregler vid

arv, protected, final, trait, abstrakt klass

W11 Varians och
kontextpara-
metrar

övre- och undre typgräns, varians, kontravarians, kovarians,
typjoker, kontextgräns, typkonstruktor, egentyp, typjoker,

givet värde (given), kontextparameter (using), ad hoc
polymorfism, typklass, api, kodläsbarhet, granskningar

W12 Fördjupning,
Projekt

välj valfritt fördjupningsområde, påbörja projekt

W13 Repetition träna på extentor, redovisa projekt, träna inför muntligt prov

W14 MUNTLIGT PROV

TP VALFRI TENTAMEN

6 KAPITEL -2. KURSENS ARKITEKTUR

-2.1 Om ditt lärande

-2.1.1 Vad lär du dig?

• Grundläggande principer för programmering:
Sekvens, Alternativ, Repetition, Abstraktion (SARA)
=⇒ Inga förkunskaper i programmering krävs!

• Implementation av algoritmer
• Tänka i abstraktioner, dela upp problem i delproblem
• Förståelse för flera olika angreppssätt:

– imperativ programmering
– objektorientering
– funktionsprogrammering

• Det moderna programmeringsspråket Scala
• Utvecklingsverktyg (editor, kompilator, utvecklingsmiljö)
• Implementera, granska, testa, felsöka

-2.1.2 Progression

Kursens koncept avancerar steg för steg:

• Kontrollstrukturer
• Funktioner
• Objekt
• Datastrukturer
• Algoritmer
• Nästlade strukturer
• Mer avancerade abstraktionsmekanismer

– Komposition
– Polymorfism
– Kontextuella abstraktioner

Vi itererar över koncepten & fördjupar förståelsen efter hand.

-2.1.3 Hur lär du dig?

• Genom praktiskt eget arbete: Lära genom att göra!

– Övningar: applicera koncept på olika sätt
– Laborationer: kombinera flera koncept till en helhet

• Genom studier av kursens teori: Skapa förståelse!
• Genom samarbete med dina kurskamrater: Gå djupare!

Kompendiet är den huvudsakliga kurslitteraturen och definierar kursinnehållet. Före-
läsningar, övningar och laborationer i kompendiet är kursens primära kunskapskällor,

-2.1. OM DITT LÄRANDE 7

tillsammans med de öppna resurser på nätet som kompendiet hänvisar till. Kompen-
diet är öppen källkod och du välkomnas varmt att bidra!

Om du gärna vill ha en eller flera mer traditionella läroböcker som bredvidläsning
rekommenderas följande:

• För de som aldrig kodat, och vill läsa om kodning från grunden:
– ”Introduction to Programming and Problem-Solving Using Scala” Second Edi-

tion (2016), Mark C. Lewis, Lisa Lacher.
– Lewis & Lacher täcker stora delar av kursen, men innehåller även en del

material som ingår i senare LTH-kurser. Ordningen är ganska annorlunda,
men det går bra att läsa boken i en annan ordning än den är skriven.

• För de som redan kodat en hel del i ett objektorienterat språk:
– ”Programming in Scala”, Fifth Edition (2021), Martin Odersky, Lex Spoon, and

Bill Venners.
– Martin Odersky är upphovspersonen bakom Scala och denna välskrivna bok

innehåller en komplett genomgång av Scala-språket med många exempel och
tips. ”Fifth Edition” täcker nya Scala 3. Boken riktar sig till de som redan har
kunskap om något objektorienterat språk, t.ex. Java eller C#. Det finns ett bra
index som gör det lätt att anpassa din läsning efter kursens upplägg. Bokens
ca 800 sidor innehåller mycket material som är på en mer avancerad nivå än
denna kurs, men du kommer att ha nytta av innehållet i kommande kurser.

Dessa läroböcker följer inte direkt kursens upplägg vad gäller omfång och progression
och du får själv göra den nyttiga hemläxan att koppla deras innehåll till det vi går
igenom i kursens olika moduler.

-2.1.4 Kursmoment — varför?

• Föreläsningar: skapa översikt, ge struktur, förklara teori, svara på frågor,
motivera varför.

• Övningar: bearbeta teorin steg för steg, grundövningar för alla, extraöv-
ningar om du vill/behöver öva mer, fördjupningsövningar om du vill gå
djupare; förberedelse inför laborationerna.

• Laborationer: obligatoriska, sätta samman teorins delar i ett större program;
lösningar redovisas för handledare; gk på alla för att få munta.

• Resurstider: få hjälp med övningar och laborationsförberedelser av handledare,
fråga vad du vill.

• Samarbetsgrupper: grupplärande genom samarbete, hjälpa varandra.
• Individuell projektuppgift: obligatorisk, du visar att du kan skapa ett stör-

re program självständigt; redovisas för handledare.
• Muntligt prov: obligatoriskt, ska klaras för godkänt på kursen; du visar att

du har tillräcklig förståelse för kursens koncept för att klara nästa kurs.
• Tentamen: Valfri för överbetyg men alla uppmuntras att försöka. Du måste

vara godkänd på alla obligaotriska moment för att få tenta. Tentan görs med
papper, penna och snabbreferensen som enda hjälpmedel. Anmälan krävs.

-2.1.5 En typisk kursvecka

1. Gå på föreläsningar på måndag–tisdag

8 KAPITEL -2. KURSENS ARKITEKTUR

2. Jobba individuellt med teori, övningar, labbförberedelser på måndag–torsdag
3. Träffas regelbundet i samarbetsgruppen och hjälp varandra att förstå mer

och fördjupa lärandet, förslagsvis på återkommande tider varje vecka då alla i
gruppen kan

4. Kom till resurstiderna och få hjälp och tips av handledare och kurskamrater
på onsdag–torsdag

5. Genomför den obligatoriska laborationen på fredag

Se detaljerna och undantagen i schemat i TimeEdit

Kapitel -1

Anvisningar

Detta kapitel innehåller anvisningar och riktlinjer för kursens olika delar. Läs noga
så att du inte missar viktig information om syftet bakom kursmomenten och vad som
förväntas av dig.

-1.1 Samarbetsgrupper

Ditt lärande i allmänhet, och ditt programmeringslärande i synnerhet, fördjupas om
det sker i dialog med andra. Dessutom är din samarbetsförmåga och din pedagogiska
förmåga avgörande för din framgång som professionell systemutvecklare. Därför
är kursdeltagarna indelade i samarbetsgrupper om 4-6 personer där medlemmarna
samverkar för att alla i gruppen ska nå så långt som möjligt i sina studier.

För att hantera och dra nytta av skillnader i förkunskaper är samarbetsgrupperna
indelade så att deltagarna har varierande förkunskaper baserat på en förkunskaps-
enkät. De som redan har provat på att programmera får då chansen att träna på sin
pedagogiska förmåga som är så viktig för systemutvecklare, medan de som ännu inte
kommit lika långt kan dra nytta av gruppmedlemmarnas samlade kompetens i sitt
lärande. Kompetensvariationen i gruppen kommer att förändras under kursens gång,
då olika individer lär sig olika snabbt i olika skeden av sitt lärande; de som till att
börja med har ett försprång kanske senare får kämpa för att komma över en viss
lärandetröskel.

Samarbetsgrupperna organiserar själva sitt arbete och varje grupp får finna de
samarbetsformer som passar medlemmarna bäst. Här följer några erfarenhetsbasera-
de tips:

1. Träffas så fort som möjligt i hela gruppen och lär känna varandra. Ju snabbare
ni kommer samman som grupp och får den sociala interaktionen att fungera
desto bättre. Ni kommer att ha nytta av denna investering under hela terminen
och kanske under resten av er studietid.

2. Kom överens om stående mötestider och mötesplatser. Det är viktigt med kon-
tinuiteten i arbetet för att samarbetet i gruppen ska utvecklas och fördjupas.
Träffas minst en gång i veckan. Ha en stående agenda, t.ex. en runda runt bordet
där var och en berättar hur långt hen kommit och listar de begreppen som hen
för tillfället behöver fokusera på.

3. Hjälps åt att tillsammans identifiera och diskutera era olika individuella stu-
diebehov och studieambitioner. När man ska lära sig att programmera stöter
man på olika lärandetrösklar som man kan få hjälp att ta sig över av någon som

9

10 KAPITEL -1. ANVISNINGAR

redan är förbi tröskeln. Men det gäller då för den som hjälper att först förstå
exakt vad det är som är svårt, eller vilka specifika pusselbitar som saknas, för
att på bästa sätt kunna underlätta för en medstudent att ta sig över tröskeln.
Det gäller att hjälpa lagom mycket så att var och en självständigt får chansen
att skriva sin egen kod.

4. Var en schysst kamrat och agera professionellt, speciellt i situationer där grupp-
deltagarna vill olika. Kommunicera på ett respektfullt sätt och sök konstruktiva
kompromisser. Att utvecklas socialt är viktigt för din framtida yrkesutövning
som systemutvecklare och i samarbetsgruppen kan du träna och utveckla din
samarbetsförmåga.

-1.1.1 Samarbetskontrakt

Ni ska upprätta ett samarbetskontrakt redan under första veckan och visa för en
handledare. Alla gruppmedlemmarna ska skriva under kontraktet. Handledaren ska
också skriva under som bekräftelse på att ni visat kontraktet.

Syftet med kontraktet är att ni ska diskutera igenom i gruppen hur ni vill ar-
beta och vilka regler ni tycker är rimliga. Ni bestämmer själva vad kontraktet
ska innehålla. Nedan finns förslag på punkter som kan ingå i ert kontrakt. En
kontraktsmall finns här: https://github.com/lunduniversity/introprog/blob/
master/study-groups/collaboration-contract.tex

Samarbetskontrakt
Vi som skrivit under detta kontrakt lovar att göra vårt bästa för att följa samarbets-
reglerna nedan, så att alla ska lära sig så mycket som möjligt.

1. Komma i tid till gruppmöten.

2. Vara väl förberedda genom självstudier inför gruppmöten.

3. Hjälpa varandra att förstå, men inte lösa uppgifter åt någon annan.

4. Ha ett respektfullt bemötande även om vi har olika åsikter.

5. Inkludera alla i gemenskapen.

6. ...

-1.1.2 Grupplaboration

Laboration snake0 i läsvecka W10 är en grupplaboration. Följande anvisningar gäl-
ler speciellt för grupplaborationen. (Allmänna anvisningar som gäller för både de
individuella laborationerna och grupplaborationer finns i avsnitt -1.5.)

1. Diskutera i din samarbetsgrupp hur ni ska dela upp koden mellan er i flera olika
delar, som ni kan arbeta med var för sig. En sådan del kan vara en klass, en
trait, ett objekt, ett paket, eller en funktion.

2. Varje del ska ha en huvudansvarig individ.

3. Arbetsfördelningen ska vara någorlunda jämnt fördelad mellan gruppmedlem-
marna.

https://github.com/lunduniversity/introprog/blob/master/study-groups/collaboration-contract.tex
https://github.com/lunduniversity/introprog/blob/master/study-groups/collaboration-contract.tex

-1.2. FÖRELÄSNINGAR 11

4. Den som är huvudansvarig för en viss del redovisar den delen.

5. Ni ska ta fram en gruppgemensam checklista för kodgranskning. Varje grupp-
medlem ska granska minst en annan gruppmedlems kod enligt checklistan.

6. Grupplaborationen görs över två veckor uppdelat på två delredovisningar. Vid
första redovisningen ska arbetsupplägget och pågående utveckling redovisas.
Vid andra tillfället ska de färdig lösningarna presenteras av respektive huvud-
ansvarig individ.

7. Vid första redovisningen ska du redogöra för handledaren hur ni delat upp koden
och vem som är huvudansvarig för vad och vad ditt ansvar omfattar, samt hur
ni jobbar praktiskt med att synkronisera er utveckling.

8. Grupplaborationen är en extra stor uppgift och grupparbetet behöver ledtid
för att ni ska hinna koordinera er sinsemellan. Du behöver därför planera för
att arbeta med något i grupplabben i stort sett varje dag under de tillgängliga
veckorna, och vara redo att bidra i diskussioner.

-1.2 Föreläsningar

En normal läsperiodsvecka börjar med två föreläsningspass om 2 timmar varde-
ra. Föreläsningarna ger en översikt av kursens teoretiska innehåll och går igenom
innebörden av de begrepp du ska lära dig. Föreläsningarna innehåller många program-
meringsexempel och föreläsaren ”lajvkodar” då och då för att illustrera den kreativa
problemlösningsprocess som ingår i all programmering. Föreläsningarna berör även
kursens organisation och olika praktiska detaljer.

På föreläsningarna ges goda möjligheter att ställa allmänna frågor om teorin och
att i plenum diskutera specifika svårigheter (individuell lärarhjälp ges på resurstider,
se avsnitt -1.4, och på laborationer, se avsnitt -1.5). Även om det är många i föreläs-
ningssalen, tveka inte att ställa frågor – det är säkert fler som undrar samma sak som
du!

Föreläsningarna är inte obligatoriska, men det är mycket viktigt att du går dit,
även om du i perioder känner att du har bra koll på all teori. På föreläsningarna får
du en övergripande ämnesstruktur och en konkret programmeringsupplevelse, som
du delar med dina kursare och kan diskutera i samarbetsgrupperna. Föreläsningarna
ger också en prioritering av materialet och förbereder dig inför examinationen med
praktiska råd och tips om hur du bör fokusera dina studier.

-1.3 Övningar

I en normal läsperiodsvecka ingår en övning med flera uppgifter och deluppgifter.
Övningarna utgör grunden för dina programmeringsstudier och erbjuder en syste-
matisk genomgång av kursteorins alla delar genom praktiska kodexempel som du
genomför steg för steg vid datorn med hjälp av ett interaktivt verktyg som kallas
Read-Evaluate-Print-Loop (REPL). Om du gör övningarna i REPL säkerställer du att
du skaffar dig tillräcklig förståelse för alla begrepp som ingår i kursen och att du inte
missar någon viktig pusselbit.

Övningarna fungerar också som förberedelse inför laborationerna. Om du inte gör
veckans övning är det inte troligt att du kommer att klara veckans laboration inom
rimlig tid.

12 KAPITEL -1. ANVISNINGAR

Två saker är särskilt viktiga när du lär dig att programmera:

• Programmera! Det räcker inte med att bara passivt läsa om programmering;
du måste aktivt själv skriva mycket kod och genomföra egna programmeringsex-
periment. Det underlättar stort om du bejakar din nyfikenhet och experiment-
lusta. Alla programmeringsfel som du gör och alla dina misstag, som i efterhand
verkar enkla, är i själva verket oumbärliga steg på vägen och ger avgörande
”Aha!”-upplevelser. Kursens övningar är grunden för denna form av lärande.

• Ha tålamod! Det är först när du har förmågan att aktivt kombinera många
olika programmeringskoncept som du själv kan lösa lite större programmerings-
uppgifter. Det kan vara frustrerande i början innan du når så långt att din
verktygslåda med begrepp är tillräckligt stor för att du ska kunna skapa den
kod du vill. Ibland krävs det extra tålamod innan allt plötsligt lossnar. Många
programmeringslärare och -studenter vittnar om att ”polletten plötsligt trillar
ner” och allt faller på plats. Övningarna syftar till att, steg för steg, bygga din
verktygslåda så att den till slut blir tillräckligt kraftfull för mer avancerad
problemlösning.

Olika studenter har olika ambitionsnivå, skilda förkunskaper, varierande arbetska-
pacitet, mer eller mindre välutvecklad studieteknik och olika lätt för att lära sig att
programmera. För att hantera denna variation erbjuds övningsuppgifter av tre olika
typer:

• Grunduppgifter. Varje veckas grunduppgifter täcker basteorin och hjälper dig
att säkerställa att du kan gå vidare utan kunskapsluckor. Grunduppgifterna
utgör även basen för laborationerna. Alla studenter bör göra alla grunduppgifter.
En bra förståelse för innehållet i grunduppgifterna ger goda förutsättningar att
klara godkänt betyg på sluttentamen.

• Extrauppgifter. Om du upplever att grunduppgifterna är svåra och du vill öva
mer, eller om du vill vara säker på att du verkligen befäster dina grundkunskaper,
då ska du göra extrauppgifterna. Dessa är på samma nivå som grunduppgifterna
och ger extra träning.

• Fördjupningsuppgifter. Om du vill gå djupare och har kapacitet att lära dig
ännu mer, gör då fördjupningsuppgifterna. Dessa kompletterar grunduppgifter-
na med mer avancerade exempel och går utöver vad som krävs för godkänt på
kursen. Om du satsar på något av de högre betygen ska du göra fördjupnings-
uppgifterna. ?Vissa fördjupningsuppgifter har en stjärna i marginalen. Denna
symbol visar att uppgiften är allmänbildande, men överkurs och kommer ej på
tentamen.

Till varje övning finns lösningar som du hittar längst bak i detta kompendium.
Titta inte på lösningen innan du själv först försökt lösa uppgiften. Ofta innehåller
lösningarna kommentarer och tips så glöm inte att kolla igenom veckans lösningar
innan du börjar förbereda dig inför veckans laboration.

Tänk på att det ofta finns många olika lösningar på samma programmerings-
problem, som kan vara likvärdiga eller ha olika fördelar och nackdelar beroende
på sammanhanget. Diskutera gärna olika lösningsvarianter med dina kursare och
handledare – att prova många olika sätt att lösa en uppgift fördjupar ditt lärande
avsevärt!

-1.4. RESURSTIDER 13

Många uppgifter lyder ”testa detta i REPL och förklara vad som händer” och
svårigheten ligger ofta inte i att skapa själva koden utan att förstå hur den fungerar
och varför. På detta sätt tränar du ditt programmeringstänkande med hjälp av en
växande begreppsapparat. Syftet är ofta att illustrera ett allmängiltigt koncept och
det är därför extra bra om du skapar egna övningsuppgifter på samma tema och
experimenterar med nya varianter som ger dig ytterligare förståelse.

Övningsuppgifterna innehåller ofta färdiga kodsnuttar som du ska skriva in i
REPL medan den kör i ett terminalfönster. REPL-kod visas i övningsuppgifterna med
ljus text på mörk bakgrund, så här:

1 scala> val msg = "Hello world!"
2 scala> println(msg)

Prompten scala> indikerar att REPL är igång och väntar på indata. Du ska skriva
den kod som står efter prompten. Mer information om hur du använder REPL hittar
du i appendix ??.

Även om kompendiet finns tillgängligt för nedladdning, frestas inte att klippa ut
och klistra in alla kodsnuttar i REPL. Ta dig istället den ringa tiden det tar att skriva
in koden rad för rad. Medan du själv skriver hinner du tänka efter, och det egna,
aktiva skrivandet främjar ditt lärande och gör det lättare att komma ihåg och förstå.

-1.4 Resurstider

Under varje läsperiodsvecka finns ett flertal resurstider i schemat. Det finns minst en
tid som passar din schemagrupp, men du får gärna gå på andra och/eller flera tider i
mån av plats. Resurstiderna är schemalagda i datorsal med Linuxdatorer och i varje
sal finns en handledare som är redo att svara på dina frågor.

Följande riktlinjer gäller för resurstiderna:

1. Syfte. Resurstiderna är primärt till för att hjälpa dig vidare om du kör fast med
övningarna eller laborationsförberedelserna, men du får fråga om vad som helst
som rör kursen i den mån handledaren kan svara och hinner med.

2. Samarbete. Hjälp gärna varandra under resurstiderna! Om någon kursare kör
fast är det utvecklande och lärorikt att hjälpa till. Om schema och plats tillåter
kan du gärna gå på samma resurstidstillfälle som någon medlem i din samar-
betsgrupp, men ni kan också lika gärna hjälpas åt tvärs över gruppgränserna.

3. Hänsyn. När du hjälper andra, tänk på att prata riktigt tyst så att du inte
stör andras koncentration. Tänk också på att alla behöver träna mycket själv
utan att bli alltför styrda av en ”baksätesförare”. Ta inte över tangentbordet
från någon annan; ge hellre välgenomtänkta tips på vägen och låt din kursare
behålla kontrollen över uppgiftslösningen.

4. Fokus. Du ska inte göra och redovisa laborationen på resurstiderna; dessa
ska göras och redovisas på laborationstid. Men om du varit sjuk eller ej blivit
godkänd på någon enstaka laboration kan du, om handledaren så hinner, be att
få redovisa din restlaboration på en resurstid.

5. Framstegsprotokoll. På sidan iii finns ett framstegsprotokoll för övningarna.
Håll detta uppdaterat allteftersom du genomför övningarna och visa protokollet
när du frågar om hjälp av handledare. Då blir det lättare för handledaren att se
vilka kunskaper du förvärvat hittills och anpassa dialogen därefter.

14 KAPITEL -1. ANVISNINGAR

-1.5 Laborationer

En normal läsperiodsvecka avslutas med en lärarhandledd laboration. Medan övningar
tränar teorins olika delar i många mindre uppgifter, syftar laborationerna till träning
i att kombinera flera begrepp och applicera dessa tillsammans i ett större program
med flera samverkande delar.

En laboration varar i 2 timmar och är schemalagd i salar med datorer som kör
Linux. Följande anvisningar gäller för laborationerna:

1. Obligatorium. Laborationerna är obligatoriska och en viktig del av kursens
examination. Godkända laborationer visar att du kan tillämpa den teori som
ingår i kursen och att du har tillgodogjort dig en grundläggande förmåga att
självständigt, och i grupp, utveckla större program med många delar. Observera
att samtliga laborationer måste vara godkända innan du får göra det muntliga
provet och den valfria tentan!

2. Individuellt arbete och fusk. Du ska lösa de individuella laborationerna
självständigt genom eget, enskilt arbete. Du får hjälpa andra med att förstå men
inte ge eller ta emot färdiga lösningar. Läs noga nedan om vad som är tillåtet och
inte. Fusk kan medföra avstängning från universitetet och indraget studiemedel.
Urkundsförfalskning kan medföra åtal i domstol.

(a) Det är tillåtet att under förberedelserna diskutera övergripande principer
för laborationernas lösningar med andra, men var och en ska självständigt
skapa en egen lösning.

(b) Under redovisningen ska du för handledare på begäran ingående förklara
din individuella lösning och de begrepp som ingår i lärandemålen.

(c) Speciella anvisningar för grupplaborationer finns i avsnitt -1.1.2.

(d) Det är inte tillåtet att lägga ut lösningar på nätet; det är medhjälp till fusk.

(e) Det är inte tillåtet att använda artificiell intelligens för att generera lös-
ningar. Det är viktigt att du i denna kurs lär dig att självständigt utveckla
grundläggande lösningar så att du i framtiden ska kunna granska och
värdera kvaliteten på AI-genererad kod. Du ska därför stänga av tilläg-
get Copilot i VS Code (eng. disable extension copilot)1 – fråga gärna en
handledare om hjälp om hur detta går till.

(f) Läs noga på denna webbsida om var gränsen går mellan samarbete och
fusk: https://cs.lth.se/utbildning/samarbete-eller-fusk/

(g) Fusk är inte bara riskabelt och oetiskt, det undergräver dessutom dina
fortsatta studier. Begreppen som du lär dig i denna kurs är en grundförut-
sättning för att du ska ha glädje av efterföljande kurser och ett djupinriktat
lärande i denna kurs är grundläggande för hela din utbildning.

3. Förberedelser. Till varje laboration finns förberedelser som du ska göra före
laborationen. Detta är helt avgörande för att du ska hinna göra laborationen in-
om 2 timmar. Ta hjälp av en kamrat eller en handledare under resurstiderna om
det dyker upp några frågor under ditt förberedelsearbete. Innan varje laboration
skall du ha:

(a) studerat relevanta delar av kompendiet;

1https://stackoverflow.com/questions/75377406

https://cs.lth.se/utbildning/samarbete-eller-fusk/
https://stackoverflow.com/questions/75377406

-1.6. PROJEKTUPPGIFT 15

(b) gjort grunduppgifterna som ingår i veckans övning, och gärna även (några)
extraövningar och/eller fördjupningsövningar;

(c) läst igenom hela laborationen noggrant;

(d) löst förberedelseuppgifterna. I labbförberedelserna ska du i förekommande
fall skriva delar av den kod som ingår i laborationen. Det krävs inte att
allt du skrivit är helt korrekt, men du ska ha gjort ett rimligt försök. Ta
hjälp om du får problem med uppgifterna, men låt inte någon annan lösa
uppgiften åt dig.

Om du inte hinner med alla obligatoriska labbuppgifter, får du göra de återstå-
ende uppgifterna på egen hand och redovisa dem vid påföljande labbtillfälle eller
resurstid, och förbereda dig ännu bättre till nästa laboration...

4. Sjukanmälan. Om du är sjuk vid något laborationstillfälle måste du anmäla
detta till kursansvarig via mejl före laborationen. Om du varit sjuk ska du försöka
göra uppgiften på egen hand och sedan redovisa den vid nästa labbtillfälle eller
resurstid. Om du behöver hjälp att komma ikapp efter sjukdom, kom till en
eller flera resurstider och prata med en handledare. Om du uteblir utan att ha
anmält sjukdom kan kursansvarig besluta att du får vänta till nästa läsår med
redovisningen, och då får du inte något slutbetyg i kursen under innevarande
läsår.

5.P Skriftliga svar. Vid några laborationsuppgifter finns en penna i marginalen.
Denna symbol indikerar att du ska skriva ner och spara ett resultat som du
behöver senare, och/eller som du ska visa upp för labbhandledaren vid en efter-
följande kontrollpunkt eller vid den avslutande redovisningen.

6.DE Kontrollpunkter. Vid några laborationsuppgifter finns en ögonsymbol med
en bock i marginalen. Detta innebär att du nått en kontrollpunkt där du ska
diskutera dina resultat med en handledare. Räck upp handen och visa vad
du gjort innan du fortsätter. Om det är lång väntan innan handledaren kan
komma så är det ok att ändå gå vidare, men glöm inte att senare diskutera med
handledaren så att ni gemensamt säkerställer att du förstått alla delresultat.
Dialogen med din handledare är en viktig chans till återkoppling på din kod – ta
vara på den!

-1.6 Projektuppgift

Efter avslutad labbserie följer en obligatorisk projektuppgift där du på egen hand ska
skapa ett stort program med många olika samverkande delar. Det är först när mängden
kod blir riktigt stor som du verkligen har nytta av de olika abstraktionsmekanismer
du lärt dig under kursens gång och din felsökningsförmåga sätts på prov. Följande
anvisningar gäller för projektuppgiften:

1. Val av projektuppgift. Du väljer själv projektuppgift. I kapitel ?? finns flera
förslag att välja bland. Läs igenom alla uppgiftsalternativ innan du väljer vilken
du vill göra. Du kan också i samråd med en handledare definiera en egen
projektuppgift, men innan du börjar på en egendefinierad projektuppgift ska
en skriftlig beskrivning av uppgiften godkännas av handledare i god tid innan
redovisningstillfället. Välj uppgift efter vad du tror du klarar av och undvik både
en för simpel uppgift och att ta dig vatten över huvudet.

16 KAPITEL -1. ANVISNINGAR

2. Anvisningarna 1 och 2 för laborationer (se avsnitt -1.5) gäller också för pro-
jektuppgiften: den är obligatorisk och arbetet ska ske individuellt. Du får
diskutera din projektuppgift på ett övergripande plan med andra och du kan be
om hjälp av handledare på resurstid med enskilda detaljer om du kör fast, men
lösningen ska vara din och du ska ha skrivit hela programmet själv.

3. Omfattning. Skillnaden mellan projektuppgiften och labbarna är att den ska
vara väsentligt mer omfattande än de största laborationerna och att du färdig-
ställer den kompletta lösningen innan redovisningstillfället. Du behöver därför
börja i god tid, förslagsvis två veckor innan redovisningstillfället, för att säkert
hinna klart. Det är viktigt att du tänker igenom omfattningen noga, i förhållande
till ditt val av projektuppgift, gärna utifrån din självinsikt om vad du behöver
träna på. Diskutera gärna med en handledare hur du använder projektuppgiften
på bästa sätt för ditt lärande.

4. Dokumentation. Inför redovisningen ska du skapa automatiskt genererad
dokumentation utifrån relevanta dokumentationskommentarer för minst hälften
av dina publika metoder, enligt instruktioner i Appendix ??.

5. Kodlagring och versionshantering. Projektuppgiften kan vara ett lämpligt
tillfälle att träna på versionshantering med git. Det är, precis som för labora-
tioner, inte tillåtet att lagra dina lösningar öppet på nätet. Om du vill träna på
att använda en kodlagringsplats, t.ex. GitHub eller GitLab, var då noga med
att kontrollera att repositoriet är stängt (eng. closed repository), så att du inte
riskerar medhjälp till fusk. Användning av git och kodlagringsplats är valfritt.

6. Redovisning. Vid redovisningen använder du tiden med handledaren till att
gå igenom din lösning, redogöra för hur din kod fungerar samt diskutera för- och
nackdelar med ditt angreppssätt. Du ska också beskriva hur ditt framväxten av
ditt program och hur du stegvis har avlusat och förbättrat implementationen.
På redovisningen ska du även gå igenom dokumentationen av din kod.

-1.7 Muntligt prov

På schemalagd tid senast sista läsveckan i december ska du avlägga ett obligatoriskt
muntligt prov för handledare. Du måste vara godkänt på alla laborationer för att få
göra det muntliga provet. Syftet med provet är att kontrollera att du har godkänd
förståelse för de begrepp som ingår i kursen. Du rekommenderas att förbereda dig noga
inför provet, t.ex. genom att gå igenom grundläggande begrepp för varje kursmodul
och repetera grundövningar och laborationer.

Provet sker som ett stickprov ur kursens innehåll. Du kommer att få några slump-
vis valda frågor där du ombeds förklara några av de begrepp som ingår i kursen. Du
får även uppdrag att skriva kod som liknar kursens övningar och förklara hur koden
fungerar. Du kan träna på typiska frågor här: https://fileadmin.cs.lth.se/pgk/
muntabot/

Om det visar sig oklart huruvida du uppnått godkänd förståelse kan du behöva
komplettera ditt muntliga prov. Kontakta kursansvarig för information om omprov.

https://fileadmin.cs.lth.se/pgk/muntabot/
https://fileadmin.cs.lth.se/pgk/muntabot/

-1.8. VALFRI TENTAMEN 17

-1.8 Valfri tentamen

Kursen avslutas med en valfri skriftlig tentamen med snabbreferensen2 som enda
tillåtna hjälpmedel. Du måste vara godkänd på obligatoriska moment för att få ten-
tera. Tentamensuppgifterna är uppdelade i två delar, del A och del B, med följande
preliminära betygsgränser:

• Del A omfattar 20% av den maximala poängsumman.

• Om du på del A erhåller färre poäng än vad som krävs för att nå upp till en
bestämd ”rättningströskel”, kan din tentamen komma att underkännas utan att
del B bedöms.

• Preliminära betygsgränser:

– För betyg 4 krävs prel. minst 67% av maxpoängen.

– För betyg 5 krävs prel. minst 83% av maxpoängen.

2https://fileadmin.cs.lth.se/pgk/quickref.pdf

https://fileadmin.cs.lth.se/pgk/quickref.pdf

18 KAPITEL -1. ANVISNINGAR

Kapitel 0

Hur bidra till kursmaterialet?

0.1 Bidrag är varmt välkomna!

Ett av huvudsyftena med att göra detta kursmaterial fritt och öppet är att möjliggöra
bidrag från alla som är intresserade. Speciellt välkommet är bidrag från studenter
som vill vara delaktiga i att utveckla undervisningen.

0.2 Instruktioner

0.2.1 Vad behövs för att kunna bidra?

Om du hittar ett problem, t.ex. ett enkelt stavfel, eller har något mer omfattande
som borde förbättras, men ännu inte känner till eller har tillgång till de verktyg
som beskriv nedan och som behövs för att göra bidrag, kontakta då någon som redan
bidragit till materialet, så att någon annan kan implementera ditt förslag.

Innan du själv kan implementera ändringar direkt i materialet, behöver du känna
till, och ha tillgång till, ett eller flera av följande verktyg (beroende på vad ändringen
gäller):

• Latex: en.wikibooks.org/wiki/LaTeX
• Scala: en.wikipedia.org/wiki/Scala_%28programming_language%29
• git: https://en.wikipedia.org/wiki/Git_%28software%29
• GitHub: en.wikipedia.org/wiki/GitHub
• sbt: en.wikipedia.org/wiki/SBT_%28software%29

Läs mer om hur du bidrar här:
github.com/lunduniversity/introprog#how-to-contribute

0.2.2 Svenska eller engelska?

Vi blandar engelska och svenska enligt följande principer:

• Publika diskussioner, t.ex. i issues och pull requests på GitHub, sker på engelska.
I en framtid kan delar av materialet komma att översättas till engelska och
då är det bra om även icke-svenskspråkiga kan förstå vad som har hänt. Alla
ändringshändelser sparas och man kan söka och gå tillbaka i historiken.

19

https://en.wikibooks.org/wiki/LaTeX
https://en.wikipedia.org/wiki/Scala_%28programming_language%29
https://en.wikipedia.org/wiki/Git_%28software%29
https://en.wikipedia.org/wiki/GitHub
https://en.wikipedia.org/wiki/SBT_%28software%29
https://github.com/lunduniversity/introprog#how-to-contribute

20 KAPITEL 0. HUR BIDRA TILL KURSMATERIALET?

• Kompendiet finns för närvarande bara på svenska eftersom kursen initialt en-
dast ges för svenskspråkiga studenter, men texten ska hjälpa läsaren att tillgo-
dogöra sig motsvarande engelsk terminologi. Skriv därför mostvarande engelska
begrepp (eng. concept) i parentes med hjälp av latex-kommandot \Eng{concept}.

• På övningar och föreläsningar är svenska variabelnamn ok. Svenska kan använ-
das för att hjälpa den som håller på att lära sig att skilja på ord som vi själv
hittar på och ord som finns i programmeringsspråket. Detta signalerar också
att när man lär sig och experimenterar kan man hitta på tokroliga namn och
använda svenska hur mycket man vill. Man lär sig genom att prova!

• Kod i labbar ska vara på engelska. Detta signalerar att när man kodar för att
det ska bli något bestående, då kodar man på engelska.

0.3 Exempel

Som exempel på hur det går till i ett typiskt öppen-källkodsprojekt, beskrivs ne-
dan vad som hände i ett verkligt fall: en dokumentationsuppdatering av Scala-
dokumentationen efter att ett fel upptäckts. Detta exempelfall är ett typiskt scenario
som illustrerar hur det kan gå till, och vad man kan behöva tänka på. Exemplet ger
också länkar till och inblick i ett riktigt stort projekt med öppen källkod.

Scenario: att göra ett bidrag vid upptäckt av problem

”Jag fick till min stora glädje denna Pull Request (PR) accepterad till dokumentations-
sajten för Scala. Man kan se mitt bidrag här:
github.com/scala/scala.github.com/pull/517/commits/2624c305a8a6f24ea3398fe0fcbd0c72492bdd12

Att börja med att bidra till dokumentation är ofta en bra väg att komma in i ett
öppen-källkodsprojekt, då det är en god chans att hjälpa till utan att det behöver kräva
djup kompetens om koden i repot1. Jag beskriver nedan vad som hände steg för steg
då jag fick en riktig PR accepterad, som ett typiskt exempel på hur det ofta fungerar.

1. Jag tyckte dokumentationen för metoden lengthCompare på indexerbara sam-
lingar på scala-lang.org/documentation var förvirrande. När jag provade i REPL
blev det uppenbart att något var fel: antingen så var dokumentationen fel eller
så funkade inte metoden som den skulle. Ojoj, kanske har jag upptäckt ett nytt
fel? En chans att bidra!

2. Först sökte jag noga bland alla ärenden som ligger under fliken ’issues’ på
GitHub för att se om någon redan hittat detta probelm. Om så vore fallet hade
jag kunnat kommentera ett sådant ärende och skriva något till stöd för att den
behöver fixas, eller allra helst att erbjuda mig att försöka fixa den. Men jag
hittade inget ärende om detta...

3. Jag skapade därför ett nytt ärende genom att klicka på knappen New issue i
webbgränssnittet på GitHub och här syns resultatet:
https://github.com/scala/scala.github.com/issues/515#
Jag tänkte noga på hur jag skulle formulera mig:

• Ärendetiteln är extra viktig: den ska sammanfatta på en enda rad vad det
hela rör sig om så att läsaren av rubriken förstår vad problemet handlar
om.

1Ordet repo är en förkortning av repositorium, här i betydelsen en lagringsplats för kod.

https://github.com/scala/scala.github.com/pull/517/commits/2624c305a8a6f24ea3398fe0fcbd0c72492bdd12
http://scala-lang.org/documentation/
https://github.com/scala/scala.github.com/issues/515#

0.3. EXEMPEL 21

• Jag jobbade sedan med att skriva en tydlig och detaljerad beskrivning av
problemet och angav exakt vilken version det gällde. Det är bra att klistra
in exempel från Scala REPL och andra testfallskörningar med indata och
utdata om relevant. Det är viktigt att problemet går att hitta och återskapa
av andra, därför behövs information om vilken version det gäller och ett
minimalt testfall som renodlar problemet.

• Det är bra att ställa frågor och komma med förslag för att öppna en diskus-
sion om ärendet. Jag frågade speciellt om detta var ett dokumentationspro-
blem eller en bugg i koden.

• OBS! Man ska inte öppna ett ärende innan man först kollat noga att det
verkligen är något som bör åtgärdas och att det inte är en dubblett eller
överlapp med andra issues: varje gång man öppnar ett ärende kommer det
att generera arbete för andra även om ärendet inte ens till slut resulterade
i någon åtgärd...

• Om det är ett mer öppet, allmänt förslag, en förbättring eller en helt
ny feature kan man också skapa en issue (det måste alltså inte vara en
renodlad bugg). Är man osäker på om ärendet är relevant, är det bra att
diskutera det i gemenskapens mejlforum först.

4. Jag fick snabbt kommentarer på mitt ärende, vilket är kännetecknande för
en väl fungerande gemenskap (eng. community) med alerta reposkötare (eng.
maintainers). Och när jag fick uppmuntran att bidra, så erbjöd jag mig att
implementera förbättringen.

5. Tänk på att alltid skriva alla kommentarer och svar i en saklig, kortfattad och
trevlig ton!

6. Nästa steg är att ”forka” repot på GitHub genom att helt enkelt klicka på Fork i
webbgränssnittet. Jag fick då en egen kopia av repot under min egen användare
på GitHub, där jag har rättigheter att ändra.

7. Därefter klonade jag repot till min lokala maskin med terminalkommandot
git clone https://... (eller så kan man använda skrivbordsappen GitHub
Desktop).

8. Sedan rättade jag problemet direkt i relevant fil i en editor på min dator, i
detta fallet var filen i formatet Markdown (ett lättläst textformat som man kan
generera HTML från):
raw.githubusercontent.com/scala/scala.github.com/master/overviews/collections/seqs.md

9. När jag fixat problemet gjorde jag git add på filen och sedan
git commit -m "välgenomtänkt commit msg"
Jag tänkte efter noga innan jag skrev första raden i commit-meddelandet så
att det skulle vara både kort och kärnfullt. Men ändå glömde jag att inkludera
issue-numret :(, se min kommentar till commiten, som jag tillfogade i efterhand,
när jag till slut upptäckte min fadäs:
scala.github.com/commit/2624c305a8a6f24ea3398fe0fcbd0c72492bdd12#comments

10. Efter att jag gjort git commit så finns ändringen ännu så länge bara lokalt på
min dator. Då gäller det att ”pusha” till min fork på GitHub med git push (eller
använda Sync-knappen i GitHub-desktop-appen).

11. Därefter skapade jag en PR genom att helt enkelt trycka på knappen New pull
request på GitHub-sidan för min fork. Jag tänkte efter noga innan jag författade

https://raw.githubusercontent.com/scala/scala.github.com/master/overviews/collections/seqs.md
https://github.com/bjornregnell/scala.github.com/commit/2624c305a8a6f24ea3398fe0fcbd0c72492bdd12#comments

22 KAPITEL 0. HUR BIDRA TILL KURSMATERIALET?

rubriken som beskriver denna PR. Hade denna ändring varit mer omfattande
hade jag också behövt göra en detaljerad beskrivning av hur ändringen var
implementerad för att underlätta granskningen av mitt förslag. Ni kan se denna
(numera avlutade) PR här:
https://github.com/scala/scala.github.com/pull/517

12. När jag skapat en PR fick de som sköter repot ett automatiskt meddelande om
denna nya PR och den efterföljande granskningsfasen inträddes. Den brukar
sluta med att en eller flera andra personer kommenterar PR i webbgränssnitttet
med ’LGTM’. LGTM = ”Looks Good To Me” och betyder ungefär "jag har kollat på
detta nu och det verkar (vad jag kan bedöma) vara utmärkt och alltså redo för
merge". Om det inte ser bra ut så förväntas granskaren föreslå vad som behöver
förbättras i en saklig och trevlig ton.

13. När PR är granskad så kan en person, som har rättigheter att ändra, ”merga” in
PR på huvudgrenen, som ofta kallas master, i det centrala repot, som ofta kallas
upstream.

14. Avslutningsvis kan ärendet stängas av de ansvariga för repot. Denna issue är
nu markerad ”Closed” och syns inte längre i listan med aktiva issues.

Puh! Sen var det klart :) ”

Epilog: Om du i framtiden får chansen att göra fler bidrag är det viktigt att först
uppdatera din fork mot upstream innan du gör några nya ändringar i din lokala kopia;
annars är risken att din PR innehåller föråldrad information och därmed blir en merge
onödigt krånglig. Detta kan man göra genom en knapp i GitHub Desktop eller genom
att följa denna beskrivning: help.github.com/articles/syncing-a-fork/ Det är i allmänhet
den som ändrar som ansvarar för att ändringar alltid sker i samklang med den mest
aktuella versionen av upstream.

https://github.com/scala/scala.github.com/pull/517
https://help.github.com/articles/syncing-a-fork/

Del II

Moduler

23

Kapitel 1

Introduktion

Begrepp som ingår i denna veckas studier:

� sekvens
� alternativ
� repetition
� abstraktion
� editera
� kompilera
� exekvera
� datorns delar
� virtuell maskin
� litteral
� värde
� uttryck
� identifierare
� variabel
� typ
� tilldelning
� namn
� val
� var
� def

� definiera och anropa funktion
� funktionshuvud
� funktionskropp
� procedur
� inbyggda grundtyper
� println
� typen Unit
� enhetsvärdet ()
� stränginterpolatorn s
� aritmetik
� slumptal
� logiska uttryck
� de Morgans lagar
� if
� true
� false
� while
� for
� dod: operativsystem

25

26 KAPITEL 1. INTRODUKTION

1.1 Teori

1.1.1 Hur fungerar en dator?

Indata-enhet

CPU

Utdata-enhet

Minne med minnesceller

address innehåll
0 42
1 13
2 18
3 21
4 55
5 64
6 48
... ...

Minnet innehåller endast heltal som
representerar data och instruktioner.

1.1.2 Vad är programmering?

• Programmering innebär att ge instruktioner till en maskin.
• Ett programmeringsspråk används av människor för att skriva källkod som

kan översättas av en kompilator till maskinspråk som i sin tur exekveras
av en dator.

• Ada Lovelace publicerade det första programmet redan på 1800-
talet ämnat för en kugghjulsdator.

• sv.wikipedia.org/wiki/Programmering
• en.wikipedia.org/wiki/Computer_programming
• Ha picknick i Ada Lovelace-parken på Brunnshög!

1.1.3 Vad är en kompilator?

Källkod För
människor

Kompilator

Maskinkod För
maskiner

Grace Hopper uppfann kompilatorn 1952.
en.wikipedia.org/wiki/Grace_Hopper

https://sv.wikipedia.org/wiki/Programmering
https://en.wikipedia.org/wiki/Computer_programming
http://kartor.lund.se/wiki/lundanamn/index.php/Ada_Lovelace-parken
https://en.wikipedia.org/wiki/Grace_Hopper

1.1. TEORI 27

1.1.4 Virtuell maskin (VM) == abstrakt hårdvara

• En VM är en ”dator” implemen-
terad i mjukvara som kan tol-
ka en abstrakt ”maskinkod” som
översätts under körning till
den verkliga maskinens kon-
kreta maskinkod.

• Med en VM blir källkoden platt-
formsoberoende och fungerar
på många olika maskiner.

• Exempel JVM:
Java Virtual Machine

Källkod

Kompilator

Abstrakt ”maskinkod”

VM interpreterar

Konkret maskinkod

1.1.5 Vad består ett program av?

• Text som följer entydiga språkregler (grammatik):

– Syntax: textens konkreta utseende
– Semantik: textens betydelse (vad maskinen gör/beräknar)

• Nyckelord: ord med speciell betydelse, t.ex. if, while
• Deklarationer: definitioner av nya ord: def gurka = 42
• Satser är instruktioner som gör något: print("hej")
• Uttryck är instruktioner som beräknar ett resultat: 1 + 1
• Data är information som behandlas: t.ex. heltalet 42
• Instruktioner ordnas i kodstrukturer: SARA

– Sekvens: ordningen spelar roll för vad som händer
– Alternativ: olika resultat beroende på uttrycks värde
– Repetition: instruktioner upprepas många gånger
– Abstraktion: nya byggblock skapas för att återanvändas

1.1.6 Exempel på programmeringsspråk

Det finns massor med olika språk och det kommer ständigt nya.

• Java
• C
• C++
• C#
• Python
• JavaScript

• Scala
• Rust
• Go
• Kotlin
• ...

28 KAPITEL 1. INTRODUKTION

Några topplistor:

• Redmonk

• PYPL
• TIOBE

1.1.7 Olika programmeringsparadigm

• Det finns många olika programmeringsparadigm (sätt att programmera på), till
exempel:

– imperativ programmering: programmet är uppbyggt av satser som på-
verkar systemets tillstånd

– objektorienterad programmering: en sorts imperativ programmering
där programmet består av objekt som kapslar in data och erbjuder opera-
tioner som bearbetar dessa data

– funktionsprogrammering: programmet är uppbyggt av samverkande
funktioner som undviker förändringar av data

– deklarativ programmering, logikprogrammering: programmet är upp-
byggt av logiska uttryck som beskriver olika fakta eller villkor och exekve-
ringen utgörs av en bevisprocedur som söker efter värden som uppfyller
fakta och villkor

Denna kurs behandlar de tre första.

1.1.8 Hello world

Kör rad för rad i Scala REPL (Read-Evaluate-Print-Loop):

> scala
Welcome to Scala 3.7.2 (21.0.5, Java OpenJDK 64-Bit Server VM).
Type in expressions for evaluation. Or try :help.

scala> println("Hello World!")
Hello World!

@main framför valfri funktion anger var ett fristående program ska starta:

@main def hi = println("Hello world!")

Spara texten ovan i filen hello.scala och kompilera ditt program:

> scala compile hello.scala

Kör ditt program med scala run som kompilerar automatiskt vid behov.

> scala run hello.scala
Hello World!

https://redmonk.com/sogrady/2025/06/18/language-rankings-1-25/
http://pypl.github.io/PYPL.html
https://www.tiobe.com/tiobe-index/
https://en.wikipedia.org/wiki/Programming_paradigm

1.1. TEORI 29

1.1.9 Utvecklingscykeln

editera; kompilera; hitta fel och förbättringar; editera; kompilera; hitta fel och förbätt-
ringar; editera; kompilera; hitta fel och förbättringar; editera; kompilera; hitta fel och
förbättringar; editera; kompilera; hitta fel och förbättringar; editera; kompilera; hitta
fel och förbättringar; ...

upprepa(1000){
editera
kompilera
testa

}

1.1.10 Utvecklingsverktyg

• Din verktygskunskap är mycket viktig för din produktivitet.
• Lär dig kortkommandon för vanliga handgrepp.
• Alla verktyg som behövs finns förinstallerade på LTH:s linuxdatorer. Om din

egen burk krånglar: kör på skolans burkar så du ej fördröjs!
• Verktyg vi använder i kursen:

– Scala REPL: från övn 1
– Barnvänlig Scala-programmering med Kojo: Lab 1
– Texteditor för kod, t.ex VS code: från övn 2
– Kompilera och kör fristående program med scala: från övn 2

• Andra verktyg som är bra att lära sig:

– Git för versionshantering
– GitHub för kodlagring – men inte av lösningar till labbar!
– Linux/Ubuntu och nyttiga terminalkommando

1.1.11 Installera verktyg på din egen dator

När du ska skriva kod i en editor, kompilera i terminalen och köra ditt program som
en fristående applikation, så behövs:

• En editor: VS Code med tillägget Scala (Metals)
• Körmiljön OpenJDK
• Kommandoverktyg för terminalen: scala
• Se instruktioner här: https://lunduniversity.github.io/pgk/#verktyg
• Läs mer i Appendix C.
• Tips om du kör Windows: installera nya Windows Terminal
• Installationshjälp:

1. Drop-in som institutionen ordnar på lunchtid.
2. Pluggkvällar som SRD ordnar.
3. #frågor-och-svar på vår Discord-server
4. Fråga handledare på resurstid (i mån av tid).

https://lunduniversity.github.io/pgk/#verktyg

30 KAPITEL 1. INTRODUKTION

1.1.12 Scala Command Line Interface (CLI)

• Utvecklingen av ett nytt kommandogränssnitt (eng. Command Line Interface
(CLI)) för Scala startades 2022 i ett öppenkällkodsprojekt som leds av Virtuslab.

• I augusti 2024 blev scala-cli det nya scala-kommandot. (Före Scala 3.5 hette
kommandot scala-cli.)

• Läs mer i Appendix C och F, samt här: https://scala-cli.virtuslab.org/
• Du kan se vad Scala CLI kan göra via hjälp-optionen:

> scala help

scala-cli help är ”gamla” kommandot som också ingår i Scala-installationen.

1.1.13 Tips och trix med scala i terminalen

• Skriv :help i REPL så får du se vilka kommando som finns.
• Du kan avsluta REPL med :q eller trycka Ctrl+D.
• Ett vertikalstreck visas om du trycker ENTER mitt i en ofullständigt rad.

Detta indikerar att du kan fortsätta skriva på ny rad innan tolkning sker.
• Om du vill att REPL ska vänta att tolka raden du skrivit och istället ge dig

ännu en rad, så tryck först ner ESC-tangenten och sedan ENTER.
• Om du vill förhindra att REPL ger ny rad efter ENTER vid ofullständig rad, så

skriv ett semikolon och tryck ENTER.
• Starta repl med punkt efter blanktecken om du vill ha tillgång till koden i alla

scala-filer i aktuell katalog i din REPL-session:
scala repl .

• Kör med punkt efter blanktecken så kompileras och exekveras alla scala-filer i
aktuell katalog och eventuella underkataloger:
scala run .

1.1.14 Litteraler

• En litteral representerar ett fixt värde i koden och används för att skapa data
som programmet ska bearbeta.

• Exempel:
42 heltalslitteral
42.0 decimaltalslitteral
'!' teckenlitteral, omgärdas med ’enkelfnuttar’
"hej" stränglitteral, omgärdas med ”dubbelfnuttar”
true litteral för sanningsvärdet ”sant”

• Literaler har en typ som avgör vad man kan göra med dem.

https://scala-cli.virtuslab.org/

1.1. TEORI 31

1.1.15 Exempel på inbyggda datatyper i Scala

• Alla värden, uttryck och variabler har en datatyp, t.ex.:

– Int för heltal
– Long för extra stora heltal (tar mer minne)
– Double för decimaltal, så kallade flyttal med flytande decimalpunkt
– String för strängar

• Kompilatorn håller reda på att uttryck kombineras på ett typsäkert sätt. An-
nars blir det kompileringsfel.

• Scala och Java är s.k. statiskt typade språk, vilket innebär att kontroll av
typinformation sker vid kompilering (eng. compile time)1.

• Scala-kompilatorn gör typhärledning: man slipper skriva typerna om kom-
pilatorn kan lista ut dem med hjälp av typerna hos deluttrycken.

1.1.16 Grundtyper i Scala

Dessa grundtyper (eng. basic types) finns inbyggda i Scala:

Svenskt namn Engelskt namn Grundtyper

heltalstyp integral type Byte, Short, Int, Long, Char

flyttalstyp floating point
number types

Float, Double

numeriska typer numeric types heltalstyper och flyttalstyper

strängtyp
(teckensekvens)

string type String

sanningsvärdestyp
(boolesk typ)

truth value type Boolean

1Andra språk, t.ex. Python och Javascript är dynamiskt typade och där skjuts typkontrollen upp
till körningsdags (eng. run time)
Vilka är för- och nackdelarna med statisk vs. dynamisk typning?

https://sv.wikipedia.org/wiki/Datatyp
https://sv.wikipedia.org/wiki/Typsystem
https://en.wikipedia.org/wiki/Type_inference

32 KAPITEL 1. INTRODUKTION

1.1.17 Grundtypernas omfång

Grundtyp Antal bitar Omfång: minsta & största värde

Byte 8 −27 ... 27 −1

Short 16 −215 ... 215 −1

Char 16 0 ... 216 −1

Int 32 −231 ... 231 −1

Long 64 −263 ... 263 −1

Float 32 ± 3.4028235 ·1038

Double 64 ± 1.7976931348623157 ·10308

Grundtypen String lagras som en sekvens av 16-bitars tecken av typen Char och kan
vara av godtycklig längd (tills minnet tar slut).

1.1.18 Uttryck

• Ett uttryck består av en eller flera delar som efter evaluering ger ett resultat.
• Delar i ett uttryck kan t.ex. vara:

litteraler (42), operatorer (+), funktioner (math.sin), ...
• Exempel:

– Ett enkelt uttryck:
42.0

– Sammansatta uttryck:
40 + 2
(20 + 1) * 2
math.sin(0.5 * math.Pi)
"hej" + " på " + "dej"

• När programmet tolkas sker evaluering av uttrycket, vilket ger ett resultat i
form av ett värde som har en typ.

1.1.19 Variabler

• En variabel kan tilldelas värdet av ett enkelt eller sammansatt uttryck.
• En variabel har ett variabelnamn, vars utformning följer språkets regler för

s.k. identifierare.
• En ny variabel införs i en variabeldeklaration och då den kan ges ett värde,

initialiseras. Namnet användas som referens till värdet.
• Exempel på variabeldeklarationer i Scala, notera nyckelordet val:

val a = 0.5 * math.Pi
val length = 42 * math.sin(a)
val exclamationMarks = "!!!"

1.1. TEORI 33

val greetingSwedish = "Hej på dej" + exclamationMarks

• Vid exekveringen av programmet lagras variablernas värden i minnet och deras
respektive värde hämtas ur minnet när de refereras.

• Variabler som deklareras med val kan endast tilldelas ett värde en enda gång,
vid den initialisering som sker vid deklarationen.

1.1.20 Regler för identifierare

• Enkel identifierare: t.ex. gurka2Tomat

– Börja med bokstav
– ...följt av bokstäver eller siffror
– Kan även innehålla understreck

• Operator-identifierare, t.ex. +:

– Börjar med ett operatortecken, t.ex. + - * / : ? ~ #
– Kan följas av fler operatortecken

• En identifierare får inte vara ett reserverat ord, se snabbreferensen för alla
reserverade ord i Scala.

• Bokstavlig identifierare: `kan innehålla allt`

– Börjar och slutar med backticks ` `
– Kan innehålla vad som helst (utom backticks)
– Kan användas för att undvika krockar med reserverade ord: `val`

1.1.21 Att bygga strängar: konkatenering och interpolering

• Man kan konkatenera strängar med operatorn +
"hej" + " på " + "dej"

• Efter en sträng kan man konkatenera vilka uttryck som helst; uttryck inom
parentes evalueras först och värdet görs sen om till en sträng före konkatene-
ringen:

val x = 42
val msg = "Dubbla värdet av " + x + " är " + (x * 2) + "."

• Man kan i Scala få hjälp av kompilatorn att övervaka bygget av strängar med
stränginterpolatorn s:

val msg = s"Dubbla värdet av $x är ${x * 2}."

https://fileadmin.cs.lth.se/pgk/quickref.pdf

34 KAPITEL 1. INTRODUKTION

1.1.22 Heltalsaritmetik

• De fyra räknesätten skrivs som i matematiken (vanlig precedens):

1 scala> 3 + 5 * 2 - 1
2 res0: Int = 12

• Parenteser styr evalueringsordningen:

1 scala> (3 + 5) * (2 - 1)
2 val res1: Int = 8

• Heltalsdivision sker med decimaler avkortade:

1 scala> 41 / 2
2 val res2: Int = 20

• Moduloräkning med restoperatorn %

1 scala> 41 % 2
2 val res3: Int = 1

1.1.23 Flyttalsaritmetik

• Decimaltal representeras med s.k. flyttal av typen Double:

1 scala> math.Pi
2 val res4: Double = 3.141592653589793

• Stora tal så som π∗1012 skrivs:

1 scala> math.Pi * 1E12
2 val res5: Double = 3.141592653589793E12

• Det finns inte oändligt antal decimaler vilket ger problem med avvrundingsfel:

1 scala> 0.1 + 0.2
2 val res6: Double = 0.30000000000000004
3

4 scala> 1E10 + 0.0000000000001
5 val res7: Double = 1.0E10
6

7 scala> BigDecimal("0.1") + BigDecimal("0.2") // BigDecimal funkar
8 val res8: BigDecimal = 0.3

Läs mer här: https://0.30000000000000004.com

1.1.24 Definiera namn på uttryck

• Med nyckelordet def kan man låta ett namn betyda samma sak som ett ut-
tryck.

• Exempel:

https://en.wikipedia.org/wiki/Order_of_operations
https://en.wikipedia.org/wiki/Modulo_operation
https://sv.wikipedia.org/wiki/Flyttal
https://0.30000000000000004.com

1.1. TEORI 35

def gurklängd = 42 + x

• Uttrycket till höger evalueras varje gång anrop sker,
d.v.s. varje gång namnet används på annat ställe i koden.

gurklängd

1.1.25 Funktion, argument, parameter

• En funktion räknar ut resultat baserat på indata som kallas argument.
• Argument ges namn genom deklaration av parametrar.
• Exempel på deklaration av en funktion med en parameter:

def dubblera(x: Int) = 2 * x

• Parametrarnas typ måste beskrivas efter kolon.
• Kompilatorn kan härleda returtypen, men den kan också med fördel, för tyd-

lighetens skull, anges explicit:

def dubblera(x: Int): Int = 2 * x

• Observera att namnet x blir ett ”nytt fräscht” lokalt namn som bara finns och
syns ”inuti” funktionen och har inget med ev. andra x utanför funktionen att
göra.

• Beräkningen sker först vid anrop av funktionen:

1 scala> dubblera(42)
2 res1: Int = 84

1.1.26 Färdiga matte-funktioner i paketet scala.math

• I paketet scala.math finns många användbara funktioner: t.ex.
math.random() ger slumptal mellan 0.0 och 0.99999999999999999

scala> val x = math.random()
x: Double = 0.27749191749889635

scala> val length = 42.0 * math.sin(math.Pi / 3.0)
length: Double = 36.373066958946424

• Studera dokumentationen här:
https://www.scala-lang.org/api/current/scala/math.html#

• Paketet scala.math delegerar ofta till Java-klassen java.lang.Math som är
dokumenterad här:
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/
Math.html

https://www.scala-lang.org/api/current/scala/math.html#
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/Math.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/Math.html

36 KAPITEL 1. INTRODUKTION

1.1.27 Logiska uttryck

• Datorn kan ”räkna” med sanning och falskhet:
s.k. booelsk algebra efter George Boole

• Enkla logiska uttryck: (finns bara två stycken)

true
false

• Sammansatta logiska uttryck med logiska operatorer:
&& och, || eller, ! icke, == likhet, != olikhet, relationer: > < >= <=

• Exempel:

true && true
false || true
!false
42 == 43
42 != 43
(42 >= 43) || (1 + 1 == 2)

1.1.28 De Morgans lagar

De Morgans lagar beskriver vad som händer om man negerar ett logiskt uttryck.
Kan användas för att göra förenklingar.

• I alla deluttryck sammanbundna med && eller ||,
ändra alla && till || och omvänt.

• Negera alla ingående deluttryck. En relation negeras genom att man byter ==
mot !=, < mot >=, etc.

Exempel på förenkling där de Morgans lagar används upprepat:

! (a < b || (a == 1 && b == 1)) ⇐⇒
! (a < b) && ! (a == 1 && b == 1) ⇐⇒
! (a < b) && (! (a == 1) || ! (b == 1)) ⇐⇒
a >= b && (a != 1 || b != 1)

1.1.29 Alternativ med if-uttryck

• Ett if-uttryck börjar med nyckelordet if, följt av ett logiskt uttryck (villkor) inom
parentes och två grenar.

def slumpgrönsak = if math.random() < 0.8 then "gurka" else "tomat"

• Uttrycket efter then blir resultatet om villkoret är true
• Uttrycket efter else blir resultatet om villkoret är false

https://en.wikipedia.org/wiki/Boolean_algebra
https://en.wikipedia.org/wiki/George_Boole
https://en.wikipedia.org/wiki/Augustus_De_Morgan

1.1. TEORI 37

scala> slumpgrönsak
res13: String = gurka

scala> slumpgrönsak
res14: String = gurka

scala> slumpgrönsak
res15: String = tomat

1.1.30 Uttryck eller sats?

Skillnad mellan uttryck och sats:

• Ett uttryck ger ett resultat. Exempel: 1+1
• En sats har en effekt.

Exempel: utskrift, spara på fil, tilldela variabel nytt värde.

Skriv ett uttryck när du är intresserad av värdet som beräknas.
Skriv en sats när du vill att något ska göras.

Både satser och uttryck kan i sin tur innehålla satser och uttryck i godtyckligt kom-
plexa nästlade strukturer (mer om det senare).

1.1.31 Variabeldeklaration och tilldelningssats

• En variabeldeklaration medför att plats i datorns minne reserveras så att
värden av den typ som variabeln kan referera till får plats där.

• Vid deklaration ska variabeln initialiseras med ett startvärde.
• En val-deklaration ger en variabel som efter initialisering inte kan ändras.

Dessa deklarationer...

var x = 42
val y = x + 1

... ger detta innehåll någonstans i
minnet:

x 42
y 43

• Med en tilldelningssats ges en tidigare var-deklarerad variabel ett nytt värde:

x = 13

• Det gamla värdet försvinner för alltid och det nya värdet lagras istället:

x 13
y 43

Observera att y här inte påverkas av att x ändrade värde.

38 KAPITEL 1. INTRODUKTION

1.1.32 Tilldelningssatser är inte matematisk likhet

• Likhetstecknet används alltså för att tilldela variabler nya värden och det är
inte samma sak som matematisk likhet. Vad händer här?

x = x + 1

• Denna syntax är ett arv från de gamla språken C, Fortran mfl.
• I andra språk används t.ex.

x := x + 1 eller x <- x + 1

• Denna syntax visar kanske bättre att tilldelning är en stegvis process:

1. Först beräknas uttrycket till höger om tilldelningstecknet.
2. Sedan ersätts värdet som variabelnamnet refererar till av det beräknade

uttrycket. Det gamla värdet försvinner för alltid.

1.1.33 Förkortade tilldelningssatser

• Det är vanligt att man vill tilldela en variabel ett nytt värde som beror av det
gamla, så som i
x = x + 1

• Därför finns förkortade tilldelningssatser som gör så att man sparar några
tecken och det blir tydligare (?) vad som sker (när man vant sig vid detta
skrivsätt):

x += 1

• Uttrycket ovan expanderas av kompilatorn till x = x + 1

1.1.34 Exempel på förkortade tilldelningssatser

scala> var x = 42
val x: Int = 42

scala> x *= 2

scala> x
val res0: Int = 84

scala> x /= 3

scala> x
val res1: Int = 28

https://en.wikipedia.org/wiki/Assignment_(computer_science)

1.1. TEORI 39

1.1.35 Variabler som ändrar värden kan vara knepiga

• Kod som innehåller variabler som förändras över tid är ofta svårare att läsa
och begripa.

• Många buggar beror på att variabler av misstag förändras på felaktiga och
oanade sätt.

• Föränderliga värden blir speciellt svåra i kod som körs jämlöpande (parallellt).
• I kod som körs i skarpt läge med många användare (s.k. produktionskod) är

därför val att föredra, medan var endast används om det verkligen behövs.
• Alltså: räkna hellre ut nya värden än förändra befintliga.

1.1.36 Kontrollstrukturer: alternativ och repetition

Används för att kontrollera (förändra) sekvensen och skapa alternativa vägar genom
koden. Vägen bestäms vid körtid.

• if-sats:

if math.random() < 0.8 then println("gurka") else println("tomat")

Olika sorters loopar för att repetera satser. Antalet repetitioner ges vid körtid.

• while-sats: bra när man inte vet hur många gånger det kan bli.

while math.random() < 0.8 do println("gurka")

• for-sats: bra när man vill ange antalet repetitioner:

for i <- 1 to 10 do println(s"gurka nr $i")

1.1.37 Scala-2-syntax för kontrollstrukturer fungerar i Scala 3

I Scala 2 användes en gammal syntax för kontrollstrukturer som liknar mer C/C++/Java.
Den är tillåten i Scala 3, men nya mer lättlästa syntaxen är att föredra.

• Scala-2-syntax för alternativ: parenteser men inget then

if (math.random() < 0.8) println("gurka") else println("tomat")

Scala-2-syntax för repetition:

• while-sats: parenteser men inget do

while (math.random() < 0.8) println("gurka")

• for-sats: parenteser men inget do

for (i <- 1 to 10) println(s"gurka nr $i")

40 KAPITEL 1. INTRODUKTION

• Kojo Desktop funkar ännu bara med Scala 2 och gamla syntaxen, men Kojo kan
även köras med Scala 3 (se Appendix A).

1.1.38 Repetera många satser

Om du vill göra flera saker i sekvens inne i en repetition så kan du skriva flera satser
inom klammer-parenteser:

while math.random() < 0.8 do {
println("gurka")
println("tomat")

}

Du kan efter vissa nyckelord (t.ex. do, then, else) välja bort klammer-parenteser (eng.
optional braces).

while math.random() < 0.8 do
println("gurka")
println("tomat")

Då är det indenteringen som avgör vilka satser som ingår.
Detta fungerar i Scala 3 (men inte i Scala 2).

1.1.39 Procedurer

• En procedur är en funktion som gör något intressant, men som inte lämnar
något intressant returvärde.

• Exempel på procedur i standardbiblioteket: println("hej")
• Du deklarerar egna procedurer genom att ange Unit som returvärdestyp.

Då returneras värdet () som betyder ”inget”.

scala> def hej(x: String): Unit = println(s"Hej på dej $x!")
hej: (x: String)Unit

scala> hej("Herr Gurka")
Hej på dej Herr Gurka!

scala> val x = hej("Fru Tomat")
Hej på dej Fru Tomat!
x: Unit = ()

• Det som görs kallas (sido)effekt. Ovan är utskriften själva effekten.
• Även funktioner kan ha sidoeffekter. De kallas då oäkta funktioner.

1.1. TEORI 41

1.1.40 Problemlösning: nedbrytning i abstraktioner som sen kombi-
neras

• En av de allra viktigaste principerna inom programmering är funktionell ned-
brytning där underprogram i form av funktioner och procedurer skapas för
att bli byggstenar som kombineras till mer avancerade funktioner och procedu-
rer.

• Genom de namn som definieras skapas återanvändbara abstraktioner som
kapslar in det funktionen gör till ett ”byggblock”.

• Bra ”byggblock” gör det lättare att lösa svåra programmeringsproblem.
• Abstraktioner som beräknar eller gör en enda, väldefinierad sak är enklare

att använda, jämfört med de som gör många, helt olika saker.
• Abstraktioner med välgenomtänkta namn är enklare att använda, jämfört

med kryptiska eller missvisande namn.

1.1.41 Övning expressions och labb kojo

• På övningen kör du Scala REPL för att träna på SARA.
Läs i Appendix och på kursens hemsida under ”Verktyg” om hur du installerar
och får igång Scala REPL.

• På laborationen använder du barnvänliga Kojo för träna på SARA, med fokus
på abstraktion.

• Det finns två olika sätt att använda Kojo:

1. Grafikbiblioteket i kojo i ett fristående Scala program med vscode och
exekvering i terminalen, se Appendix A. Fungerar fint med nya Scala
3.

2. Skrivbordsappen Kojo Desktop med inbyggd barnvänlig editor (endast
Scala 2, gammal syntax etc).

3. Webbappen http://kojo.lu.se/ direkt i webbläsare; rekommenderas ej –
endast Scala 2, mer begränsad.

Alternativ 1 rekommenderas, men om du försenas av tekniskt strul, så kom igång
med 2 så länge tills du fått hjälp.

1.1.42 Köa med Sigrid

För att köa till handledare på plats i sal i pgk använd Sigrid.
(Se hemlig länk i Canvas, sprid ej länken på internet så vi slipper bottar).

• Direkt när undervisningspasset börjar: starta en session med ditt förnamn,
kursnamn pgk och rummets namn. Gör detta även om du inte behöver hjälp
från start! Då kan ambulanser se antal studenter i varje rum.

• Inget lösenord behövs.
• Två olika köer i varje rum: hjälpkö och redovisningskö

– Ställ dig i hjälpkö om du vill få vägledning och ställa frågor
– Ställ dig i redovisningskö om du är klar att redovisa en labb

• Du måste klicka på Uppdatera – annars händer inget!

http://kojo.lu.se/

42 KAPITEL 1. INTRODUKTION

• OBS! Köar inte+Uppdatera så fort handledare anländer!
• Om du går på extra pass i mån av plats så kan du se vilket rum som har kortast

kö använd Sigrid Monitor.

1.1.43 Sigrid in action

Så här ser det ut när student står i hjälpkö efter att först ha klickat på Hjäälp!!! och
sedan på Uppdatera-knappen:

GLÖM INTE Köar inte + Uppdatera när handledare anländer!

1.2. ÖVNING EXPRESSIONS 43

1.2 Övning expressions

Mål

� Förstå vad som händer när satser exekveras och uttryck evalueras.
� Känna till betydelsen av begreppen sekvens, alternativ, repetition och abstrak-

tion.
� Känna till litteralerna för enkla värden, deras typer och omfång.
� Kunna deklarera och använda variabler och tilldelning, samt kunna rita bilder

av minnessituationen då variablers värden förändras.
� Förstå skillnaden mellan olika numeriska typer, kunna omvandla mellan dessa

och vara medveten om noggrannhetsproblem som kan uppstå.
� Förstå booleska uttryck och värdena true och false, samt kunna förenkla

booleska uttryck.
� Förstå skillnaden mellan heltalsdivision och flyttalsdivision, samt användning

av rest vid heltalsdivision.
� Förstå precedensregler och användning av parenteser i uttryck.
� Kunna använda if-satser och if-uttryck.
� Kunna använda for-satser och while-satser.
� Kunna använda math.random() för att generera slumptal i olika intervaller.
� Kunna beskriva skillnader och likheter mellan en procedur och en funktion.

Förberedelser

� Studera begreppen i kapitel 1
� Du behöver en dator med Scala och Kojo, se appendix ?? och ??.

1.2.1 Grunduppgifter; förberedelse inför laboration

Uppgift 1. Para ihop begrepp med beskrivning.

Koppla varje begrepp med den (förenklade) beskrivning som passar bäst:

litteral 1 A att införa nya begrepp som förenklar kodningen
sträng 2 B antingen sann eller falsk
sats 3 C att översätta kod till exekverbar form
uttryck 4 D anger ett specifikt datavärde
funktion 5 E decimaltal med begränsad noggrannhet
procedur 6 F en kodrad som gör något; kan särskiljas med semikolon
exekveringsfel 7 G en sekvens av tecken
kompileringsfel 8 H kombinerar värden och funktioner till ett nytt värde
abstrahera 9 I beskriver vad data kan användas till
kompilera 10 J vid anrop sker (sido)effekt; returvärdet är tomt
typ 11 K vid anrop beräknas ett returvärde
for-sats 12 L för att ändra en variabels värde
while-sats 13 M kan inträffa innan exekveringen startat
tilldelning 14 N kan inträffa medan programmet kör
flyttal 15 O bra då antalet repetitioner är bestämt i förväg
boolesk 16 P bra då antalet repetitioner ej är bestämt i förväg

44 KAPITEL 1. INTRODUKTION

Uppgift 2. Utskrift i Scala REPL.

Starta Scala REPL (eng. Read-Evaluate-Print-Loop).

> scala
Welcome to Scala 3.1.2 (17.0.2, Java OpenJDK 64-Bit Server VM).
Type in expressions for evaluation. Or try :help.
scala -version.
scala>

a) Skriv efter prompten scala> en sats som skriver ut en valfri (bruklig/knasig)
hälsningsfras, genom anrop av proceduren println med något strängargument. Tryck
på Enter så att satsen kompileras och exekveras.

b) Skriv samma sats igen (eller tryck pil-upp) men ”glöm bort” att skriva högerpa-
rentesen efter argumentet innan du trycker på Enter. Vad händer?

Tips inför fortsättningen: Det finns många användbara kortkommandon och andra
trix för att jobba snabbt i REPL. Be gärna någon som kan dessa trix att visa dig hur
man kan jobba snabbare. Läs appendix ?? och prova sedan att kopiera och klistra in
text. Använd piltangenterna för att bläddra i historiken, Ctrl+A för att komma till
början av raden, Ctrl+K för att radera resten av raden, etc.

Uppgift 3. Konkatenering av strängar.

a) Skriv ett uttryck som konkatenerar två strängar, t.ex. "gurk" och "burk", med
hjälp av operatorn + och studera resultatet. Vad har uttrycket för värde och typ? Vilken
siffra står efter ordet res i variabeln som lagrar resultatet?

b) Använd resultatet från konkateneringen, t.ex. res0 (byt ev. ut 0:an mot siffran
efter res i utskriften från förra evalueringen), och skriv ett uttryck med hjälp av
operatorn * som upprepar resultatet från förra deluppgiften 42 gånger.

Uppgift 4. När upptäcks felet?

a) Vad har uttrycket "hej" * 3 för typ och värde? Testa i REPL.

b) Byt ut 3:an ovan mot ett så pass stort heltal så att minnet blir fullt, men inte
så stort att talet inte får plats i det givna omfånget för grundtypen Int. Hur börjar
felmeddelandet? Är detta ett körtidsfel eller ett kompileringsfel?

c) Välj ett värde på argumentet efter operatorn * så att ett typfel genereras. Hur
börjar felmeddelandet? Är detta ett körtidsfel eller ett kompileringsfel?

Tips inför fortsättningen: Gör gärna fel när du kodar så lär du dig mer! Träna
på att tolka olika felmeddelanden och fråga någon om hjälp om du inte förstår.
Kompilatorns utskrifter kan vara till stor hjälp, men är ibland kryptiska. Om du
kör fast och inte kommer vidare själv så be om hjälp, men be om tips snarare än
färdiga lösningar så att du behåller initiativet själv och tar kontroll över nästa steg
i ditt lärande.

Uppgift 5. Litteraler och typer.

a) Ta hjälp av REPL-kommadot :type (kan förkortas :t) vid behov för att para ihop
nedan litteraler med rätt typ.

1.2. ÖVNING EXPRESSIONS 45

1 1 A String

1L 2 B Boolean

1.0 3 C Boolean

1D 4 D Unit

1F 5 E Int

'1' 6 F Double

"1" 7 G Long

true 8 H Float

false 9 I Char

() 10 J Double

b) Vad händer om du adderar 1 till det största möjliga värdet av typen Int?
Tips: se snabbreferensen 2 under rubriken ”The Scala type system” avsnitt ”Methods
on numbers”.
c) Vad är skillnaden mellan typerna Long och Int?
d) Vad är skillnaden mellan typerna Double och Float?

Uppgift 6. Matematiska funktioner. Använda dokumentation.

a) Antag att du har ett schackbräde med 64 rutor. Tänk dig att du börjar med att
lägga ett enda riskorn på första rutan och sedan lägger dubbelt så många riskorn i
en ny hög för varje efterföljande ruta: 1, 2, 4, 8, ... etc. När du har gjort detta för alla
rutor, hur många riskorn har du totalt lagt på schackbrädet?3

Tips: Du ska beräkna 264 −1. Om du skriver math. i REPL och trycker TAB får du
se inbyggda matematiska funktioner i Scalas standardbibliotek:

scala> math. // Tryck TAB direkt efter punkten och betrakta listan

Använd funktionen math.pow och lämpliga argument. Om du anger math.pow eller
math.pow() utan argument får du se funktionshuvudet med parameterlistan.

Om du surfar till http://www.scala-lang.org/api/current/ och skriver math i
sökrutan och sedan, efter att du klickat på scala.math, skriver pow i rutan längre ner,
så filtreras sidan och du hittar dokumentationen av def pow som du kan klicka på
och läsa mer om.
b) Definiera funktionen omkrets nedan i REPL. Går det bra att utelämna returtyp-
annoteringen? Varför? Finns det anledning att ha den kvar?

def omkrets(radie: Double): Double = 2 * math.Pi * radie

c) Jordens (genomsnittliga) diameter (vid ekvatorn) är ca 12750 km. Skriv ett uttryck
som anropar funktionen omkrets ovan för att beräkna hur många kilometer per dag
man ungefär måste färdas om man vill åka jorden runt på 80 dagar.

Uppgift 7. Variabler och tilldelning. Förändringsbar och oföränderlig variabel.

a) Rita en ny bild av datorns minne efter varje exekverad rad 1–6 nedan. Varje bild
ska visa alla variabler som finns i minnet och deras variabelnamn, typ och värde.

1 scala> var a = 13

2https://fileadmin.cs.lth.se/pgk/quickref.pdf
3https://en.wikipedia.org/wiki/Wheat_and_chessboard_problem

http://www.scala-lang.org/api/current/
https://fileadmin.cs.lth.se/pgk/quickref.pdf
https://en.wikipedia.org/wiki/Wheat_and_chessboard_problem

46 KAPITEL 1. INTRODUKTION

2 scala> val b = a + 1
3 scala> var c = (a + b) * 2.0
4 scala> b = 0
5 scala> a = 0
6 scala> c = c + 1

Efter första raden ser minnessituationen ut så här:

a: Int 13

b) Varför blir det fel på rad 4? Är det ett kompileringsfel eller exekveringsfel? Hur
lyder felmeddelandet?

Uppgift 8. Slumptal med math.random().

a) Vad ger funktionen math.random() för resultatvärde? Vilken typ? Vad är största
och minsta möjliga värde?
Tips: Sök här: http://www.scala-lang.org/api/current/och prova i REPL.
b) Deklarera den parameterlösa funktionen def roll: Int = ??? som ska repre-
sentera ett tärningskast och ge ett slumpmässigt heltal mellan 1 och 6. Testa funktio-
nen genom att anropa den många gånger.
Tips: Använd math.random() och multiplicera och addera med lämpliga heltal. Omge
beräkningen med parenteser och avsluta med .toInt för att avkorta decimaler och
omvandla typen från Double till Int.

Uppgift 9. Repetition med for, foreach och while.

a) Så här kan en for-sats ser ut:

for i <- 1 to 10 do print(s"$i, ")

Använd en for-sats för att skriva ut resultatet av 100 tärningskast med funktionen
roll från uppgift 8.
b) Så här kan en foreach-sats ser ut:

(1 to 10).foreach(i => print(s"$i, "))

Använd en foreach-sats för att skriva ut resultatet av 100 tärningskast med funktio-
nen roll från uppgift 8.
c) Så här kan en while-sats se ut:

var i = 1
while i <= 10 do { print(s"$i, "); i = i + 1 }

Använd en while-sats för att skriva ut resultatet av 100 tärningskast med funktionen
roll från uppgift 8. Vad händer om du glömmer i = i + 1 ?

Uppgift 10. Alternativ med if-sats och if-uttryck.

a) Så här kan en if-sats se ut (notera dubbla likhetstecken):

if roll == 3 then println("TRE") else println("INTE TRE")

Testa ovan i REPL. Skriv sedan en for-sats som kastar 100 tärningar och skriver ut
strängen "GRATTIS! " om det blir en sexa, annars en ledsen smiley: ":("

http://www.scala-lang.org/api/current/

1.2. ÖVNING EXPRESSIONS 47

b) Så här kan ett if-uttryck se ut:

if roll < 6 then 0 else 1

Testa ovan i REPL. Skriv sedan en while-sats som kastar 100 tärningar och räknar
antalet sexor. Skriv ut antalet efter while-satsen.
c) Förenkla implementationen av denna funktion:

def isAdult(age: Int) = if age >= 18 then true else false

Uppgift 11. Sekvens, sats och block.

a) Vad gör dessa satser?

scala> def p = { print("san"); print("!"); println("hej")}
scala> p;p;p;p

b) Använd pil-upp för att få tillbaka raden du skrev med definitionen av proceduren
p. Byt plats på strängarna i utskriftsanropen i proceduren p så att utskriften blir:

hejsan!
hejsan!
hejsan!
hejsan!

c) Hur tolkar kompilatorn klammerparenteser och semikolon? Vad är ett block?

Uppgift 12. Heltalsdivision. Vilket värde och vilken typ hör till vilket uttryck? Är du
osäker på svaret, testa i REPL.

4 / 42 1 A 4: Int

42.0 / 2 2 B 10: Int

42 / 4 3 C 21.0: Double

42 % 4 4 D true : Boolean

4 % 42 5 E false: Boolean

40 % 4 == 0 6 F 0: Int

42 % 4 == 0 7 G 2: Int

Uppgift 13. Booleska värden. Vilket värde har dessa uttryck?

a) true && true

b) false && true

c) true || true

d) false || true

e) false || false

f) true == true

g) true != false

h) true > false

i) true && (1 / 0 > 1)

j) false && (1 / 0 > 1)

48 KAPITEL 1. INTRODUKTION

Uppgift 14. Booleska variabler. Vad skrivs ut på rad 2 och 4 nedan?

1 scala> var monster = false
2 scala> if monster then println("akta dig!!!")
3 scala> monster = true
4 scala> if monster then println("akta dig!!!")

Uppgift 15. Turtle graphics med Kojo. På veckans laboration ska du använda Kojo
för att verifiera att du kan använda sekvens, alternativ, repetition och abstraktion.
Med Kojo ska du skapa Scala-program som ritar färgglada figurer med hjälp av ett
lättanvänt Scala-bibliotek för turtle graphics4.

Om du använder Kojo som ett grafikbibliotek (rekommenderas) och kör med scala
run (se Appendix ??) så kan du använda Scala 3. Men kör du Kojo Desktop så är
det Scala 2 som gäller och även om det mesta i veckans labb fungerar lika i Scala
2 och Scala 3 så kräver Scala 2 den gamla syntaxen för kontrollstrukturer med
nödvändiga parenteser runt villkorsuttryck, utan varken do eller then, och varken
valfria klammerparenteser eller indenteringssyntax.

Skriv in och kör nedan program med valfri metod enligt Appendix ??. Notera
kopplingen mellan satsernas ordning och vad som händer i ritfönstret.

fram; höger
fram; vänster
färg(grön)
fram

Om du kör Kojo Desktop är det bra att börjar programmet med sudda (varför det?5).

a) Skriv kod som ritar en kvadrat enligt bilden nedan.

Prova gärna olika sätt att skriva din kod utan att resultatet ändras: skriv satser i
sekvens på flera rader eller satser i sekvens på samma rad med semikolon emellan;
använd blanktecken och blanka rader i koden. Hur vill du gruppera dina satser så att
de är lätta för en människa att läsa?

b) Rita en trappa enligt bilden nedan.

4https://en.wikipedia.org/wiki/Turtle_graphics
5När du trycker på playknappen i Kojo Desktop så nollställs varken canvas i ritfönstret eller paddans

tillstånd. Genom att börja dina Kojo Desktop-program med sudda så startar du exekveringen i exakt
samma utgångsläge: en tom canvas där paddan pekar uppåt, pennan är nere och pennans färg är röd.

https://en.wikipedia.org/wiki/Turtle_graphics

1.2. ÖVNING EXPRESSIONS 49

c) Rita valfri bild på valfri bakgrund med hjälp av några av procedurerna i tabellen
nedan. Du kan till exempel rita en rosa triangel med lila konturer mot svart bakgrund.
Försök att underlätta läsbarheten av din kod med hjälp av lämpliga radbrytningar
och gruppering av satser.

fram(100) Paddan går framåt 100 steg (25 om argument saknas).
färg(rosa) Sätter pennans färg till rosa.
fyll(lila) Sätter ifyllnadsfärgen till lila.
fyll(genomskinlig) Gör så att paddan inte fyller i något när den ritar.
bredd(20) Gör så att pennan får bredden 20.
bakgrund(svart) Bakgrundsfärgen blir svart.
pennaNer Sätter ner paddans penna så att den ritar när den går.
pennaUpp Sänker paddans penna så att den inte ritar när den går.
höger(45) Paddan vrider sig 45 grader åt höger.
vänster(45) Paddan vrider sig 45 grader åt vänster.
hoppa Paddan hoppar 25 steg utan att rita.
hoppa(100) Paddan hoppar 100 steg utan att rita.
hoppaTill(100, 200) Paddan hoppar till läget (100, 200) utan att rita.
gåTill(100, 200) Paddan vrider sig och går till läget (100, 200).
öster Paddan vrider sig så att nosen pekar åt höger.
väster Paddan vrider sig så att nosen pekar åt vänster.
norr Paddan vrider sig så att nosen pekar uppåt.
söder Paddan vrider sig så att nosen pekar neråt.
sättVinkel(90) Paddan vrider nosen till vinkeln 90 grader.

Tips inför fortsättningen: Ha både REPL och en editor igång samtidigt. Då kan du
undersöka hur olika kodfragment fungerar i REPL, medan du stegvis skapar allt
större program i editorn. Detta sätt att jobba har du stor nytta av under resten av
kursen. Oavsett vilka andra verktyg du kör är det användbart att ha REPL igång
i ett eget fönster som hjälp i den kreativa processen, medan du jagar buggar och
medan du lär dig nya koncept. Så fort du undrar hur något fungerar i Scala: fram
med REPL och testa!

50 KAPITEL 1. INTRODUKTION

1.2.2 Extrauppgifter; träna mer

Uppgift 16. Typ och värde. Vilket värde och vilken typ hör till vilket uttryck? Är du
osäker på svaret, testa i REPL.

1.0 + 18 1 A 1.042E42: Double

(41 + 1).toDouble 2 B 65: Int

1.042e42 + 1 3 C 113: Int

12E6.toLong 4 D 48: Int

32.toChar.toString 5 E " ": String

'A'.toInt 6 F 0: Int

0.toInt 7 G '*': Char

'0'.toInt 8 H 19.0: Double

'9'.toInt 9 I 12000000: Long

'A' + '0' 10 J 'q': Char

('A' + '0').toChar 11 K 42.0: Double

"*!%#".charAt(0) 12 L 57: Int

Uppgift 17. Satser och uttryck.

a) Vad är det för skillnad på en sats och ett uttryck?

b) Ge exempel på satser som inte är uttryck?

c) Förklara vad som händer för varje evaluerad rad:

1 scala> def värdeSaknas = ()
2 scala> värdeSaknas
3 scala> värdeSaknas.toString
4 scala> println(värdeSaknas)
5 scala> println(println("hej"))

d) Vilken typ har litteralen ()?

e) Vilken returtyp har println?

Uppgift 18. Procedur med parameter. En procedur är en funktion som orsakar en
effekt, till exempel en utskrift eller en variabeltilldelning, men som inte returnerar
något intressant resultatvärde.6

a) Deklarera en förändringsbar variabel highscore som initieras till 0.

b) Deklarera en procedur updateHighscore som tar en parameter points och tillde-
lar highscore ett nytt värde om points är större än highscore och skriver ut strängen
"REKORD!". Om inte points är större än highscore ska strängen "GE INTE UPP!"
skrivas ut. Testa proceduren i REPL.

c) Gör en ny variant av updateHighscore, som inte är en procedur utan i stället är
en funktion som ger en sträng för senare utskrift. Testa funktionen i REPL.

6I Scala är procedurer funktioner som returnerar det tomma värdet, vilket skrivs () och är av typen
Unit. I Java och flera andra språk finns inget tomt värde och man har en specialsyntax för procedurer
som använder nyckelordet void.

1.2. ÖVNING EXPRESSIONS 51

Uppgift 19. Flyttalsaritmetik.

a) Vilket är det minsta positiva värdet av typen Double?
b) Vad är värdet av detta uttryck? Varför blir det så?

1 scala> Double.MaxValue + Double.MinPositiveValue == Double.MaxValue

Uppgift 20. if-sats. För varje rad nedan, beskriv vad som skrivs ut.

1 scala> if !true then println("sant") else println("falskt")
2 scala> if !false then println("sant") else println("falskt")
3 scala> def singlaSlant = if math.random() < 0.5 then "krona" else "klave"
4 scala> for i <- 1 to 5 do print(s"$i:$singlaSlant ")

Uppgift 21. Deklarera följande variabler med nedan initialvärden:

scala> var grönsak = "gurka"
scala> var frukt = "banan"

Ange för varje rad nedan vad uttrycket har för värde och typ:

scala> if grönsak == "tomat" then "gott" else "inte gott"
scala> if frukt == "banan" then "gott" else "inte gott"
scala> if true then grönsak else 42
scala> if false then grönsak else 42

Uppgift 22. Modulo-operatorn % och Booleska värden.

a) Deklarera en funktion def isEven(n: Int): Boolean = ??? som ger true om
talet n är jämnt, annars false.
b) Deklarera en funktion def isOdd(n: Int): Boolean = ??? som ger false om
talet n är jämnt, annars true.

Uppgift 23. Skillnader mellan var, val, def.

a) Evaluera varje rad en i taget i tur och ordning i Scala REPL. För varje rad nedan:
förklara för vad som händer och notera värde och ev fel.

1 scala> var x = 30
2 scala> x + 1
3 scala> x = x + 1
4 scala> x == x + 1
5 scala> val y = 20
6 scala> y = y + 1
7 scala> var z = { println("hej z!"); math.random() }
8 scala> def w = { println("hej w!"); math.random() }
9 scala> z
10 scala> z
11 scala> z = z + 1
12 scala> w
13 scala> w
14 scala> w = w + 1

b) Vad är det för skillnad på var, val och def?

52 KAPITEL 1. INTRODUKTION

Uppgift 24. Skillnaden mellan if och while. Vad blir resultatet av rad 3 och 4?

1 scala> def lotto1 = if math.random() > 0.5 then print("vinst :) ")
2 scala> def lotto2 = while math.random() > 0.5 do print("vinst :) ")
3 scala> lotto1
4 scala> lotto2

1.2. ÖVNING EXPRESSIONS 53

1.2.3 Fördjupningsuppgifter; utmaningar

Uppgift 25. Logik och De Morgans Lagar. Förenkla följande uttryck. Antag att poäng
och highscore är heltalsvariabler medan klar är av typen Boolean.

a) poäng > 100 && poäng > 1000

b) poäng > 100 || poäng > 1000

c) !(poäng > highscore)

d) !(poäng > 0 && poäng < highscore)

e) !(poäng < 0 || poäng > highscore)

f) klar == true

g) klar == false

Uppgift 26. Stränginterpolatorn s. Med ett s framför en stränglitteral får man hjälp
av kompilatorn att, på ett typsäkert sätt, infoga variabelvärden i en sträng. Vari-
ablernas namn ska föregås med ett dollartecken , t.ex. s"Hej $namn". Om man vill
evaluera ett uttryck placeras detta inom klammer direkt efter dollartecknet, t.ex.
s"Dubbla längden: ${namn.size * 2}"

a) Vad skrivs ut nedan?

1 scala> val f = "Kim"
2 scala> val e = "Finkodare"
3 scala> println(s"Namnet '$f $e' har ${f.size + e.size} bokstäver.")

b) Skapa följande utskrifter med hjälp av stränginterpolatorn s och variablerna f
och e i föregående deluppgift.

1 Kim har 3 bokstäver.
2 Finkodare har 9 bokstäver.

Uppgift 27. Tilldelningsoperatorer. Man kan förkorta en tilldelningssats som föränd-
rar en variabel, t.ex. x = x + 1, genom att använda så kallade tilldelningsoperatorer
och skriva x += 1 som betyder samma sak. Rita en ny bild av datorns minne efter
varje rad nedan. Bilderna ska visa variablers namn, typ och värde.

1 scala> var a = 40
2 scala> var b = a + 40
3 scala> a += 10
4 scala> b -= 10
5 scala> a *= 2
6 scala> b /= 2

Uppgift 28. Stora tal. Om vi vill beräkna 264 −1 som ett exakt heltal7 blir det större
än Int.MaxValue, så vi kan tyvärr inte använda snabba Int. Till vår räddning: BigInt

a) Läs om BigInt och BigDecimal på http://www.scala-lang.org/api/current/
Notera vad de kan användas till.
b) Du skapar ett BigInt-heltal med BigInt(2) och kan anropa funktionen pow på
en BigInt med punktnotation. Beräkna 264 −1 som ett exakt heltal.

7https://en.wikipedia.org/wiki/Wheat_and_chessboard_problem

http://www.scala-lang.org/api/current/
https://en.wikipedia.org/wiki/Wheat_and_chessboard_problem

54 KAPITEL 1. INTRODUKTION

c) Vilka nackdelar finns med BigInt och BigDecimal?

Uppgift 29. Precedensregler Evalueringsordningen kan styras med parenteser. Vilket
värde och vilken typ har följande uttryck?

a) 23 + 2 * 2 + (23 + 2) * 2

b) (-(2 - 42)) / (1 + 1 + 1)

c) (-(2 - 42)) / (-1)/(1 + 1 + 1)

Uppgift 30. Dokumentation av paket i Java och Scala.

a) Genom att trycka på tab tangenten kan man se vad som finns i olika paket. Vad
heter konstanten π i java.lang.Math (notera stort M) respektive scala.math.?

1 scala> java.lang.Math. //tryck TAB efter punkten
2 scala> scala.math. //tryck TAB efter punkten

b) Jämför dokumentationen för klassen java.lang.Math här:
https://docs.oracle.com/javase/8/docs/api/
med dokumentationen för paketet scala.math här:
http://www.scala-lang.org/api
Ge exempel på vad man kan göra på webbsidan med Scala-dokumentationen som man
inte kan göra i motsvarande webbsida Java-dokumentation.
c) Vad gör metoden hypot? Vad är det som är bra med att använda hypot i stället
för att själv implementera beräkningen med hjälp av kvadratrot, multiplikation och
addition?

Uppgift 31. Noggrannhet och undantag i aritmetiska uttryck. Vad blir resultatet av
uttrycken nedan? Notera undantag (eng. exceptions) och noggrannhetsproblem.

a) Int.MaxValue + 1

b) 1 / 0

c) 1E8 + 1E-8

d) 1E9 + 1E-9

e) math.pow(math.hypot(3,6), 2)

f) ?1.0 / 0

g) ?(1.0 / 0).toInt

h) ?math.sqrt(-1)

i) ?math.sqrt(Double.NaN)

j) throw new Exception("PANG!!!")

Uppgift 32. ?Modulo-räkning med negativa tal. Läs om moduloräkning här:
en.wikipedia.org/wiki/Modulo_operation
och undersök hur det blir med olika tecken (positivt resp. negativt) på moduloräkning
med dividend%divisor i Scala.

Uppgift 33. ?Bokstavliga identifierare. Läs om identifierare i Scala och speciellt literal
identifiers här: http://www.artima.com/pins1ed/functional-objects.html#6.10.

a) Förklara vad som händer nedan:

scala> val `bokstavlig val` = 42
scala> println(`bokstavlig val`)

https://docs.oracle.com/javase/8/docs/api/
http://www.scala-lang.org/api
https://en.wikipedia.org/wiki/Modulo_operation
http://www.artima.com/pins1ed/functional-objects.html#6.10

1.2. ÖVNING EXPRESSIONS 55

b) Scala och Java har olika uppsättningar med reserverade ord. På vilket sätt kan
”backticks” vara använbart med anledning av detta?

Uppgift 34.? java.lang.Integer, hexadecimala litteraler, BigDecimal.

a) Sök upp dokumentationen för java.lang.Integer.
Använd metoderna toBinaryString och toHexString för att fylla i tabellen nedan.

decimalt heltal binärt värde hexadecimalt värde
33
42
64

b) Hur anger man det hexadecimala heltalsvärdet 10c (motsvarar 268 decimalt) som
en litteral i Scala?
c) Vad blir 0x10 upphöjt till c = ljusets hastighet i m/s? Tips: Använd BigDecimal.

Uppgift 35.? Strängformatering. Läs om f-interpolatorn här:
http://docs.scala-lang.org/overviews/core/string-interpolation.html
Hur kan du använda f-interpolatorn för att göra följande utskrift i REPL? Ändra rad
2 vid ??? så att flyttalet g avrundas till tre decimaler innan utskrift sker.

1 scala> val g = 2 / 3.0
2 scala> val str = f"Jättegurkan är $g??? meter lång"
3 scala> println(str)
4 Jättegurkan är 0.667 meter lång

Uppgift 36. Multiplikationsvarning. Sök upp dokumentationtionen för
java.lang.Math.multiplyExact och läs om vad den metoden gör.

a) Vad händer här?

scala> Math.multiplyExact(1, 2)
scala> Int.MaxValue * 2
scala> Math.multiplyExact(Int.MaxValue, 2)

b) Varför kan man vilja använda java.lang.Math.multiplyExact i stället för ”van-
lig” multiplikation?

Uppgift 37.? Extra operatorer för exakt multiplikation. Kim Kodmagiker tycker att
Math.multiplyExact är för krångligt att skriva och utökar därför typen Int med en
extra operator:

extension (i: Int) def *!(j: Int) = Math.multiplyExact(i,j)

a) Klistra in koden ovan i REPL och prova den extra operatorn.
b) Hjälp Kim Kodmagiker att lägga till fler operatorer på värden av typen Int, som
gör att det även går att använda Math.subtractExact och Math.addExact smidigt.
c) Testa ett sammansatt uttryck som använder alla extrametoder på Int. Tycker du
det blev mer lättläst eller mer kryptiskt med de nya operatorerna?

http://docs.scala-lang.org/overviews/core/string-interpolation.html

56 KAPITEL 1. INTRODUKTION

1.3 Laboration: kojo

Mål

� Kunna tillämpa och kombinera principerna sekvens, alternativ, repetition, och
abstraktion i skapandet av egna program om minst 20 rader kod.

� Kunna förklara vad ett program gör i termer av sekvens, alternativ, repetition,
och abstraktion.

� Kunna formatera egna program så att de blir lätta att läsa och förstå.
� Kunna förklara vad en variabel är och kunna deklarera oföränderliga och för-

ändringsbara variabler, samt göra tilldelningar.
� Kunna genomföra upprepade varv i cykeln editera-exekvera-felsöka/förbättra

för att stegvis bygga upp allt mer utvecklade program.

Förberedelser

� Repetera veckans föreläsningsmaterial.
� Gör övning expressions i avsnitt 1.2
� Läs om Kojo i appendix ??.
� Läs igenom hela laborationen nedan. Fundera på möjliga lösningar till de upp-

gifter som är markerade med en penna i marginalen.
� Hämta given kod via kursen github-plats.

1.3.1 Obligatoriska uppgifter

Om det förekommer en penna i marginalen ska du anteckna något inför redovisningen.

Uppgift 1. Installera och starta Kojo. Öppna terminalen och skriv in följande kom-
mandon för att ladda ned filen kojo.scala från internet, spara den i katalogen
~/w01-kojo, och starta Kojo.
> mkdir ~/w01-kojo
> cd ~/w01-kojo
> curl -sLO https://fileadmin.cs.lth.se/kojo.scala
> scala repl ~/w01-kojo/kojo.scala

Nu borde du kunna skriva activateCanvas() i terminalen, trycka på ENTER, och
se ett fönster dyka upp på skärmen.

Welcome to Scala 3.7.3 (21.0.8, Java OpenJDK 64-Bit Server VM).
Type in expressions for evaluation. Or try :help.

scala> activateCanvas()

scala>

Uppgift 2. Sekvens och repetition. Rita en kvadrat med hjälp av upprepa(n){ ??? }
där du ersätter n med antalet repetitioner och ??? med de satser som ska repeteras.

Uppgift 3. Variabel och repetition.

a) Funktionen System.currentTimeMillis ingår i Javas standardbibliotek och ger
ett heltal av typen Long med det nuvarande antalet millisekunder sedan midnatt den
första januari 1970. Med Kojo-proceduren sakta(0) blir det ingen fördröjning när

https://github.com/lunduniversity/introprog/tree/master/workspace/

1.3. LABORATION: KOJO 57

paddan ritar och utritningen sker så snabbt som möjligt. Skriv in nedan program i
REPL och förklara vad som händer. OBS: håll in ESC när du trycker på ENTER för att
göra ett radbryt utan att köra programmet.

sudda
sakta(0)
val n = 800 * 4
val t1 = System.currentTimeMillis
upprepa(n):

upprepa(4):
fram
höger

val t2 = System.currentTimeMillis
println(s"$n kvadratvarv tog ${t2 - t1} millisekunder")

b)P Anteckna ungefär hur många kvadratvarv per sekund som paddan kan rita
när den är som snabbast. Kör flera gånger eftersom den virtuella maskinen behöver
”värmas upp” för att maskinkoden ska optimeras. Vissa körningar kan gå långsammare
om skräpsamlaren behöver lägga tid på att frigöra minne.
c)P Vad har variablerna i koden ovan för namn? Vad har variablerna för värden?
d) Rita en kvadrat igen, men nu med hjälp av en while-sats och en loopvariabel.

sakta(100)
var i = 0
while ??? do

fram
höger
i = ???

e)P Vad är det för skillnad på variabler som deklareras med val respektive var?
f) Rita en kvadrat igen, men nu med hjälp av en for-sats. Skriv ut värdet på den
lokala variabeln i i varje loop-runda.
for i <- 1 to ??? do

???

g)P Går det att tilldela variabeln i ett nytt värde i loopen?
h)P Går det att referera till namnet i utanför loopen?
i) Rita en kvadrat igen, men nu med hjälp av foreach. Skriv ut loopvariabelns värde
i varje runda.

(1 to ???).foreach: i =>
???

Uppgift 4. Abstraktion.

a) Använd en repetition för att abstrahera nedan sekvens, så att programmet blir
kortare:

fram; höger; hoppa; fram; vänster; hoppa; fram; höger;
hoppa; fram; vänster; hoppa; fram; höger; hoppa; fram;

58 KAPITEL 1. INTRODUKTION

def kvadrat =
for ??? do

???

for ??? do
???

Figur 1.1: En kvadratstapel.

vänster; hoppa; fram; höger; hoppa; fram; vänster; hoppa;
fram; höger; hoppa; fram; vänster; hoppa

b) Definiera en egen procedur som heter kvadrat med hjälp av nyckelordet def som
vid anrop ritar en kvadrat med hjälp av en for-loop.

def kvadrat =
for ??? do

???

c) Anropa din abstraktion efter att den deklarerats och efter att du exekverat:
sakta(100)

d) Anropa din abstraktion inuti en for-loop så att paddan ritar en stapel som är 10
kvadrater hög enligt bilden nedan.

e) Studera hur anrop av proceduren kvadrat påverkar exekveringssekvensen av
dina satser genom att göra lämpliga utskrifter så att du kan se när olika delar av
koden exekveras. Vid vilka punkter i programmet sker ett ”hopp” i sekvensen i stället
för att efterföljande sats exekveras? Använd lämpligt argument till sakta för att du
ska hinna studera exekveringen.

f) Rita samma bild med 10 staplade kvadrater (se bild 1.1 på sidan 58), men nu utan
att använda abstraktionen kvadrat – använd i stället en nästlad repetition (alltså en
upprepning inuti en upprepning). Vilket av de två sätten (med och utan abstraktionen
kvadrat) är lättast att läsa?

g) Generalisera din abstraktion kvadrat genom att ge den en parameter sida: Double
som anger kvadratens storlek. Rita flera kvadrater i likhet med bild 1.2 på sidan 59).

1.3. LABORATION: KOJO 59

Figur 1.2: Olika stora kvadrater.

Uppgift 5. Alternativ.

a) Kör programmet nedan. Förklara vad som händer.

sakta(5000)

def move(key: Int): Unit =
println("key: " + key)
if key == 87 then fram(10)
else if key == 83 then fram(-10)

move(87); move('W'); move('W')
move(83); move('S'); move('S'); move('S')

b) Kör programmet nedan. Notera activateCanvas() för att du ska slippa klicka
i ritfönstret innan du kan styra paddan. Anropet onKeyPress(move) gör så att move
kommer att anropas då en tangent trycks ned. Lägg till kod i move som gör att
tangenten A ger en vridning moturs med 5 grader medan tangenten D ger en vridning
medurs 5 grader. Med onKeyPress bestämmer man vilken procedur som ska köras vid
tangenttryck.

sakta(0)
activateCanvas()

def move(key: Int): Unit =
println("key: " + key)
if key == 'W' then fram(10)
else if key == 'S' then fram(-10)

onKeyPress(move)

1.3.2 Kontrollfrågor

DE Repetera teorin för denna vecka och var beredd på att kunna svara på dessa frågor
när det blir din tur att redovisa vad du gjort under laborationen:

1. Vad innebär sekventiell exekvering av satser?

2. Vad är skillnaden mellan en sats och ett uttryck?

3. Vad är skillnaden mellan en procedur och en funktion?

60 KAPITEL 1. INTRODUKTION

4. Spelar ordningen mellan argument någon roll vid anrop av en funktion med
flera parametrar?

5. Vad är en variabel? Ge exempel på deklaration, initialisering och tilldelning av
variabler, samt användning av variabler i uttryck.

6. Vad är ett logiskt uttryck? Ge exempel på användning av logiska uttryck.

7. Vad är abstraktion? Ge exempel på användning av abstraktion.

8. Vad är nyttan med abstraktion?

9. Hur deklareras och initialiseras en variabel vars värde är förändringsbart?

10. Hur deklareras och initialiseras en variabel vars värde är oföränderligt?

11. Är det ett körtidsfel eller kompileringsfel att tilldela en oföränderlig variabel ett
nytt värde?

12. Ange vilken av for och while som är lämpligast i dessa fall:

A. Summera de hundra första heltalen.
B. Räkna antal tecken i en sträng innan första blanktecken.
C. Dra 100 slumptal mellan 1 och 6 och summera de tal som är mindre än 3.
D. Summera de första heltalen från 1 och uppåt tills summan är minst 100.

1.3.3 Frivilliga extrauppgifter

Gör i mån intresse och träningsbehov nedan uppgifter i valfri ordning.

Uppgift 6. Abstraktion och generalisering.

a) Skapa en abstraktion def stapel = ??? som använder din abstraktion kvadrat.
b) Du ska nu generalisera din procedur så att den inte bara kan rita exakt 10
kvadrater i en stapel. Ge proceduren stapel en parameter n som styr hur många
kvadrater som ritas.

def kvadrat = ???
def stapel(n: Int) = ???

sakta(100)
stapel(42)

c) Rita nedan bild med hjälp av abstraktionen stapel. Det är totalt 100 kvadrater
och varje kvadrat har sidan 25. Tips: Med ett negativt argument till proceduren hoppa
kan du få sköldpaddan att hoppa baklänges utan att rita, t.ex. hoppa(-10*25)

1.3. LABORATION: KOJO 61

d) Generalisera dina abstraktioner kvadrat och stapel så att man kan påverka
storleken på kvadraterna som ritas ut.

e) Skapa en abstraktion rutnät med lämpliga parametrar som gör att man kan rita
rutnät med olika stora kvadrater och olika många kvadrater i både x- och y-led.

f) Generalisera dina abstraktioner kvadrat och stapel så att man kan påverka
fyllfärgen och pennfärgen för kvadraterna som ritas ut.

Färgerna i Kojo är av typen java.awt.Color. Typen är tillgänglig under namnet
Color eftersom namnet gjorts direkt tillgängligt med export java.awt.Color i filen
kojo.scala (mer om nyckelorden export och import i läsvecka 4).

Uppgift 7. Växling med booleska värden.

a) Bygg vidare på programmet i uppgift 5 och lägg till nedan kod i början av pro-
grammet. Lägg även till kod som gör så att om man trycker på tangenten G så sätts
rutnätet omväxlande på och av. Observera att det är exakt en procedur som anropas
vid onKeyPress.

var isGridOn = false

def toggleGrid =
if isGridOn then

gridOff
isGridOn = false

else
gridOn
isGridOn = true

b) Gör så att när man trycker på tangenten X så sätter man omväxlande på och
av koordinataxlarna. Använd en variabel isAxesOn och definiera en abstraktion
toggleAxes som anropar axesOn och axesOff på liknande sätt som i föregående
uppgift.

Uppgift 8. Repetition. Skriv en procedur randomWalk med detta huvud:
def randomWalk(n: Int, maxStep: Int, maxAngle: Int): Unit
som gör så att paddan tar n steg av slumpmässig längd mellan 0 och maxStep, samt
efter varje steg vrider sig åt vänster en slumpmässig vinkel mellan 0 och maxAngle.
Anropa din procedur med olika argument och undersök hur dess värden påverkar
bildens utseende. Tips: Uttrycket math.random() * 100 ger ett tal från 0 till (nästan)
100. Du kan styra hur långsamt paddan ritar genom anrop av sakta(???) (prova dig
fram till något lämpligt heltalsargument i stället för ???).

Uppgift 9. Variabler, namngivning och formatering.

62 KAPITEL 1. INTRODUKTION

a) Klistra in nedan konstigt formatterade program exakt som det står med blanktec-
ken, indragningar och radbrytningar. Kör programmet och förklara vad som händer.

// Ett konstigt formaterat program med en del konstiga namn.

def gurka(x: Double,
y: Double, namn: String,
typ: String,
värde:String) = {
val tomat = 15
val h = 30
hoppaTill(x,y)
norr
skriv(namn+": "+typ)
hoppaTill(x+tomat*(namn.size+typ.size),y)
skriv(värde); söder; fram(h); vänster
fram(tomat * värde.size); vänster
fram(h); vänster
fram(tomat * värde.size); vänster }
sudda; färg(svart); val s = 130
val h = 40
var x = 42; gurka(10, s-h*0, "x","Int", x.toString)
var y = x; gurka(10, s-h*1, "y","Int", y.toString)
x = x + 1; gurka(10, s-h*2, "x","Int", x.toString)
gurka(10, s-h*3, "y","Int", y.toString); osynlig

b) PSkriv ner namnet på alla variabler som förekommer i programmet.
c) PVilka av dessa variabler är lokala?
d) PVilka av dessa variabler kan förändras efter initialisering?
e) PFöreslå tre förändringar av programmet ovan (till exempel namnbyten) som gör
att det blir lättare att läsa och förstå.
f) Gör sök-ersätt av gurka till ett bättre namn.
g) Gör automatisk formatering av koden med hjälp av lämpligt kortkommando.
Notera skillnaderna. Vilka autoformateringar gör programmet lättare att läsa? Vilka
manuella formateringar tycker du bör göras för att öka läsbarheten? Ge funktionen
gurka ett bättre namn. Diskutera läsbarheten med en handledare.

Uppgift 10. Tidmätning. Hur snabb är din dator?

a) Skriv in koden nedan i REPL och kör upprepade gånger genom att skriva main.
Tar det lika lång tid varje gång? Varför?

object timer:
def now: Long = System.currentTimeMillis
var saved: Long = now
def elapsedMillis: Long = now - saved
def elapsedSeconds: Double = elapsedMillis / 1000.0
def reset: Unit =

saved = now

1.3. LABORATION: KOJO 63

// HUVUDPROGRAM:
def main =

timer.reset
var i = 0L
while i < 1e8.toLong do

i += 1
val t = timer.elapsedSeconds
println("Räknade till " + i + " på " + t + " sekunder.")

b) Ändra i loopen i uppgift a) så att den räknar till 4.4 miljarder. Hur lång tid tar
det för din dator att räkna så långt?8

c) Om du kör på en Linux-maskin: Kör nedan Linux-kommando upprepade gånger
i ett terminalfönster. Med hur många MHz kör din dators klocka för tillfället? Hur
förhåller sig klockfrekvensen till antalet rundor i while-loopen i föregående uppgift?
(Det kan hända att din dator kan variera centralprocessorns klockfrekvens. Prova
både medan du kör tidmätningen i Kojo och då din dator ”vilar”. Vad är det för poäng
med att en processor kan variera sin klockfrekvens?)

> lscpu | grep MHz

d) Ändra i koden i uppgift a) så att while-loopen bara kör 5 gånger.
e) Lägg till koden nedan i ditt program och försök ta reda på ungefär hur långt
din dator hinner räkna till på en sekund för Long- respektive Int-variabler. Skriv
räknaSnabbt terminalen för att köra huvudprogrammet.

def timeLong(n: Long): Double =
timer.reset
var i = 0L
while i < n do
i += 1

end while
timer.elapsedSeconds

def timeInt(n: Int): Double =
timer.reset
var i = 0
while i < n do
i += 1

end while
timer.elapsedSeconds

def show(msg: String, sec: Double): Unit =
print(msg + ": ")
println(sec + " seconds")

def report(n: Long): Unit =
show("Long " + n, timeLong(n))
if n <= Int.MaxValue then
show("Int " + n, timeInt(n.toInt))

// HUVUDPROGRAM, mätningar:

8Det går att göra ungefär en heltalsaddition per klockcykel per kärna. Den första elektroniska datorn
Eniac hade en klockfrekvens motsvarande 5 kHz. Den dator på vilken denna övningsuppgift skapades
hade en i7-4790K turboklockad upp till 4.4 GHz.

https://sv.wikipedia.org/wiki/ENIAC

64 KAPITEL 1. INTRODUKTION

def räknaSnabbt =
report(Int.MaxValue)
for i <- 1 to 10 do

report(4.26e9.toLong)

f) Hur mycket snabbare går det att räkna med Int-variabler jämfört med Long-
variabler? Diskutera gärna svaret med en handledare.

Uppgift 11. Lek med färg i Kojo. Sök på internet efter dokumentationen för klassen
java.awt.Color och studera vilka heltalsparametrar den sista konstruktorn i listan
med konstruktorer tar för att skapa sRGB-färger. Om du skriver selectColor() i
REPL öppnas ett nytt fönster där man kan välja en färg. Om du sedan trycker på OK
eller ENTER-tangenten kommer färgen som du valde att bli ett värde i REPL. Testa
detta i REPL:

1 scala> val valdFärg = selectColor() // välj en färg
2 val valdFärg: java.awt.Color = java.awt.Color[r=0,g=255,b=226]
3

4 scala> val c = new java.awt.Color(124,10,78,100)
5 val c: java.awt.Color = java.awt.Color[r=124,g=10,b=78]
6

7 scala> c. // tryck på TAB
8 asInstanceOf getColorComponents getRGBComponents
9 brighter getColorSpace getRed
10 createContext getComponents getTransparency
11 darker getGreen isInstanceOf
12 getAlpha getRGB toString
13 getBlue getRGBColorComponents
14

15 scala> c.getAlpha
16 val res3: Int = 100

Skriv ett program som ritar många figurer med olika färger, till exempel cirklar som
nedan. Om du använder alfakanalen blir färgerna genomskinliga.

1.3. LABORATION: KOJO 65

Uppgift 12. Ladda ner ”Uppdrag med Kojo” från lth.se/programmera/uppdrag och gör
några uppgifter som du tycker verkar intressanta.

Uppgift 13. Om du vill jobba med att hjälpa skolbarn att lära sig programmera med
Kojo, kontakta http://www.vattenhallen.lth.se och anmäl ditt intresse att vara
handledare.

http://lth.se/programmera/uppdrag
http://www.vattenhallen.lth.se

66 KAPITEL 1. INTRODUKTION

Kapitel 2

Program och kontrollstrukturer

Begrepp som ingår i denna veckas studier:

� huvudprogram
� program-argument
� indata
� scala.io.StdIn.readLine
� kontrollstruktur
� iterera över element i samling
� for-uttryck
� yield
� map
� foreach
� samling
� sekvens
� indexering
� Array
� Vector
� intervall
� Range
� algoritm
� implementation
� pseudokod
� algoritmexempel: SWAP
� SUM
� MIN-MAX
� MIN-INDEX
� dod: versionshantering

67

68 KAPITEL 2. PROGRAM OCH KONTROLLSTRUKTURER

2.1 Teori

Ett program innehåller satser och uttryck. En kontrollstruktur, t.ex. while, styr i
vilken ordning satser och uttryck exekveras. Data kan placeras i en datastruktur,
t.ex. en Vector, så att man senare kan komma åt data igen.

2.1.1 Vad är en datastruktur?

• En datastruktur är en struktur för organisering av data som...

– kan innehålla många element,
– kan refereras till som en helhet, och
– ger möjlighet att komma åt enskilda element.

• En samling (eng. collection) är en datastruktur som kan innehålla många
element av samma typ.

• Exempel på olika samlingar där elementen är organiserade på olika vis:
Sekvens

Träd

Graf

Mer om sekvenser & träd i pfk. Mer om träd, grafer i Diskreta strukturer.

2.1.2 Några samlingar i scala.collection

• En samling (eng. collection) är en datastruktur som kan innehålla många
element av samma typ.

• En sekvens (eng. sequence) är en samling där alla element är ordnade.
• Exempel på färdiga samlingar i Scalas standardbibliotek där elementen är

organiserade internt på olika vis så att samlingen får olika egenskaper som
passar olika användningsområden:

– scala.collection.immutable.Vector, sekvens med snabb access över-
allt.

– scala.collection.immutable.List, sekvens med snabb access i början.
– scala.collection.immutable.Set, scala.collection.mutable.Set, mängd

med unika element; ej i sekvens men snabb innehållstest.
– scala.collection.immutable.Map, scala.collection.mutable.Map, mängd

med par av nyckel & tillhörande värde, snabb access via nyckel.
– scala.collection.mutable.ArrayBuffer, förändringsbar sekvens kan

ändra storlek.
– scala.Array, förändringsbar sekvens som inte kan ändra storlek. Alla ele-

ment är lagrade efter varandra i minnet: snabbast access av alla samlingar,
men har speciella begränsningar.

https://sv.wikipedia.org/wiki/Datastruktur

2.1. TEORI 69

2.1.3 Olika strukturer för att hantera data

• Tupel (eng. tuple)

– samla flera datavärden t.ex. (1, "hej", true) i element _1, _2, _3
– elementen kan vara av olika typ

• Enumeration (även kallad uppräkning) (eng. enumeration)

– Namnge uppräknade värden t.ex. enum Color { case Red, Black }
– Värdena har ordningsnummer och är alla av samma typ (här Color)

• Klass (eng. class)

– samlar data i attribut med (väl valda!) namn
– attributen kan vara av olika typ
– definierar även metoder som använder attributen

(kallas även operationer på data)

• Färdig samling

– speciella klasser som samlar data i element av samma typ
– exempel: scala.collection.immutable.Vector
– har ofta många färdiga bra-att-ha-metoder,

se snabbreferensen https://fileadmin.cs.lth.se/pgk/quickref.pdf

• Egenimplementerade samlingar → fördjupningskursen pfk

2.1.4 Vad är en vektor?

En vektor1 (eng. vector) är en sekvens som är snabb att indexera i. Åtkomst av
element i en sekvens som t.ex. heter xs sker i Scala med xs.apply(platsnummer):

1 scala> val heltal = Vector(42, 13, -1, 0, 1)
2 val heltal: scala.collection.immutable.Vector[Int] = Vector(42, 13, -1, 0, 1)
3

4 scala> heltal.apply(0) // platsnummer räknas från noll
5 val res0: Int = 42
6

7 scala> heltal(1) // man kan i Scala skippa .apply före (
8 val res1: Int = 13
9

10 scala> heltal(5) // ger körtidsfel då sjätte platsen inte finns
11 java.lang.IndexOutOfBoundsException: 5
12 at scala.collection.immutable.Vector.checkRangeConvert(Vector.scala:132)

Utelämnar du .apply så skapar kompilatorn automatiskt ett anrop av apply.

2.1.5 En konceptuell bild av en vektor

1Vektor kallas ibland på svenska även fält, men det skapar stor förvirring eftersom det engelska
ordet field ofta används för attribut (förklaras senare).

https://fileadmin.cs.lth.se/pgk/quickref.pdf
https://sv.wikipedia.org/wiki/F%C3%A4lt_%28datastruktur%29

70 KAPITEL 2. PROGRAM OCH KONTROLLSTRUKTURER

scala> val heltal = Vector(42, 13, -1, 0, 1)

scala> heltal(0)
val res0: Int = 42

heltal plats

0 42

1 13

2 -1

3 0

4 1

2.1.6 En samling strängar

• En vektor kan lagra många värden av samma typ.
• Elementen kan vara till exempel heltal eller strängar.
• Eller faktiskt vad som helst. (En s.k. generisk samling.)

1 scala> val grönsaker = Vector("gurka","tomat","paprika","selleri")
2 grönsaker: scala.collection.immutable.Vector[String] =
3 Vector(gurka, tomat, paprika, selleri)
4

5 scala> val g = grönsaker(1)
6 val g: String = tomat
7

8 scala> val xs = Vector(42, "gurka", true, 42.0)
9 val xs: Vector[Matchable] = Vector(42, gurka, true, 42.0)

Notera typen Matchable som betyder ”nästan vilken typ som helst”
(Mer om Matchable senare.)

2.1.7 Vad är en kontrollstruktur?

• En kontrollstruktur påverkar i vilken ordning (sekvens) satser exekveras och
uttryck evalueras.

Exempel på inbyggda kontrollstrukturer:
if–then–else–uttryck

for–yield–uttryck
for–do–sats
while–do–sats

• I Scala kan man definiera egna kontrollstrukturer.

Exempel: upprepa som du använt i Kojo
upprepa(4){fram; höger}

2.1. TEORI 71

2.1.8 Loopa genom elementen i en vektor

En for-do-sats som skriver ut alla element i en vektor:

1 scala> val grönsaker = Vector("gurka","tomat","paprika","selleri")
2

3 scala> for g <- grönsaker do println(g)
4 gurka
5 tomat
6 paprika
7 selleri

for ... do ... gör så att följande händer:

• Plocka ut varje element ur samlingen.
• Namnet före pilen (här g) refererar till ett nytt värde för varje runda i loopen.
• Detta namn motsvarar en lokal val-variabel.

2.1.9 Bygg ny samling från befintlig med for-yield-uttryck

Ett for-yield-uttryck som skapar en ny samling.

for g <- grönsaker yield s"god $g"

1 scala> val grönsaker = Vector("gurka","tomat","paprika","selleri")
2

3 scala> val åsikter = for g <- grönsaker yield s"god $g"
4 val åsikter: Vector[String] =
5 Vector(god gurka, god tomat, god paprika, god selleri)

2.1.10 Samlingen Range håller reda på intervall

• Med en Range(start, slut) kan du skapa ett intervall:
från och med start till (men inte med) slut

scala> Range(0, 42)
val res0: Range =

Range(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41)

• Men alla värden däremellan skapas inte förrän de behövs:

72 KAPITEL 2. PROGRAM OCH KONTROLLSTRUKTURER

1 scala> val jättestortIntervall = Range(0, Int.MaxValue)
2 val jättestortIntervall: Range.Exclusive = Range 0 until 2147483647
3

4 scala> jättestortIntervall.end
5 val res1: Int = 2147483647
6

7 scala> jättestortIntervall.toVector
8 java.lang.OutOfMemoryError: Java heap space

2.1.11 Loopa med Range

Range används i for-loopar för att hålla reda på antalet rundor.

scala> for i <- Range(0, 6) do print(s" gurka $i")
gurka 0 gurka 1 gurka 2 gurka 3 gurka 4 gurka 5

Du kan skapa en Range med until efter ett heltal:

scala> 1 until 7
val res1: Range =

Range(1, 2, 3, 4, 5, 6)

scala> for i <- 1 until 7 do print(s" tomat $i")
tomat 1 tomat 2 tomat 3 tomat 4 tomat 5 tomat 6

Med metoden indices på kan du få en Range med alla index:

scala> val xs = Vector("gurka1","gurka2","tomat1")
val xs: Vector[String] = Vector(gurka1, gurka2, tomat1)

scala> xs.indices
val res0: Range = Range 0 until 3

2.1.12 Loopa med Range skapad med to

Med to efter ett heltal får du en Range till och med sista:

scala> 1 to 6
res2: Range.Inclusive =
Range(1, 2, 3, 4, 5, 6)

scala> for i <- 1 to 6 do print(" gurka " + i)
gurka 1 gurka 2 gurka 3 gurka 4 gurka 5 gurka 6

2.1.13 Loopa genom en samling med en while-sats

2.1. TEORI 73

scala> val xs = Vector("Hej","på","dej","!!!")
val xs: Vector[String] =

Vector(Hej, på, dej, !!!)

scala> xs.size
val res0: Int = 4

scala> var i = 0
val i: Int = 0

scala> while i < xs.size do { println(xs(i)); i = i + 1 }
Hej
på
dej
!!!

2.1.14 Vad är en Array?

• En Array liknar en Vector men har en särställning i JVM:

– Lagras som en sekvens i minnet på efterföljande adresser.
– Fördel: snabbaste samlingen för element-access i JVM.
– Men det finns en hel del nackdelar som vi ska se senare.

scala> val heltal = Array(42, 13, -1, 0 , 1)

heltal plats

0 42

1 13

2 -1

3 0

4 1

2.1.15 Några likheter & skillnader mellan Vector och Array

scala> val xs = Vector(1,2,3) scala> val xs = Array(1,2,3)

Några likheter mellan Vector och Array

• Båda är samlingar som kan innehålla många element.
• Med båda kan man snabbt accessa vilket element som helst: xs(2)

Några viktiga skillnader:

https://en.wikipedia.org/wiki/Array_data_structure

74 KAPITEL 2. PROGRAM OCH KONTROLLSTRUKTURER

Vector

• Är oföränderlig: du kan lita på
att elementreferenserna aldrig
någonsin kommer att ändras.

• Är snabb på att skapa en
delvis förändrad kopia, t.ex.
tillägg/borttagning/uppdate-
ring mitt i sekvensen.

Array

• Är föränderlig: xs(2) = 42
• Är snabb om man bara vill läsa

eller skriva på befintliga platser.
• Kan ej ändra storlek: tillägg el-

ler borttagning mitt i kräver
långsam kopiering av resten.

2.1.16 Ett minimalt fristående program i Scala

Spara nedan Scala-kod i filen hej.scala:

@main def run = println("Hej Scala!")

Kompilera och kör i terminalen:

1 > scala run hej.scala
2 Compiling project (Scala 3.7.2, JVM (21))
3 Compiled project (Scala 3.7.2, JVM (21))
4 Hej Scala!

Innan körning kompileras dina kodfiler automatiskt vid behov. Du kan se maskin-
koden i en underkatalog i till katalogen .scala-build:

1 > ls .scala-build/*/classes/main
2 'hej$package.class' 'hej$package$.class' 'hej$package.tasty' run.class run.tasty

2.1.17 Typsäkra argument till ett program med @main

Skriv och spara nedan kod i filen helloargs2.scala

@main def hej(heltal: Int, resten: String*): Unit = // notera * efter String
for i <- 0 until heltal do println(resten(i))

Kompilera och kör med programargument efter --

1 > scala run helloargs2.scala -- 2 morot gurka tomat
2 morot
3 gurka
4 > scala run helloargs2.scala -- aj morot gurka tomat
5 Illegal command line: java.lang.NumberFormatException: For input string: "aj"

Med @main genereras automatiskt en primitiv main som kollar att argumenten har
rätt typ.

2.1. TEORI 75

2.1.18 Vad är en algoritm?

En algoritm är en sekvens av instruktioner som beskriver hur man löser ett problem.

Exempel:

• baka en kaka
• räkna ut din pensionsprognos
• köra bil
• kolla om highscore i ett spel

2.1.19 Algoritmexempel: N-FAKULTET

Indata :heltalet n
Utdata :produkten av de första n positiva heltalen

1

2 prod ← 1
3 i ← 2
4 while i ≤ n do
5 prod ← prod∗ i
6 i ← i+1
7 end
8 prod

• Vad händer om n är noll?
• Vad händer om n är ett?
• Vad händer om n är två?
• Vad händer om n är tre?

2.1.20 Algoritmexempel: MIN

Indata :Array args med strängar som alla innehåller heltal
Utdata :minsta heltalet

1

2 min ← det största heltalet som kan uppkomma
3 n ← antalet heltal
4 i ← 0
5 while i < n do
6 x ← args(i).toInt
7 if (x < min) then
8 min ← x
9 end

10 i ← i+1
11 end
12 min

https://sv.wikipedia.org/wiki/Algoritm

76 KAPITEL 2. PROGRAM OCH KONTROLLSTRUKTURER

Testa med indata: args = Array("2", "42", "1", "2")

En program delas ofta upp i många olika funktioner. En funktion kan ha parametrar
och ge ett returvärde. Om du delar upp ditt program i många enkla funktioner med bra
namn, så blir ditt program lättare att läsa och begripa. Om en vältestad och buggfri
funktion användas på flera ställen, så kan risken för buggar minskas.

2.1.21 Mall för funktionsdefinitioner

def funktionsnamn(parameterdeklarationer): returtyp = uttryck

Exempel:

def öka(i: Int): Int = i + 1

Returtypen kan härledas av kompilatorn:

def öka(i: Int) = i + 1

Men för att få hjälp av kompilatorn är det bra att ange returtyp!
Om flera parametrar använd kommatecken. Om flera satser använd indentering

(och eventuell valfria klammerparenteser).

def isHighscore(points: Int, high: Int): Boolean = {
val highscore: Boolean = points > high
if highscore then println(":)") else println(":(")
highscore

}

Ovan funktion har sidoeffekten att skriva ut en smiley.

2.1.22 Bättre många små abstraktioner som gör en sak var

def isHighscore(points: Int, high: Int): Boolean = points > high

def printSmiley(isHappy: Boolean): Unit =

if isHappy then println(":)") else print(":(")

printSmiley(isHighscore(113,99))

• Denna bättre isHighscore är nu en äkta funktion som alltid ger samma svar
för samma inparametrar och saknar sidoeffekter; dessa funktioner är ofta
lättare att förstå.

• Funktioner som ger ett booleskt värde kallas för predikat.

2.1.23 Vad är ett block?

• Ett block kapslar in flera satser/uttryck och ser ”utifrån” ut som en enda
sats/uttryck.

• Ett block skapas med hjälp av klammerparenteser (”krullparenteser”)

2.1. TEORI 77

{ uttryck1; uttryck2; ... uttryckN }

• I Scala (till skillnad från många andra språk) har ett block ett värde och är
alltså ett uttryck.

• Värdet ges av sista uttrycket i blocket.

scala> val x = { println(1 + 1); println(2 + 2); 3 + 3 }
2
4
x: Int = 6

2.1.24 Namn i block blir lokala

Synlighetsregler:

1. Identifierare deklarerade inuti ett block blir lokala.
2. Lokala namn överskuggar namn i yttre block om samma.
3. Namn syns i nästlade underblock.

1 scala> def a = { val lokaltNamn = 42; println(lokaltNamn) }
2 scala> a
3 42
4

5 scala> println(lokaltNamn)
6 1 |println(lokaltNamn)
7 | ^^^^^^^^^^
8 | Not found: lokaltNamn
9

10 scala> def b = { val x = 42; { val x = 76; println(x) }; println(x) }
11 scala> def c = { val x = 42; { val b = x + 1; println(b) } }
12 scala> b // vad händer?
13 scala> c // vad händer?

2.1.25 Parameter och argument

Skilj på parameter och argument!

• En parameter är det deklarerade namnet som används lokalt i en funktion för
att referera till...

• argumentet som är värdet som skickas med vid anrop och binds till det lokala
parameternamnet.

scala> val ettArgument = 42

scala> def öka(minParameter: Int) = minParameter + 1

scala> öka(ettArgument)

78 KAPITEL 2. PROGRAM OCH KONTROLLSTRUKTURER

Speciell syntax: anrop med s.k. namngivet argument

scala> öka(minParameter = ettArgument)

Namngivna argument kan ges i valfri ordning; då riskerar man inte fel ordning.

2.1.26 Procedurer

• En procedur är en funktion som gör något intressant, men som inte lämnar
något intressant returvärde.

• Exempel på befintlig procedur: println("hej")
• Du deklarerar egna procedurer genom att ange Unit som returvärdestyp.

Då ges värdet () som betyder ”inget”.

scala> def hej(x: String): Unit = println(s"Hej på dej $x!")

scala> hej("Herr Gurka")
Hej på dej Herr Gurka!

scala> val x = hej("Fru Tomat")
Hej på dej Fru Tomat!

scala> :type x
Unit

scala> println(x) // vad händer?

• Det som görs kallas (sido)effekt. Ovan är utskriften själva effekten.
• Funktioner kan också ha sidoeffekter. De kallas då oäkta funktioner.

2.1.27 ”Ingenting” är faktiskt någonting i Scala

• I många språk (Java, C, C++, ...) är funktioner som saknar värden speciella.
Java m.fl. har speciell syntax för procedurer med nyckelordet void, men inte
Scala.

• I Scala är procedurer inte specialfall; de är vanliga funktioner som returnerar
ett värde som representerar ingenting, nämligen () som är av typen Unit.

• På så sätt blir procedurer inget undantag utan följer vanlig syntax och semantik
precis som för alla andra funktioner.

• Detta är typiskt för Scala: generalisera koncepten och vi slipper besvärliga
undantag!
(Men vi måste förstå generaliseringen...)
https://en.wikipedia.org/wiki/Void_type https://en.wikipedia.org/wiki/
Unit_type

https://en.wikipedia.org/wiki/Void_type
https://en.wikipedia.org/wiki/Unit_type
https://en.wikipedia.org/wiki/Unit_type

2.1. TEORI 79

2.1.28 Problemlösning: nedbrytning i abstraktioner som sen kombi-
neras

• En av de allra viktigaste principerna inom programmering är funktionell ned-
brytning där underprogram i form av funktioner och procedurer skapas för
att bli byggstenar som kombineras till mer avancerade funktioner och procedu-
rer.

• Genom de namn som definieras skapas återanvändbara abstraktioner som
kapslar in det funktionen gör.

• Problemet blir med bra byggblock lättare att lösa.
• Abstraktioner som beräknar eller gör en enda, väldefinierad sak är enklare

att använda, jämfört med de som gör många, helt olika saker.
• Abstraktioner med välgenomtänkta namn är enklare att använda, jämfört

med kryptiska eller missvisande namn.

2.1.29 Exempel på funktionell nedbrytning

Kojo-labben gav exempel på funktionell nedbrytning där ett antal abstraktioner
skapas och återanvänds.

// skapa abstraktioner som bygger på varandra

def kvadrat = upprepa(4){fram; höger}

def stapel =
upprepa(10){kvadrat; hoppa}
hoppa(-10*25)

def rutnät = upprepa(10){stapel; höger; fram; vänster}

@main def huvudprogram =
sudda; sakta(200)
rutnät

2.1.30 Varför abstraktion?

• Stora program behöver delas upp annars blir det mycket svårt att förstå och
bygga vidare på programmet.

• Vi behöver kunna välja namn på saker i koden lokalt, utan att det krockar med
samma namn i andra delar av koden.

• Abstraktioner hjälper till att hantera och kapsla in komplexa delar så att de blir
enklare att använda om och om igen.

• Exempel på abstraktionsmekanismer i Scala:

– Klasser är ”byggblock” med kod som används för att skapa objekt, innehål-
lande delar som hör ihop.
Nyckelord: class och object

https://sv.wikipedia.org/wiki/Klass_%28programmering%29
https://sv.wikipedia.org/wiki/Objektorienterad_programmering#Objekt

80 KAPITEL 2. PROGRAM OCH KONTROLLSTRUKTURER

– Metoder är funktioner som finns i klasser/objekt och används för att lösa
specifika uppgifter. Nyckelord: def

– Paket används för att skapa namnrymder och organisera maskinkod i en
hierarkisk katalogstruktur.
Nyckelord: package

2.1.31 Från källkod till maskinkod med JVM

hello.scala Källkodsfil

scalac
Kompilatorn skapar abstrakt maskinkod
(s.k. bytekod)

hello.class .class-fil med bytekod

JVM

Java Virtual Machine
Översätter bytekod till konkret
maskinkod som passar din specifika CPU
under körning (s.k. interpretering)

2.1.32 Paket

package greeting

@main def run = println("Hello world!")

• Paket (eng. package) skapar namnrymder och i en hierarkisk struktur.
• Paket kan vara nästlade: ofta finns paket i paket i paket.
• Paket är speciellt bra om man har mycket kod i många kodfiler.
• Kompilatorn placerar maskinkoden i kataloger enligt paketstrukturen.2

Är du nyfiken, kolla underkataloger i .scala-build:

ls -R .scala-build

2.1.33 Import

Med hjälp av punktnotation kommer man åt innehåll i ett paket.

2Katalogstrukturen för källkoden måste i många andra språk, t.ex. Java, exakt motsvara paketstruk-
turen, men detta är inte nödvändigt i Scala – alla Scala-kodfiler kan ligga i samma katalog på toppnivå
eller i underkatalog med valfritt namn, oavsett hur din kod använder package.

https://en.wikipedia.org/wiki/Method_%28computer_programming%29
https://en.wikipedia.org/wiki/Java_package

2.1. TEORI 81

val age = scala.io.StdIn.readLine("Ange din ålder:")

En import-sats...

import scala.io.StdIn.readLine

...gör så att namnet syns direkt, och man slipper skriva hela vägen till namnet:

val age = readLine("Ange din ålder:")

Det importerade namnet blir direkt synligt i den aktuella namnrymden (eng. in
scope).

2.1.34 Jar-filer

• jar-filer liknar zip-filer och används för att sammanföra många kompilerade
kodfiler i en komprimerad fil för enkel distribution och körning.

• Du använder jar-filer med optionen --jar

scala run . --jar introprog.jar

• Du kan skapa egna jar-filer med scala package där optionen --library gör
så att endast den komilerade koden inkluderas. Utan optionen --library så
görs jar-filen exekverbar. Med optionen --assembly tas allt med i jar-filen
som behövs för att köra jar-filen helt fristående med ett dubbelklick eller
java -jar myapp.jar

scala package . --library --output myapp.jar
scala run --jar myapp.jar
scala package . --assembly --output my-fat-jar-app.jar
java -jar my-fat-jar-app.jar

Optionen --assembly kräver power-läge enl. instruktioner i varning.
Läs mer om jar-filer i Appendix F.

82 KAPITEL 2. PROGRAM OCH KONTROLLSTRUKTURER

2.2 Övning programs

Mål

� Kunna skapa, kompilera och köra en enkel applikation i terminalen.
� Kunna skapa samlingarna Range, Array och Vector med heltal och strängar.
� Kunna indexera i en indexerbar samling, t.ex. Array och Vector.
� Kunna anropa operationerna size, mkString, sum, min, max på samlingar som

innehåller heltal.
� Känna till skillnader och likheter mellan samlingarna Range, Array och Vector.
� Förstå skillnaden mellan en while-sats och ett for-uttryck.
� Kunna skapa samlingar med heltalsvärden som resultat av enkla for-uttryck.
� Förstå skillnaden mellan en algoritm i pseudo-kod och dess implementation.
� Kunna implementera algoritmerna SUM, MIN, MAX med en indexerbar samling

och en while-sats.

Förberedelser

� Studera begreppen i kapitel 2
� Bekanta dig med grundläggande terminalkommandon, se appendix ??.
� Bekanta dig med VS Code, se appendix ??.
� Hämta given kod via kursen github-plats.

2.2.1 Grunduppgifter

Uppgift 1. Para ihop begrepp med beskrivning.

Koppla varje begrepp med den (förenklade) beskrivning som passar bäst:

kompilera 1 A används i for-uttryck för att skapa ny samling
skript 2 B en oföränderlig, indexerbar sekvenssamling
objekt 3 C maskinkod skapas ur en eller flera källkodsfiler
@main 4 D en förändringsbar, indexerbar sekvenssamling
programargument 5 E där exekveringen av kompilerat program startar
datastruktur 6 F datastruktur med element i en viss ordning
samling 7 G ensam kodfil, huvudprogram behövs ej
sekvenssamling 8 H stegvis beskrivning av en lösning på ett problem
Array 9 I en specifik realisering av en algoritm
Vector 10 J många olika element i en helhet; elementvis åtkomst
Range 11 K datastruktur med element av samma typ
yield 12 L kan överföras via parametern args till main
algoritm 13 M samlar variabler och funktioner
implementation 14 N en samling som representerar ett intervall av heltal

Uppgift 2. Använda terminalen. Läs om terminalen i appendix ??.

a) Vilka tre kommando ska du köra för att 1) skapa en katalog med namnet hello
och 2) navigera till katalogen och 3) visa namnet på ut aktuell katalog? Öppna ett
teminalfönster och kör dessa tre kommando.

https://github.com/lunduniversity/introprog/tree/master/workspace/

2.2. ÖVNING PROGRAMS 83

b) Vilka två kommando ska du köra för att 1) navigera tillbaka ”upp” ett steg i
filträdet och 2) lista alla filer och kataloger på denna plats? Kör dessa två kommando i
terminalen.

Uppgift 3. Skapa och köra ett Scala-skript.

a) Skapa en fil med namn sum.sc i katalogen hello som du skapade i föregående
uppgift med hjälp av en editor, t.ex. VS code.

> cd hello
> code sum.sc

Filen ska innehålla följande rader:

val n = 1000
val summa = (1 to n).sum
println(s"Summan av de $n första talen är: $summa")

Spara filen och kör kommandot scala run sum.sc i terminalen:

> scala run sum.sc

Vad blir summan av de 1000 första talen?
b) Ändra i filen sum.sc så att högerparentesen på sista raden saknas. Spara filen
(Ctrl+S) och kör skriptfilen igen i terminalen (pil-upp). Hur lyder felmeddelandet? Är
det ett körtidsfel eller ett kompileringsfel?
c) Ändra i sum.sc så att det i stället för 1000 står args(0).toInt efter val n = och
spara och kör om ditt program med argumentet 5001 så här:

1 > scala run sum.sc -- 5001

Vad blir summan av de 5001 första talen?
d) Vad blir det för felmeddelande om du glömmer att ge skriptet ett argument? Är
det ett körtidsfel eller ett kompileringsfel?

Uppgift 4. Scala-applikation med @main. Skapa med hjälp av en editor en fil med
namn hello.scala.

> code hello.scala

Skriv nedan kod i filen:

@main def run(): Unit = {
val message = "Hello world!"
println(message)

}

a) Kompilera med scala compile hello.scala. Vad heter filerna som kompilatorn
skapar? Leta efter filer som slutar med .class i mapparna som ligger under mappen
som börjar med project...

> scala compile hello.scala
> ls .scala-build/project*/classes/main/

84 KAPITEL 2. PROGRAM OCH KONTROLLSTRUKTURER

b) Hur ska du ändra i din kod så att kompilatorn ger följande felmeddelande:
Syntax Error: ’}’ expected, but eof found?

c) I Scala är klammerparenteser valfria (eng. optional braces) och koden struktureras
istället i sammanhängande block med hjälp av indenteringar3. Det går bra att byta
mellan stilarna i samma fil om du tycker detta gör koden mer lättläst.

Ovan kod kan skrivas:

@main def run(): Unit =
val message = "Hello world!"
println(message)

Vad händer om du tar bort indenteringen på den sista raden?

d) Vad betyder @main-annoteringen?

Uppgift 5. Skapa och använda samlingar. I Scalas standardbibliotek finns många
olika samlingar som går att använda på ett enhetligt sätt (med vissa undantag för
Array). Para ihop uttrycken som skapar eller använder samlingar med förklaringarna,
så att alla kopplingar blir korrekta (minst en förklaring passar med mer än ett uttryck,
men det finns bara en lösning där alla kopplingar blir parvis korrekta):

val xs = Vector(2) 1 A ny samling med en nolla tillagd på slutet
val ys = Array.fill(9)(0) 2 B ny samling, elementen omgjorda till heltal
Vector.fill(9)(' ') 3 C ny referens till förändringsbar sekvens
xs(0) 4 D ny samling, elementen omgjorda till strängar
xs.apply(0) 5 E förkortad skrivning av apply(0)

xs :+ 0 6 F indexering, ger första elementet
0 +: xs 7 G ny sträng med komma mellan elementen
ys.mkString 8 H ny samling med en nolla tillagd i början
ys.mkString(",") 9 I ny referens till sekvens av längd 1
xs.map(_.toString) 10 J ny oföränderlig sekvens med blanktecken
xs.map(_.toInt) 11 K ny sträng med alla element intill varandra

Träna med dina egna varianter i REPL tills du lärt dig använda uttryck som ovan
utantill. Då har du lättare att komma igång med kommande laborationer.

Uppgift 6. Jämför Array och Vector. Para ihop varje samlingstyp med den beskriv-
ning som passar bäst:

a) Vad gäller angående föränderlighet (eng. mutability)?

Vector 1 A förändringsbar
Array 2 B oföränderlig

b) Vad gäller vid tillägg av element i början (eng. prepend) och slutet (eng. append),
eller förändring av delsekvens på godtycklig plats (eng. to patch, även på svenska: att
patcha)?

3Valfria klammerparenteser och signifikant indentering kom med nya Scala 3. I gamla Scala 2
var klammerparenteser nödvändiga om flera satser ska kombineras och indenteringen påverkade inte
betydelsen.

2.2. ÖVNING PROGRAMS 85

Vector 1 A långsam vid ändring av storlek (kopiering av rubbet krävs)
Array 2 B varianter med fler/andra element skapas snabbt ur befintlig

c) Vad gäller vid likhetstest (eng. equality test).

Vector 1 A xs == ys är true om alla element lika
Array 2 B olikt andra Scala-samlingar kollar == ej innehållslikhet

Uppgift 7. Räkna ut summa, min och max i args. Skriv ett program som skriver ut
summa, min och max för en sekvens av heltal i args. Du kan förutsätta att programmet
bara körs med heltal som programparametrar. Tips: Med uttrycken args.sum och
args.min och args.max ges summan, minsta resp. största värde.

Exempel på körning i terminalen:

1 > code sum-min-max.scala
2 > scala run sum-min-max.scala -- 1 2 42 3 4
3 52 1 42

Vad blir det för felmeddelande om du ger argumentet hej när ett heltal förväntas?

Uppgift 8. Algoritm: SWAP. Det är vanligt när man arbetar med förändringsbara
datastrukturer att man kan behöva byta plats mellan element och då behövs algorit-
men SWAP, som här illustreras genom platsbyte mellan värden:
Problem: Byta plats på två variablers värden.
Lösningsidé: Använd temporär variabel för mellanlagring.

a) Skriv med pseudo-kod (steg för steg på vanlig svenska) algoritmen SWAP nedan.
Indata: två heltalsvariabler x och y
???
Utdata: variablerna x och y vars värden har bytt plats.

b) Implementerar algoritmen SWAP. Ersätt ??? nedan med kod som byter plats på
värdena i variablerna x och y:

1 scala> var x = 42; var y = 43
2 scala> ???
3 scala> println(s"x är $x, y är $y")
4 x är 43, y är 42

Uppgift 9. Indexering och tilldelning i Array med SWAP. Skriv ett program som byter
plats på första och sista elementet i parametern args. Bytet ska bara ske om det är
minst två element i args. Oavsett om förändring skedde eller ej ska args sedan skrivas
ut med blanktecken mellan argumenten. Tips: Du kan komma åt sista elementet med
args(args.length - 1)

Exempel på körning i terminalen:

1 > code swap-args.scala
2 > scala run swap-args.scala -- hej alla barn
3 barn alla hej

Uppgift 10. for-uttryck och map-uttryck. Variabeln xs nedan refererar till samlingen
Vector(1, 2, 3). Para ihop uttrycken till vänster med rätt värde till höger.

86 KAPITEL 2. PROGRAM OCH KONTROLLSTRUKTURER

for x <- xs yield x * 2 1 A Vector(2, 4, 6)

for i <- xs.indices yield i 2 B Vector(1, 2)

xs.map(x => x + 1) 3 C Vector(1, 2, 3)

for i <- 0 to 1 yield xs(i) 4 D Vector(2, 3, 4)

(1 to 3).map(i => i) 5 E Vector(0, 1, 2)

(1 until 3).map(i => xs(i)) 6 F Vector(2, 3)

Träna med dina egna varianter i REPL tills du lärt dig använda uttryck som ovan
utantill. Då har du lättare att komma igång med kommande laborationer.

Uppgift 11. Algoritm: SUMBUG . Nedan återfinns pseudo-koden för SUMBUG.

Indata :heltalet n
Utdata :summan av de positiva heltalen 1 till och med n

1 sum ← 0
2 i ← 1
3 while i ≤ n do
4 sum ← sum+1
5 end
6 sum

a) Kör algoritmen steg för steg med penna och papper, där du skriver upp hur
värdena för respektive variabel ändras. Det finns två buggar i algoritmen. Vilka?
Rätta buggarna och testa igen genom att ”köra” algoritmen med penna på papper
och kontrollera så att algoritmen fungerar för n = 0, n = 1, och n = 5. Vad händer om
n =−1?
b) Skapa med hjälp av en editor filen sumn.scala. Implementera algoritmen SUM
enligt den rättade pseudokoden och placera implementationen i en @main-annoterad
metod med namnet sumn. Du kan skapa indata n till algoritmen med denna deklaration
i början av din metod:
val n = args(0).toInt
eller direkt ha n som parameter till metoden.
Vad ger applikationen för utskrift om du kör den med argumentet 8888?

scala sumn.scala -- 8888

Kontrollera att din implementation räknar rätt genom att jämföra svaret med detta
uttrycks värde, evaluerat i Scala REPL:

scala> (1 to 8888).sum

2.2. ÖVNING PROGRAMS 87

2.2.2 Extrauppgifter; träna mer

Uppgift 12. Algoritm: MAXBUG . Nedan återfinns pseudo-koden för MAXBUG.

Indata :Array args med strängar som alla innehåller heltal
Utdata :största heltalet

1 max ← det minsta heltalet som kan uppkomma
2 n ← antalet heltal
3 i ← 0
4 while i < n do
5 x ← args(i).toInt
6 if (x > max) then
7 max ← x
8 end
9 end

10 max

a) Kör med penna och papper. Det finns en bugg i algoritmen ovan. Vilken? Rätta
buggen.

b) Implementera algoritmen MAX (utan bugg) som en Scala-applikation. Tips:
• Det minsta Int-värdet som någonsin kan uppkomma: Int.MinValue
• Antalet element i args ges av: args.length eller args.size

1 > code maxn.scala
2 > scala maxn.scala -- 7 42 1 -5 9
3 42

c) Skriv om algoritmen så att variabeln max initialiseras med det första talet i
sekvensen.

d) Implementera den nya algoritmvarianten från uppgift c och prova programmet.
Se till att programmet fungerar även om args är tom.

Uppgift 13. Algoritm MIN-INDEX. Implementera algoritmen MIN-INDEX som söker
index för minsta heltalet i en sekvens. Pseudokod för algoritmen MIN-INDEX:

Indata :Sekvens xs med n st heltal.
Utdata : Index för det minsta talet eller −1 om xs är tom.

1 minPos ← 0
2 i ← 1
3 while i < n do
4 if xs(i) < xs(minPos) then
5 minPos ← i
6 end
7 i ← i+1
8 end
9 if n > 0 then

10 minPos
11 else
12 −1
13 end

88 KAPITEL 2. PROGRAM OCH KONTROLLSTRUKTURER

a) Prova algoritmen med penna och papper på sekvensen (1,2,−1,4) och rita minnes-
situationen efter varje runda i loopen. Vad blir skillnaden i exekveringsförloppet om
loopvariablen i initialiserats till 0 i stället för 1?
b) Implementera algoritmen MIN-INDEX i ett Scala-program med nedan funktion:

def indexOfMin(xs: Array[Int]): Int = ???

• Låt programmet ha en main-funktion som ur args skapar en ny array med heltal
som skickas till indexOfMin och sedan gör en utskrift av resultatet.

• Testa för olika fall:

– tom sekvenser

– sekvens med endast ett tal

– lång sekvens med det minsta talet först, någonstans mitt i, samt sist.

Uppgift 14. Datastrukturen Range. Evaluera nedan uttryck i Scala REPL. Vad har
respektive uttryck för värde och typ?

a) Range(1, 10)

b) Range(1, 10).inclusive

c) Range(0, 50, 5)

d) Range(0, 50, 5).size

e) Range(0, 50, 5).inclusive

f) Range(0, 50, 5).inclusive.size

g) 0.until(10)

h) 0 until (10)

i) 0 until 10

j) 0.to(10)

k) 0 to 10

l) 0.until(50).by(5)

m) 0 to 50 by 5

n) (0 to 50 by 5).size

o) (1 to 1000).sum

2.2. ÖVNING PROGRAMS 89

2.2.3 Fördjupningsuppgifter; utmaningar

Uppgift 15. Sten-Sax-Påse-spel. Bygg vidare på koden nedan och gör ett Sten-Sax-
Påse-spel4. Koden fungerar som den ska, förutom funktionen winner som fuskar till
datorns fördel. Lägg även till en main-funktion så att programmet kan kompileras och
köras i terminalen. Spelet blir roligare om du räknar antalet vinster och förluster. Du
kan också göra så att datorn inte väljer med jämn fördelning.

object Game:
val choices = Vector("Sten", "Påse", "Sax")

def printChoices(): Unit =
for i <- 1 to choices.size do println(s"$i: ${choices(i - 1)}")

def userChoice(): Int =
printChoices()
scala.io.StdIn.readLine("Vad väljer du? [1|2|3]<ENTER>:").toInt - 1

def computerChoice(): Int = (math.random() * 3).toInt

/** Ska returnera "Du", "Datorn", eller "Ingen" */
def winner(user: Int, computer: Int): String = "Datorn"

def play(): Unit =
val u = userChoice()
val c = computerChoice()
println(s"Du valde ${choices(u)}")
println(s"Datorn valde ${choices(c)}")
val w = winner(u, c)
println(s"$w är vinnare!")
if w == "Ingen" then play()

Uppgift 16.? Jämför exekveringstiden för storleksförändring mellan Array och Vector.
Klistra in nedan kod i REPL:

def time(block: => Unit): Double =
val t = System.nanoTime
block
(System.nanoTime-t)/1e6 // ger millisekunder

a) Skriv kod som gör detta i tur och ordning:
1. deklarerar en val as som är en Array fylld med en miljon heltalsnollor,
2. deklarerar en val vs som är en Vector fylld med en miljon heltalsnollor,
3. kör time(as :+ 0) 10 gånger och räknar ut medelvärdet av tidmätningarna,
4. kör time(vs :+ 0) 10 gånger och räknar ut medelvärdet av tidmätningarna.

b) Vilken av Array och Vector är snabbast vid tillägg av element? Varför är det så?

4https://sv.wikipedia.org/wiki/Sten,_sax,_påse

https://sv.wikipedia.org/wiki/Sten,_sax,_p�se

90 KAPITEL 2. PROGRAM OCH KONTROLLSTRUKTURER

Uppgift 17. ?Minnesåtgång för Range. Datastrukturen Range håller reda på start-
och slutvärde, samt stegstorleken för en uppräkning, men alla talen i uppräkningen
genereras inte förrän på begäran. En Int tar 4 bytes i minnet. Ungefär hur mycket
plats i minnet tar de objekt som variablerna (a) intervall respektive (b) sekvens
refererar till nedan?

1 scala> val intervall = (1 to Int.MaxValue by 2)
2 scala> val sekvens = intervall.toArray

Tips: Använd uttrycket BigInt(Int.MaxValue) * 2 i dina beräkningar.

Uppgift 18. ?Undersök den genererade byte-koden. Kompilatorn genererar byte-kod,
uttalas ”bajtkod” (eng. byte code), som den virtuella maskinen tolkar och översätter
till maskinkod medan programmet kör.

Skapa en fil plusxy.scala med:

@main def plusxy(x: Int, y: Int) = x + y

Kompilera programmet med

scala compile plusxy.scala

Navigera med cd .scala-build/ och vidare ner med ls och cd så djupt du kan komma
i katalogstrukturen tills du befinner dig i katalogen main. Notera vilka filer kompila-
torn har skapat med ls. Med kommandot javap -v 'plusxy$package$.class' kan
du undersöka byte-koden direkt i terminalen.

1 javap -v 'plusxy$package$.class'

a) Leta upp raden public int plusxy(int, int); och studera koden efter Code:
och försök gissa vilken instruktion som utför själva additionen.
b) Vad händer om vi lägger till en parameter?
Skapa en ny fil plusxyz.scala:

@main def plusxyz(x: Int, y: Int, z: Int) = x + y + z

Kompilera och studera därefter byte-koden med javap -v 'plusxyz$package$.class'.
Vad skiljer byte-koden mellan plusxy och plusxyz?
c) Läs om byte-kod här: en.wikipedia.org/wiki/Java_bytecode. Vad betyder den inle-
dande bokstaven i additionsinstruktionen?

https://en.wikipedia.org/wiki/Java_bytecode

Kapitel 3

Funktioner och abstraktion

Begrepp som ingår i denna veckas studier:

� abstraktion
� funktion
� parameter
� argument
� returtyp
� default-argument
� namngivna argument
� parameterlista
� funktionshuvud
� funktionskropp
� applicera funktion på alla element

i en samling
� uppdelad parameterlista
� skapa egen kontrollstruktur
� funktionsvärde
� funktionstyp
� äkta funktion

� stegad funktion
� apply
� anonyma funktioner
� lambda
� predikat
� aktiveringspost
� anropsstacken
� objektheapen
� stack trace
� värdeandrop
� namnanrop
� klammerparentes och kolon vid en-

sam parameter
� rekursion
� scala.util.Random
� slumptalsfrö
� dod: typsättning

91

92 KAPITEL 3. FUNKTIONER OCH ABSTRAKTION

3.1 Teori

3.1.1 Vad är abstraktion?

• Abstraktion innebär att skapa en förenklad modell ur konkreta detaljer
• Vi ”hittar på” nya begrepp som ger oss återanvändbara ”byggblock” för våra

tankar och vår kommunikation
• Vi får ett abstrakt namn som kan användas i stället för en massa konkreta

detaljer
• Skilj på abstraktionens namn (begrepp, koncept), dess användning (anrop)

och dess detaljerade beskrivning (definition, implementation)
• Funktioner (som du redan känner från matematiken) är en av våra viktigaste

abstraktionsmekanismer

https://sv.wikipedia.org/wiki/Abstraktion https://en.wikipedia.org/wiki/
Abstraction

3.1.2 Exempel på abstraktionsmekanismer inom datavetenskapen

Vi kommer att behandla flera olika, alltmer kraftfulla abstraktionsmekanismer i
denna kurs:

• Funktioner
• Objekt
• Klasser
• Arv
• Generiska strukturer
• Kontextuella abstraktioner

Dessa abstraktionsmekanismer blir extra kraftfulla om de kombineras!

3.1.3 Funktion: deklaration och anrop

def funktionsnamn(parameterdeklarationer): returtyp = uttryck

• En funktion har ett huvud och efter = kommer dess kropp.
• En namngiven funktion deklareras med nyckelordet def
• En funktion kan ha parametrar som deklareras i huvudet.
• Kroppen ska vara ett uttryck (ev. ett block med flera uttryck).
• Parametrar binds till argument vid anrop.
• Uttrycket i funktionens kropp evalueras vid varje anrop.
• Värdet av uttrycket blir funktionens returvärde.

Exempel:

def öka(a: Int, b: Int): Int = a + b

scala> öka(42, 1)
val res0: Int = 43

https://sv.wikipedia.org/wiki/Abstraktion
https://en.wikipedia.org/wiki/Abstraction
https://en.wikipedia.org/wiki/Abstraction

3.1. TEORI 93

3.1.4 Deklarera funktioner, överlagring

• Överlagrade funktioner i samma namnrymd:

1 scala> object matte:
2 def öka(a: Int): Int = a + 1
3 def öka(a: Int, b: Int): Int = a + b
4

5 scala> matte.öka(1)
6 val res0: Int = 2
7

8 scala> matte.öka(1, 2)
9 val res1: Int = 3

• Båda funktionerna ovan kan finnas samtidigt! Trots att de har samma namn
är de olika funktioner; kompilatorn kan skilja dem åt med hjälp av de olika
parameterlistorna.

• Detta kallas överlagring (eng. overloading) av funktioner.
• Överlagring ger flexibilitet i användningen; vi slipper hitta på nytt namn så

som öka2 vid 2 parametrar.

3.1.5 Funktioner med defaultargument

• Vi kan ofta åstadkomma samma flexibilitet som vid överlagring, men med en
enda funktion, om vi i stället använder defaultargument:

scala> def inc(a: Int, b: Int = 1) = a + b

scala> inc(42, 2)
val res0: Int = 44

scala> inc(42, 1)
val res1: Int = 43

scala> inc(42)
val res2: Int = 43

• Om ett argument utelämnas och parametern deklarerats med defaultargument
så appliceras detta. Kompilatorn fyller alltså i argumentet åt oss, om det är
entydigt vilken parameter som avses.

3.1.6 Funktioner med namngivna argument

• Genom att använda namngivna argument behöver man inte hålla reda på
ordningen på parametrarna, bara man känner till parameternamnen.

• Namngivna argument går fint att kombinera med defaultargument.

scala> def namn(
förnamn: String,
efternamn: String,

94 KAPITEL 3. FUNKTIONER OCH ABSTRAKTION

förnamnFörst: Boolean = true,
ledtext: String = "Namn:"

): String =
if förnamnFörst
then s"$ledtext $förnamn $efternamn"
else s"$ledtext $efternamn, $förnamn"

scala> namn(ledtext = "Name:", efternamn = "Coder", förnamn = "Kim")
val res0: String = Name: Kim Coder

3.1.7 Enhetlig access

• Om en funktion deklareras med tom parameterlista () så ska den anropas
med tom parameterlista. (Undantag: Java-metoder)

scala> def tomParameterlista() = 42

scala> tomParameterlista()
val res1: Int = 42

scala> tomParameterlista
1 |tomParameterlista

|^^^^^^^^^^^^^^^^^
|method tomParameterlista must be called with () argument

• En parameterlös funktion deklarerad utan () ska anropas utan ().

scala> def ingenParameterlista = 42
scala> ingenParameterlista()
1 |ingenParameterlista()

|^^^^^^^^^^^^^^^^^^^
|method ingenParameterlista does not take parameters

• Deklaration utan () möjliggör enhetlig access: implementationen kan ändras
från val till def eller tvärtom, utan att användandet påverkas.

3.1.8 Anropsstacken och objektheapen

Minnet som innehåller ett programs data är uppdelat i två delar:

• Anropsstacken:

– På anropsstacken läggs en aktiveringspost (eng. stack frame1, activation
record) för varje funktionsanrop med plats för parametrar och lokala
variabler.

– Aktiveringsposten raderas när returvärdet har levererats.
– Stacken växer vid nästlade funktionsanrop, då en funktion i sin tur

anropar en annan funktion.
1en.wikipedia.org/wiki/Call_stack

https://en.wikipedia.org/wiki/Call_stack

3.1. TEORI 95

• Objektheapen: I objektheapen2,3 sparas alla objekt (data) som allokeras under
körning. Heapen städas då och då av skräpsamlaren (eng. garbage collector),
och minne som inte används längre frigörs.

3.1.9 Anropsstacken och aktiveringsposter

Nästlade anrop ger växande anropsstack. Vid varje anrop allokeras en s.k. aktive-
ringspost (eng. activation record) med plats i minnet för parametrar, lokala variabler
och ev. returvärde. När funktionen är klar så raderas aktiveringsposten och stacken
krymper.

scala> def h(x: Int, y: Int): Unit = { val z = x + y; println(z) }
def g(a: Int, b: Int): Unit = { val x = 1; h(x + 1, a + b) }
def f(): Unit = { val n = 5; g(n, 2 * n) }

scala> f()

Stacken med 3 aktiveringsposter då f anropar g som anropar h:
variabel värde Anrop av...

n 5 f
a 5 g
b 10
x 1
x 2 h
y 15
z 17

3.1.10 Vad är en stack trace?

När du letar buggar vid körtidsfel har du nytta av att noga studera utskriften av
anropsstacken (eng. stack trace):

1 // Program i filen bmi.scala
2
3 @main
4 def bmi(heightCm: Int, weightKg: Int) =
5 safeDiv(weightKg, heightCm * heightCm)
6
7 def safeDiv(numerator: Int, denominator: Int): (Int, String) =
8 if denominator == 0 then (numerator / denominator, "") // ser du buggen?
9 else (0, "division by zero")

1 > scala run bmi.scala -- 0 42
2 Exception in thread "main" java.lang.ArithmeticException: / by zero
3 // HÄR KOMMER STACK TRACE pga körtidsfel - se nästa bild

2en.wikipedia.org/wiki/Memory_management
3Ej att förväxlas med datastrukturen heap sv.wikipedia.org/wiki/Heap

https://en.wikipedia.org/wiki/Memory_management
https://sv.wikipedia.org/wiki/Heap

96 KAPITEL 3. FUNKTIONER OCH ABSTRAKTION

3.1.11 Hur läsa en stack trace?

1 Exception in thread "main" java.lang.ArithmeticException: / by zero
2 at bmi$package$.safeDiv(bmi.scala:8)
3 at bmi$package$.bmi(bmi.scala:5)
4 at bmi.main(bmi.scala:3)

• En stack trace skrivs ut efter en krasch p.g.a. körtidsfel.
• Körtidsfel känns igen med ordet Exception.
• Först kommer en beskrivning av felet som orsakat kraschen, här:

java.lang.ArithmeticException: / by zero
• Därefter visas anropsstacken.
• För varje funktionsanrop anges: klass.metod(kodfil:radnummer)
• Main-funktioner läggs i ett singelobjekt i ett speciellt paket
• Singelobjekt i Scala kodas som en Java-klass med dollar-tecken efter namnet,

eftersom det inte finns singelobjekt i JVM.

3.1.12 Lokala funktioner

Med lokala funktioner kan delproblem lösas med nästlade abstraktioner.

def gissaTalet(max: Int, min: Int = 1): Unit =
def gissat = io.StdIn.readLine(s"Gissa talet mellan $min och $max: ").toInt

val hemlis = (math.random() * (max - min) + min).toInt

def skrivLedtrådOmEjRätt(gissning: Int): Unit =
if gissning > hemlis then println(s"$gissning är för stort :(")
else if gissning < hemlis then println(s"$gissning är för litet :(")

def inteRätt(gissning: Int): Boolean =
skrivLedtrådOmEjRätt(gissning)
gissning != hemlis

def loop: Int = { var i = 1; while inteRätt(gissat) do i += 1; i }

println(s"Du hittade talet $hemlis på $loop gissningar :)")

Lokala, nästlade funktionsdeklarationer är tyvärr inte tillåtna i många andra
språk, t.ex. Java.4

4stackoverflow.com/questions/5388584/does-java-support-inner-local-sub-methods

http://stackoverflow.com/questions/5388584/does-java-support-inner-local-sub-methods

3.1. TEORI 97

3.1.13 Funktioner är äkta värden i Scala

• En funktion är ett äkta värde.
• Vi kan till exempel tilldela en variabel ett funktionsvärde.
• Med hjälp enbart funktionsnamnet får vi funktionen som har ett värde (inga

argument har applicerats än):

scala> def add(a: Int, b: Int) = a + b

scala> val f = add
val f: (Int, Int) => Int = Lambda7210/0x0000000841e4e040@1ce2db23

scala> f(21, 21)
val res0: Int = 42

• Ett funktionsvärde har en typ precis som alla värden:
f: (Int, Int) => Int

• Ett funktionsvärde har till skillnad från en funktionsdeklaration inget namn
(variabeln f har ett namn, men inte själva funktionen). Den kallas därför en
anonym funktion eller lambda (mer om detta snart).

3.1.14 Funktionsvärden kan vara argument

Funktioner kan ha funktioner som parametrar:

1 scala> def tvåGånger(x: Int, f: Int => Int) = f(f(x))
2

3 scala> def öka(x: Int) = x + 1
4

5 scala> def minska(x: Int) = x - 1
6

7 scala> tvåGånger(42, öka)
8 val res1: Int = 44
9

10 scala> tvåGånger(42, minska)
11 val res1: Int = 40

En funktion som har funktionsvärden som indata (eller utdata) kallas en
högre ordningens funktion (eng. higher-order function).

3.1.15 Applicera funktioner på element i samlingar med map

def öka(x: Int) = x + 1

def minska(x: Int) = x - 1

val xs = Vector(1, 2, 3)

98 KAPITEL 3. FUNKTIONER OCH ABSTRAKTION

Metoden map fungerar på alla Scala-samlingar och tar en funktion som argument
och applicerar denna funktion på alla element och skapar en ny samling med
resultaten:

1 scala> xs.map(öka)
2 val res0: ??? // vad blir resultatet?
3

4 scala> xs.map(minska)
5 val res1: ??? // vad blir resultatet?

3.1.16 Applicera funktioner på element i samlingar med map

def öka(x: Int) = x + 1

def minska(x: Int) = x - 1

val xs = Vector(1, 2, 3)

Metoden map fungerar på alla Scala-samlingar och tar en funktion som argument
och applicerar denna funktion på alla element och skapar en ny samling med
resultaten:

1 scala> xs.map(öka)
2 val res0: scala.collection.immutable.Vector[Int] = Vector(2, 3, 4)
3

4 scala> xs.map(minska)
5 val res1: scala.collection.immutable.Vector[Int] = Vector(0, 1, 2)

Metoden map är en smidig och ofta använd högre ordningens funktion.

3.1.17 Äkta funktioner

• En äkta (eng. pure) funktion är en funktion som ger ett resultat som enbart
beror av dess argument. Alltså som funktioner i matematiken.

• En äkta (matematisk) funktion är referentiellt transparent (eng. referenti-
ally transparent). Det innebär att varje anrop kan bytas ut mot värdet av
funktionskroppen där parametrarna ersatts med motsvarande argument före
evaluering.

• En äkta funktion har inga sidoeffekter, t.ex. utskrift, skriva/läsa filer, eller
uppdateringar av variabler synliga utanför funktionen.

• Exempel:

def add(x: Int, y: Int): Int = x + y // äkta funktion
def rnd(n: Int): Int = (math.random() * n).toInt // oäkta funktion

– Uttrycket add(41, 1) kan ersättas med 41 +1 som i sin tur kan ersättas
med 42 utan att det påverkar resultatet. Resultatet av add(41, 1) blir
samma varje gång funktionen appliceras med dessa argument

3.1. TEORI 99

– Uttrycket rnd(42) kan inte bytas ut mot ett specifikt värde.
Alltså: ej referentiellt transparent.

3.1.18 Exempel på oäkta funktioner: slumptal

• Funktioner vars värden på något sätt beror av slumpen är inte äkta funktioner.
• Även om samma argument ges vid upprepad applicering, så kan ju resultatet bli

olika.
• Studera dokumentationen för scala.util.Random här:

https://www.scala-lang.org/api/current/scala/util/Random.html
• Du har nytta av funktionen Random.nextInt och slumptalsfrö (eng. random

seed) i veckans uppgifter.

3.1.19 Slumptalsfrö: få samma slumptal varje gång

• Om man använder slumptal kan det vara svårt att leta buggar, eftersom det
blir olika varje gång man kör programmet och buggen kanske bara uppstår
ibland.

• Med klassen scala.util.Random kan man skapa pseudo-slumptalssekvenser.
• Om man ger ett s.k. frö (eng. seed), av heltalstyp, som argument till konstruktorn

när man skapar en instans av klassen scala.util.Random, får man samma
”slumpmässiga” sekvens varje gång man kör programmet.

val seed = 42
val rnd = util.Random(seed) // skapa ny slumpgenerator med frö 42
val r = rnd.nextInt(6) // något av heltalen 0, 1, 2, 3, 4, 5

• Om man inte ger ett frö så sätts fröet till ”a value very likely to be distinct from
any other invocation of this constructor”. Då vet vi inte vilket fröet blir och det
blir olika varje gång man kör programmet.

val rnd = util.Random() // OLIKA frö vid varje programkörning
val r = rnd.nextInt(6)

3.1.20 Anonyma funktioner

• Man behöver inte ge funktioner namn. De kan i stället skapas med hjälp av
funktionslitteraler.5

• En funktionslitteral har ...

1. en parameterlista (utan funktionsnamn, utan returtyp),

5Även kallat ”lambda-värde” eller bara ”lambda” efter den s.k. lambdakalkylen.
en.wikipedia.org/wiki/Anonymous_function

https://www.scala-lang.org/api/current/scala/util/Random.html
https://en.wikipedia.org/wiki/Anonymous_function

100 KAPITEL 3. FUNKTIONER OCH ABSTRAKTION

2. sedan den reserverade teckenkombinationen =>
3. och sedan ett uttryck (eller ett block).

• Exempel:

(x: Int, y: Int) => x + y

Vilken typ har denna funktionslitteral? (Int, Int) => Int
• Om kompilatorn kan gissa typerna från sammanhanget så behöver parameter-

typerna inte anges i själva funktionslitteralen:

val f: (Int, Int) => Int = (x, y) => x + y

3.1.21 Applicera anonyma funktioner på element i samlingar

Anonym funktion skapad med funktionslitteral direkt i anropet:

1 scala> val xs = Vector(1, 2, 3)
2

3 scala> xs.map((x: Int) => x + 1)
4 res0: scala.collection.immutable.Vector[Int] = Vector(2, 3, 4)

Eftersom kompilatorn här kan härleda typen Int så behövs den inte:

1 scala> xs.map(x => x + 1)
2 res1: scala.collection.immutable.Vector[Int] = Vector(2, 3, 4)

Om man bara använder parametern en enda gång i funktionen så kan man byta ut
parameternamnet mot ett understreck.

1 scala> xs.map(_ + 1)
2 res2: scala.collection.immutable.Vector[Int] = Vector(2, 3, 4)

3.1.22 Platshållarsyntax för anonyma funktioner

Understreck i funktionslitteraler kallas platshållare (eng. placeholder) och medger
ett förkortat skrivsätt om den parameter som understrecket representerar används
endast en gång.

_ + 1

Ovan expanderas av kompilatorn till följande funktionslitteral
(där namnet på parametern är godtyckligt):

x => x + 1

Det kan förekomma flera understreck; det första avser första parametern, det andra
avser andra parametern etc.

_ + _

3.1. TEORI 101

... expanderas till:

(x, y) => x + y

3.1.23 Exempel på platshållarsyntax med reduceLeft

Metoden reduceLeft applicerar en funktion på de två första elementen i en sekvens
och tar sedan resultatet som första argument och nästa element som andra argument
och upprepar detta genom hela samlingen.

1 scala> def summa(x: Int, y: Int) = x + y
2

3 scala> val xs = Vector(1, 2, 3, 4, 5)
4

5 scala> xs.reduceLeft(summa)
6 res20: Int = 15
7

8 scala> xs.reduceLeft((x, y) => x + y)
9 res21: Int = 15
10

11 scala> xs.reduceLeft(_ + _)
12 res22: Int = 15
13

14 scala> xs.reduceLeft(_ * _)
15 res23: Int = 120

3.1.24 Predikat, med och utan namn

• En funktion som har Boolean som returtyp kallas för ett predikat.
• Exempel:

def isTooLong(name: String): Boolean = name.length > 10

def isTall(heightInMeters: Double, limit: Double = 1.78): Boolean =
heightInMeters > limit

• Predikat ges ofta ett namn som börjar på is eller has så att man lätt kan se att
det är ett predikat när man läser kod som anropar funktionen.

• Många av samlingsmetoderna i Scalas standardbibliotek tar predikat som funk-
tionsargument. Exempel med predikat som anonym funktion:

scala> val parts = Vector(3, 1, 0, 5).partition(_ > 1)
val parts: (Vector[Int], Vector[Int]) =
(Vector(3, 5),Vector(1, 0))

• Studera snabbreferensen och försök hitta samlingsmetoder som tar predikat
som funktionsargument. https://fileadmin.cs.lth.se/pgk/quickref.pdf
I anropsexempel med predikat-argument används bokstaven p.

https://fileadmin.cs.lth.se/pgk/quickref.pdf

102 KAPITEL 3. FUNKTIONER OCH ABSTRAKTION

3.1.25 Funktionsvärde vid tom parameterlista: använd ”thunk”

• Vi har tidigare sett:
Vill du ha funktionen som värde – skriv bara namnet och inte parameterlistan:

scala> val f = add // inget anrop av add sker
val f: (Int, Int) => Int = Lambda7210/0x0000000841e4e040@1ce2db23

• MEN: Vid tom parameterlista behövs anonym funktion som fördröjer anrop
för att få motsvarande funktionsvärde:

scala> def a() = 42

scala> val b = a
1 |val b = a

| ^
| method a must be called with () argument

scala> val b = () => a() // anonym funktion, fördröjd evaluering
val b: () => Int = Lambda7214/0x0000000841e50440@565d794

• Notera typen: () => Int Ett sådant funktionsvärde kallas thunk
https://en.wikipedia.org/wiki/Thunk

• Förslag på svenskt namn: tånk (eftersom thunk är en ordvits på think = tänk)

3.1.26 Hur fungerar egentligen upprepa i Kojo?

upprepa(10) {
println("hej")

}

Vi ska nu se hur vi, genom att kombinera ett antal koncept, kan skapa egna
kontrollstrukturer likt upprepa ovan:

• klammerparentes vid ensam paramenter
• multipla parameterlistor
• namnanrop (fördröjd evaluering)

3.1.27 Multipla parameterlistor

Vi har tidigare sett att man kan ha mer än en parameter:

scala> def add(a: Int, b: Int) = a + b

scala> add(21, 21)
res0: Int = 42

Man kan även ha mer än en parameterlista:

https://en.wikipedia.org/wiki/Thunk

3.1. TEORI 103

scala> def add(a: Int)(b: Int) = a + b

scala> add(21)(21)
res1: Int = 42

(eng. multiple parameter lists)
docs.scala-lang.org/style/declarations.html#multiple-parameter-lists

3.1.28 Värdeanrop och namnanrop

Det vi sett hittills är värdeanrop: argumentet evalueras först innan dess värde
sedan appliceras:

1 scala> def byValue(n: Int): Unit = for i <- 1 to n do print(" " + n)
2

3 scala> byValue(21 + 21)
4 42
5

6 scala> byValue({print(" hej"); 21 + 21})
7 hej 42

Men man kan med => före parametertypen åstadkomma namnanrop: argumentet
”klistras in” i stället för namnet och evalueras varje gång (kallas även fördröjd
evaluering):

1 scala> def byName(n: => Int): Unit = for i <- 1 to n do print(" " + n)
2

3 scala> byName({print(" hej"); 21 + 21})
4 hej hej 42

Kluring: Varför skrivs ”hej” ut en extra gång i början? ledtråd: 1 to n

3.1.29 Klammerparenteser vid ensam parameter

Så här har vi sett nyss att man man göra:

1 scala> def twice(action: => Unit): Unit = { action; action }
2

3 scala> twice({ print("hej"); print("san ") })
4 hejsan hejsan

Det ser rätt klyddigt ut med ({ och }) eller vad tycker du? Men... För alla funktio-
ner f gäller att:
det är helt ok att byta ut vanliga parenteser: f(uttryck)
mot krullparenteser: f{uttryck}
om parameterlistan har exakt en parameter.

Man kan alltså skippa yttre parentesparet för bättre läsbarhet:

scala> twice { print("hej"); print("san ") }

http://docs.scala-lang.org/style/declarations.html#multiple-parameter-lists

104 KAPITEL 3. FUNKTIONER OCH ABSTRAKTION

3.1.30 Skapa din egen kontrollstruktur

• Genom att kombinera multipla parameterlistor med namnanrop med
klammerparentes vid ensam parameter kan vi skapa vår egen kontroll-
struktur: upprepa

upprepa(42){
if math.random() < 0.5 then print(" gurka")
else print(" tomat")

}

Hur då? Till exempel så här:

def upprepa(n: Int)(block: => Unit) = for i <- 0 until n do block

gurka gurka gurka tomat tomat gurka gurka gurka gurka tomat tomat tomat tomat tomat

3.1.31 Kolon vid ensam parameter

Du kan i Scala 3 i stället för klammerparentes vid ensam parameter använda kolon
för att få färre ”krullisar” (eng. fewer braces).

upprepa(42):
if math.random() < 0.5
then print(" gurka")
else print(" tomat")

Denna förenklade syntax föregicks av långa diskussioner innan den till slut acceptera-
des.6

3.1.32 Stegade funktioner, ”Curry-funktioner”

Om en funktion har multipla parameterlistor kan man skapa stegade funktioner,
även kallat partiellt applicerade funktioner (eng. partially applied functions) eller
”Curry”-funktioner.

scala> def add(x: Int)(y: Int) = x + y

scala> val öka = add(1)
val öka: Int => Int = Lambda7339/0x0000000841eb7040@19c8add7

scala> Vector(1,2,3).map(öka)
val res0: Vector[Int] = Vector(2, 3, 4)

scala> Vector(1,2,3).map(add(2))
val res1: Vector[Int] = Vector(3, 4, 5)

6Den nyfikne kan läsa förslaget före omröstning här:
https://docs.scala-lang.org/sips/fewer-braces.html

https://docs.scala-lang.org/sips/fewer-braces.html

3.1. TEORI 105

3.1.33 Funktion med fångad variabelrymd: closure

def f(x: Int): Int => Int =
val a = 42 + x
def g(y: Int): Int = y + a
g

Funktionen g fångar den lokala variabeln a i ett funktionsobjekt.

scala> val funkis = f(1)
val funkis: Int => Int = Lambda7356/0x0000000841ed2840@1bda26bc

scala> funkis(2)
val res0: Int = 45

Ett funktionsobjekt med ”fångade” variabler kallas closure.
(Mer om funktioner som objekt senare.)

3.1.34 Rekursiva funktioner

• Funktioner som anropar sig själv kallas rekursiva.

scala> def fakultet(n: Int): Int =
if n < 2 then 1 else n * fakultet(n - 1)

scala> fakultet(5)
val res0: Int = 120

• För varje nytt anrop läggs en ny aktiveringspost på stacken.
• I aktiveringsposten sparas varje returvärde som gör att 5 * (4 * (3 * (2 * 1)))

kan beräknas.
• Rekursionen avbryts när man når basfallet, här n < 2
• En rekursiv funktion måste ha en returtyp.

3.1.35 Loopa med rekursion

def gissaTalet(max: Int, min: Int = 1): Unit =
def gissat =

io.StdIn.readLine(s"Gissa talet mellan [$min, $max]: ").toInt

val hemlis = (math.random() * (max - min) + min).toInt

def skrivLedtrådOmEjRätt(gissning: Int): Unit =
if gissning > hemlis then println(s"$gissning är för stort :(")
else if (gissning < hemlis) println(s"$gissning är för litet :(")

def ärRätt(gissning: Int): Boolean =
skrivLedtrådOmEjRätt(gissning)
gissning == hemlis

106 KAPITEL 3. FUNKTIONER OCH ABSTRAKTION

def loop(n: Int = 1): Int = if ärRätt(gissat) then n else loop(n + 1)

println(s"Du hittade talet $hemlis på ${loop()} gissningar :)")

3.1.36 Rekursiva datastrukturer

• Datastrukturena Lista och Träd är exempel på datastrukturer som passar bra
ihop med rekursion.

• Båda dessa datastrukturer kan beskrivas rekursivt:

– En lista består av ett huvud och en lista, som i sin tur består av ett huvud
och en lista, som i sin tur...

– Ett träd består av grenar till träd som i sin tur består av grenar till träd
som i sin tur, ...

• Dessa datastrukturer bearbetas med fördel med rekursiva algoritmer.
• I denna kursen ingår rekursion endast ”för kännedom”:

du ska veta vad det är och kunna skapa en enkel rekursiv funktion, t.ex.
fakultets-beräkning. Du kommer jobba mer med rekursion och rekursiva data-
strukturer i fortsättningskursen.

3.1.37 Kompilera om det som ändrats vid varje sparning

• Den kreativa programmeringsprocessen innehåller många korta cykler av koda,
ändra, testa.

• Vid varje liten ändring vill man kompilera om det som ändrats och se om
det fortfarande kompilerar utan fel.

• Detta görs automatiskt i vscode och du får röda understrykningar vid fel.
• Men du kan också använda terminalen:

scala compile . --watch
Ändringar bevakas och du kan tydligt se ev. felmeddelande i en kompilator-
utskrift som sker först när du sparar din ändring med Ctrl+S.

• Du slipper felmeddelande som beror på att du ännu inte skrivit klart...

3.2. ÖVNING FUNCTIONS 107

3.2 Övning functions

Mål

� Kunna skapa och använda funktioner med en eller flera parametrar, default-
argument, och namngivna argument.

� Kunna förklara nästlade funktionsanrop med aktiveringsposter på stacken.
� Kunna förklara skillnaden mellan äkta och ”oäkta” funktioner.
� Kunna applicera en funktion på alla element i en samling.
� Kunna använda funktioner som äkta värden.
� Kunna skapa och använda anonyma funktioner (ä.k. lambda-funktioner).
� Känna till att funktioner kan ha uppdelad parameterlista.
� Känna till att det går att partiellt applicera argument på funktioner med uppde-

lad parameterlista för att skapa s.k. stegade funktioner (ä.k. curry-funktioner).
� Känna till rekursion och kunna beskriva vad som kännetecknar en rekursiv

funktion.
� Känna till att det går att skapa egna kontrollstrukturer med hjälp av namnan-

rop.
� Känna till skillnaden mellan värdeanrop och namnanrop.
� Kunna tolka en stack trace.

Förberedelser

� Studera begreppen i kapitel 3

3.2.1 Grunduppgifter; förberedelse inför laboration

Uppgift 1. Para ihop begrepp med beskrivning. Koppla varje begrepp med den (för-
enklade) beskrivning som passar bäst:

funktionshuvud 1 A beskriver namn och typ på parametrar
funktionskropp 2 B argumentet evalueras innan anrop
parameterlista 3 C har parameterlista och eventuellt en returtyp
block 4 D fördröjd evaluering av argument
namngivna argument 5 E funktion utan namn; kallas även lambda
defaultargument 6 F applicerar en funktion på varje element i en samling
värdeanrop 7 G en funktion som ger ett booleskt värde
namnanrop 8 H gör att argument kan ges i valfri ordning
map 9 I ger alltid samma resultat om samma argument
äkta funktion 10 J lista anropskedja vid körtidsfel
predikat 11 K en funktion som anropar sig själv
slumptalsfrö 12 L gör att argument kan utelämnas
anonym funktion 13 M ger återupprepningsbar sekvens av pseudoslumptal
rekursiv funktion 14 N koden som exekveras vid funktionsanrop
stack trace 15 O kan ha lokala namn; sista raden ger värdet

Uppgift 2. Definiera och anropa funktioner. En funktion med en parameter definieras
med följande syntax i Scala:

108 KAPITEL 3. FUNKTIONER OCH ABSTRAKTION

def namn(parameter: Typ = defaultArgument): Returtyp = returvärde

a) Definiera funktionen öka som har en heltalsparameter x och vars returvärde är
argumentet plus 1. Defaultargument ska vara 1. Ange returtypen explicit.

b) Vad har uttrycket öka(öka(öka(öka()))) för värde?

c) Definiera funktionen minska som har en heltalsparameter x och vars returvärde
är argumentet minus 1. Defaultargument ska vara 1. Ange returtypen explicit.

d) Vad är värdet av uttrycket öka(minska(öka(öka(minska(minska())))))

e) Vad är det för skillnad mellan parameter och argument?

Uppgift 3. Implementera funktion på olika sätt. Skapa en funktion som kan summera
de första n positiva heltalen.

a) Skriv först funktionshuvudet med ??? som funktionskropp. Ge funktionen ett bra
namn. Ange returtyp. Kontrollera att din funktion kompilerar utan kompileringsfel
innan du går vidare.

b) Implementera funktionen med hjälp av ett intervall och metoden sum. Testa så
att funktionen fungerar. Vad händer om du ger ett negativt argument?

c) Implementera funktionen med hjälp av while-do. Vad händer om du ger ett
negativt argument?

Uppgift 4. Textspelet AliensOnEarth. Ladda ner spelet nedan 7 och studera koden.

1 object AliensOnEarth:
2 def readChoice(msg: String, options: Vector[String]): String =
3 options.indices.foreach(i => println(s"$i: ${options(i)}"))
4 val selected = scala.io.StdIn.readLine(msg).toInt
5 options(selected)
6
7 def isAnswerYes(msg: String): Boolean =
8 scala.io.StdIn.readLine(s"$msg (Y/n)").toLowerCase.startsWith("y")
9

10 def randomChoice(options: Vector[String]): String =
11 val selected = scala.util.Random.nextInt(options.size)
12 options(selected)
13
14 def playGame(alien: String, maxPoints: Int = 1000): Int =
15 val xs = Vector("penguin", "window", "apple")
16 val correct = if math.random() < 0.5 then xs(0) else randomChoice(xs)
17 val cheatCode = (xs.indexOf(correct) + 1) * math.Pi
18 println(s"""|Hello $alien!
19 |You are an alien on Earth.
20 |Your encrypted password is $cheatCode.
21 |You see three strange Earth objects.""".stripMargin)
22 val choice = readChoice(s"$alien wants? ", xs)
23 if choice == correct then maxPoints else 0
24
25 def main(args: Array[String]): Unit =
26 try
27 val name = if args.size > 0 then args(0) else "Captain Zoom"
28 val points = playGame(alien = name)
29 if points > 0 then println(s"Congratulations $name! :)")

7https://raw.githubusercontent.com/lunduniversity/introprog/master/compendium/
examples/AliensOnEarth.scala

https://raw.githubusercontent.com/lunduniversity/introprog/master/compendium/examples/AliensOnEarth.scala
https://raw.githubusercontent.com/lunduniversity/introprog/master/compendium/examples/AliensOnEarth.scala

3.2. ÖVNING FUNCTIONS 109

30 println(s"You got $points points.")
31 catch case e: Exception =>
32 println(s"Game over. The Earth was hit by an asteroid. :(")
33 if isAnswerYes("Do you want to trace the asteroid?") then
34 e.printStackTrace()

a) Medan du läser koden, försök lista ut vilket som är bästa strategin för att få så
mycket poäng som möjligt. Kompilera och kör spelet i terminalen med ditt favoritnamn
som argument. Vilket av de tre objekten på planeten jorden har störst sannolikhet att
vara bästa alternativet?
b) Para ihop kodsnuttarna nedan med bästa beskrivningen.8

options.indices 1 A gör om en sträng till små bokstäver
"1X2".toLowercase 2 B heltalssekvens med alla index i en sekvens
Random.nextInt(n) 3 C slumptal i intervallet 0 until n

try { } catch { } 4 D tar bort marginal till och med vertikalstreck
""" ... """ 5 E fångar undantag för att förhindra krasch
s.stripMargin 6 F sträng som kan sträcka sig över flera kodrader
e.printStackTrace 7 G skriver ut information om ett undantag

Tips: Med hjälp av REPL kan du ta reda på hur olika delar fungerar, t.ex.:

1 scala> val xs = Vector("p", "w", "a")
2 scala> xs.indices
3 scala> xs.indices.foreach(i => println(i))
4 scala> xs.indexOf("w")
5 scala> xs.indexOf("gurka")
6 scala> Vector("hej", "hejsan", "hej").indexOf("hej")
7 scala> try 1 / 0 catch case e: Exception => println(e)

Tips inför fortsättningen:
• När jag hittade på AliensOnEarth började jag med ett mycket litet program med

en enkel main-funktion som bara skrev ut något kul. Sedan byggde jag vidare på
programmet steg för steg och kompilerade och testade efter varje liten ändring.

• När jag kodar har jag REPL igång i ett eget terminalfönster och min kodeditor
i ett annat fönster. I ett tredje fönster har jag en terminal med kompilering i
watch mode, se appendix ??. Fråga en handledare om hur du kan arbeta effektivt
med stegvisa experimentering i REPL för att bygga upp ett allt större program i
små steg.

• Detta arbetssätt tar ett tag att komma in i, men är ett bra sätt att uppfinna
allt större och bättre program. Ett stort program byggs lättast i små steg och
felsökning blir mycket lättare om man bara gör små tillägg åt gången.

• Du får också det mycket lättare att förstå ditt program om du delar upp koden
i många korta funktioner med bra namn. Du kan sedan lättare hitta på mer
avancerade funktioner genom att återanvända befintliga.

• Under veckans laboration ska du utveckla ditt eget textspel. Då har du nytta av
att återanvända funktionerna för indata och slumpdragning från exempelpro-
grammet AliensOnEarth.

8Gör så gott du kan även om allt inte är solklart. Vissa saker kommer vi att gå igenom i detalj först
under senare kursmoduler.

110 KAPITEL 3. FUNKTIONER OCH ABSTRAKTION

Uppgift 5. Äkta funktioner. En äkta funktion9 (eng. pure function) ger alltid samma
resultat med samma argument (så som vi är vana vid inom matematiken) och har
inga externt observerbara sidoeffekter (till exempel utskrifter).

Vilka funktioner nedan är äkta funktioner?

var x = 0
val y = x

def inc(i: Int) = i + 1

def nöff(i: Int) =
x = x + i
"nöff " * x

end nöff

def addX(i: Int) = x + i

def addY(i: Int) = y + i

def isPalindrome(s: String) = s == s.reverse

def rnd(min: Int, max: Int) = math.random() * max + min

Tips: Skriv av och testa funktionerna i REPL en och en, så att du förstår exakt vad
som händer.

Uppgift 6. Applicera funktion på varje element i en samling. Funktion som argument.
Deklarera funktionen öka och variabeln xs enligt nedan i REPL:

1 scala> def öka(x: Int) = x + 1
2 scala> val xs = Vector(3, 4, 5)

Para ihop nedan uttryck till vänster med det uttryck till höger som har samma värde.
Om du undrar något, testa uttrycken och olika varianter av dem i REPL.

for i <- 1 to 3 yield öka(i) 1 A xs

Vector(2, 3, 4).map(i => öka(i)) 2 B Vector(4, 5, 6)

xs.map(öka) 3 C ()

xs.map(öka).map(öka) 4 D Vector(5, 6, 7)

xs.foreach(öka) 5 E Vector(2, 3, 4)

Uppgift 7. Anonyma funktioner. Vi har flera gånger sett syntaxen i => i + 1, till
exempel i en loop (1 to 10).map(i => i + 1) där funktionen i => i + 1 appliceras
på alla heltal från 1 till och med 10 och resultatet blir en ny sekvenssamling.

Syntaxen (i: Int) => i + 1 är en litteral för att skapa ett funktionsvärde (kallas
även anonym funktion eller lambda-uttryck). Syntaxen liknar den för funktionsdekla-
rationer, men nyckelordet def saknas i funktionshuvudet och i stället för likhetstecken
används => för att avskilja parameterlistan från funktionskroppen. Om kompilatorn
kan härleda typen ur sammanhanget kan kortformen i => i + 1 användas.

9Äkta funktioner uppfyller per definition referentiell transparens (eng. referential transparency) som
du kan läsa mer om här: simple.wikipedia.org/wiki/Referential_transparency

https://simple.wikipedia.org/wiki/Referential_transparency

3.2. ÖVNING FUNCTIONS 111

Det finns ett ännu kortare sätt att skriva en anonym funktion om typen kan härle-
das och den bara använder sin parameter en enda gång; då går funktionslitteraler att
skriva med s.k. platshållarsyntax som använder understreck, till exempel _ + 1 och
som automatiskt expanderas av kompilatorn till ngtnamn => ngtnamn + 1 (namnet
på parametern spelar ingen roll; kompilatorn väljer något eget, internt namn).

Para ihop uttryck till vänster med uttryck till höger som har samma värde:

(0 to 2).map(i => i + 1) 1 A Vector(9.0, 16.0, 25.0)

(1 to 3).map(_ + 1) 2 B (2 to 4).map(i => i - 1)

(2 to 4).map(math.pow(2, _)) 3 C Vector(2.0, 2.5, 3.0)

(3 to 5).map(math.pow(_, 2)) 4 D Vector(2, 3, 4)

(4 to 6).map(_.toDouble).map(_ / 2) 5 E Vector(4.0, 8.0, 16.0)

Funktionslitteraler kallas anonyma funktioner, eftersom de inte har något namn, till
skillnad från t.ex. def öka(i: Int): Int = i + 1, som ju heter öka. Ett annat van-
ligt namn är lambda-uttryck efter det datalogiska matematikverktyget lambdakalkyl.

Uppgift 8. Skapa din egen kontrollstruktur med hjälp av namnanrop. Namnanrop
skrivs med en raket efter kolon före parametertypen och innebär att argumentet
evalueras på plats varje gång.

a) Använd namnanrop i kombination med en uppdelad parameterlista och skapa din
egen kontrollstruktur enligt nedan.10

def upprepa(n: Int)(block: => Unit): Unit =
var i = 0
while i < n do

???
end while

b) Testa din kontrollstruktur i REPL. Låt upprepa 100 gånger att ett slumptal mellan
1 och 6 dras och sedan skrivs ut. Prova även att använda färre klammerparenteser
med hjälp av kolon.
c) Varför behövs namnanrop här?

Uppgift 9. Lär dig läsa en stack trace. Skriv ett program i filen fel.scala som orsakar
ett körtidsfel och kör igång det i terminalen med scala run fel.scala. Studera den
stack trace som skrivs ut. Vad innehåller en stack trace? Diskutera med handledare
hur du kan ha nytta av en stack trace när du felsöker.

3.2.2 Extrauppgifter; träna mer

Uppgift 10. Funktion med flera parametrar.

a) Definiera i REPL två funktioner sum och diff med två heltalsparametrar som
returnerar summan respektive differensen av argumenten:

def sum(x: Int, y: Int): Int = ???

def diff(x: Int, y: Int): Int = ???

10Det är så loopen upprepa i Kojo är definierad.

https://sv.wikipedia.org/wiki/Lambdakalkyl

112 KAPITEL 3. FUNKTIONER OCH ABSTRAKTION

Vad har nedan uttryck för värden? Förklara vad som händer.

b) diff(0, 100)

c) diff(100, sum(42, 43))

d) sum(sum(42, 43), diff(100, sum(0, 0)))

e) sum(diff(Byte.MaxValue, Byte.MinValue), 1)

Uppgift 11. Medelvärde. Skriv och testa en funktion avg som räknar ut medelvärdet
mellan två heltal och returnerar en Double.

Uppgift 12. Funktionsanrop med namngivna argument.

1 scala> def skrivNamn(efternamn: String, förnamn: String) =
2 println(s"Namn: $efternamn, $förnamn")
3 scala> skrivNamn(förnamn = "Stina", efternamn = "Triangelsson")
4 scala> skrivNamn(efternamn = "Oval", "Viktor")

a) Vad skrivs ut efter rad 3 resp. rad 4 ovan?

b) Nämn tre fördelar med namngivna argument.

Uppgift 13. Funktion som äkta värde. Funktioner är äkta värden i Scala. Det betyder
att variabler kan ha funktioner som värden och funktionsvärden kan vara argument
till funktioner som har funktionsparametrar. Funktioner som tar funktioner som
argument kallas högre ordningens funktioner.

En funktion som har en heltalsparameter och ett heltalsresultat är av funktionsty-
pen Int => Int (uttalas int-till-int) och värdet av funktionen utgör ett objekt som har
en metod som heter apply med motsvarande funktionstyp.

a) Deklarera nedan funktioner och variabler i REPL. Para sedan ihop nedan uttryck
till vänster med det uttryck till höger som skapar samma utskrift. Om du undrar
något, testa uttrycken och olika varianter av dem i REPL.

1 scala> def hälsa(): Unit = println("Hej!")
2 scala> def fleraAnrop(antal: Int, f: () => Unit): Unit =
3 for _ <- 1 to antal do f()
4 scala> val f1 = () => hälsa()
5 scala> var f2 = (s: String) => println(s)
6 scala> val f3 = () => f2("Thunk")

fleraAnrop(1, hälsa) 1 A f2("Hej!\nHej!")

fleraAnrop(3, hälsa) 2 B fleraAnrop(3, f1)

fleraAnrop(2, f1) 3 C f3()

fleraAnrop(1, f3) 4 D f2("Hej!")

b) Vilka typer har variablerna f1, f2 och f3?

c) Funkar detta? Varför? f2 = f1

d) Funkar detta? Varför? val f4 = fleraAnrop

e) Funkar detta? Varför? val f4 = hälsa

f) Funkar detta? Varför? val f4: () => Unit = hälsa

3.2. ÖVNING FUNCTIONS 113

Uppgift 14. Bortkastade resultatvärden och returtypen Unit. Undersök nedan kod i
REPL och förklara vad som händer.

a)

1 scala> def tom = println("")
2 scala> println(tom)

b)

1 scala> def bortkastad: Unit = 1 + 1
2 scala> println(bortkastad)

c)

1 scala> def bortkastad2 = { val x = 1 + 1 }
2 scala> println(bortkastad2)

d) Varför är det bra att explicit ange Unit som returtyp för procedurer?

Uppgift 15. Namnanrop.
Deklarera denna procedur i REPL:

def görDettaTvåGånger(b: => Unit): Unit = { b; b }

Anropa görDettaTvåGånger med ett block som parameter. Blocket ska innehålla
en utskriftssats. Förklara vad som händer.

114 KAPITEL 3. FUNKTIONER OCH ABSTRAKTION

3.2.3 Fördjupningsuppgifter; utmaningar

Uppgift 16. Föränderlighet av parametrar. Vad tror du om detta: Är en parameter
förändringsbar i funktionskroppen ...

a) ... i Scala? (Ja/Nej)
b) ... i Java? (Ja/Nej)
c) ... i Python? (Ja/Nej)

Uppgift 17. Värdeanrop och namnanrop. Normalt sker i Scala (och i Java) s.k. värde-
anrop vid anrop av funktioner, vilket innebär att argumentuttrycket evalueras före
bindningen till parameternamnet sker.

Man kan också i Scala (men inte i Java) med syntaxen => framför parametertypen
deklarera att namnanrop ska ske, vilket innebär att evalueringen av argumentuttryc-
ket fördröjs och sker varje gång namnet används i metodkroppen.

Deklarera nedan funktioner i REPL.

def snark: Int = { print("snark "); Thread.sleep(1000); 42 }
def callByValue(x: Int): Int = x + x
def callByName(x: => Int): Int = x + x
lazy val zzz = snark

Förklara vad som händer när nedan uttryck evalueras.

a) snark + snark

b) callByValue(snark)

c) callByName(snark)

d) callByName(zzz)

Uppgift 18. Skapa egen kontrollstruktur för iteration med loop-variabel.

a) Fördelen med upprepa i uppgift 7 är att den är koncis och lättanvänd. Men den är
inte lika lätt att använda om man behöver tillgång till en loopvariabel. Implementera
därför nedan kontrollstruktur.

def repeat(n: Int)(p: Int => Unit): Unit =
var i = 0
while i < n do

???

b) Använd repeat för att 100 gånger skriva ut loopvariabeln och ett slumpdecimaltal
mellan 0 och 1.

Uppgift 19. Uppdelad parameterlista och stegade funktioner. Man kan dela upp
parametrarna till en funktion i flera parameterlistor. Funktionen add1 nedan har
en parameterlista med två parametrar medan add2 har två parameterlistor med en
parameter vardera:

def add1(a: Int, b: Int) = a + b
def add2(a: Int)(b: Int) = a + b

a) När man anropar funktionen add2 ska argumenten skrivas inom två olika paren-
tespar. Hur kan du använda add2 för att räkna ut 1 + 1?

3.2. ÖVNING FUNCTIONS 115

b) En fördel med uppdelade parameterlistor är att man kan skapa s.k. stegade funk-
tioner11 där argumenten är partiellt applicerade. Prova det stegade funktionsvärdet
singLa nedan. Vad skrivs ut på efter raderna 3 och 5?

1 scala> def repeat(s: String)(n: Int): String = s * n
2 scala> val song = repeat("doremi ")(3)
3 scala> println(song)
4 scala> val singLa = repeat("la")
5 scala> println(singLa(7))

Uppgift 20.? Rekursion. En rekursiv funktion anropar sig själv.

a) Förklara vad som händer nedan.

1 scala> def countdown(x: Int): Unit =
2 if x > 0 then {println(x); countdown(x - 1)}
3 scala> countdown(10)
4 scala> countdown(-1)
5 scala> def finalCountdown(x: Byte): Unit =
6 {println(x); Thread.sleep(100); finalCountdown((x-1).toByte); 1 / x}
7 scala> finalCountdown(Byte.MaxValue)

b) Vad händer om du gör satsen som riskerar division med noll före det rekursiva
anropet i funktionen finalCountdown ovan?
c) Förklara vad som händer nedan. Varför tar sista raden längre tid än näst sista
raden?

1 scala> def signum(a: Int): Int = if a >= 0 then 1 else -1
2 scala> def add(x: Int, y: Int): Int =
3 if y == 0 then x else add(x + 1, y - signum(y))
4 scala> add(100, 100)
5 scala> add(Int.MaxValue, 0)
6 scala> add(0, Int.MaxValue)

Uppgift 21.? Undersök svansrekursion genom att kasta undantag. Förklara vad som
händer. Kan du hitta bevis för att kompilatorn kan optimera rekursionen till en vanlig
loop?

1 scala> def explode = throw Exception("BANG!!!")
2 scala> explode
3 scala> def countdown(n: Int): Unit =
4 if n == 0 then explode else countdown(n-1)
5 scala> countdown(10)
6 scala> countdown(10000)
7 scala> def countdown2(n: Int): Unit =
8 if n == 0 then explode else {countdown2(n-1); print("no tailrec")}
9 scala> countdown2(10)
10 scala> countdown2(10000)

Uppgift 22.? @tailrec-annotering. Du kan be kompilatorn att ge felmeddelande om
den inte kan optimera koden till en motsvarande while-loop. Detta kan användas
i de fall man vill vara helt säker på att kompilatorn kan optimera koden och det

11Kallas även Curry-funktioner efter matematikern och logikern Haskell Brooks Curry.

116 KAPITEL 3. FUNKTIONER OCH ABSTRAKTION

inte kan finnas risk för en överfull stack (eng. stack overflow) på grund av för djup
anropsnästling.

Prova nedan rader i REPL och förklara vad som händer.

1 scala> def countNoTailrec(n: Long): Unit =
2 if n <= 0L then println("Klar! " + n) else {countNoTailrec(n-1L); ()}
3 scala> countNoTailrec(1000L)
4 scala> countNoTailrec(100000L)
5 scala> import scala.annotation.tailrec
6 scala> @tailrec def countNoTailrec(n: Long): Unit =
7 if n <= 0L then println("Klar! " + n) else {countNoTailrec(n-1L); ()}
8 scala> @tailrec def countTailrec(n: Long): Unit =
9 if n <= 0L then println("Klar! " + n) else countTailrec(n-1L)
10 scala> countTailrec(1000L)
11 scala> countTailrec(100000L)
12 scala> countTailrec(Int.MaxValue.toLong * 2L)

3.3. LABORATION: IRRITEXT 117

3.3 Laboration: irritext

Mål

� Kunna skapa ett större program med din egen kod efter dina egna idéer.
� Kunna använda en editor och terminalen för att iterativt editera, kompilera, och

testa din kod.
� Kunna använda variabler i kombination med alternativ och repetetition i flera

nivåer.
� Kunna stegvis förbättra din kod för att underlätta förändring och öka läsbarhe-

ten.
� Kunna skapa och använda abstraktioner för att generalisera och möjliggöra

återanvändning av kod.

Förberedelser

� Gör övning functions och repetera övning programs innan du påbörjar labora-
tionen.

� Läs appendix ?? och ??.
� Hämta given kod via kursen github-plats.
� Utveckla en första, spelbar version av ditt textspel, som du kan jobba vidare på

under laborationen.
� Hitta någon som spelar en tidig version av ditt spel och läser din kod och ger

återkoppling på kodens läsbarhet. Skriv ner den återkoppling du får.
� Spela någon annans textspel och ge återkoppling på kodens läsbarhet.

3.3.1 Krav

• Du ska skapa ett lagom irriterande textspel med hjälp av en editor, till exempel
VS code (se appendix ??). Spelet ska köras i terminalen.

• Under redovisningen av laborationen ska du redogöra för vilka programme-
ringskoncept du tränat på under utvecklingen av ditt textspel. Du ska också för
handledaren beskriva hur du har förbättrat din kod genom den återkoppling du
fått från någon som spelat ditt spel och läst koden.

• Ditt textspel ska vara lagom irriterande om den som spelar har läst koden,
medan spelet gärna får vara orimligt irriterande för den som inte läst koden.
Det ska gå att klara spelet (du väljer själv vad det innebär) och därmed avsluta
programmet inom rimlig tid med kännedom om koden.

• Försök göra din kod lätt att läsa och förstå, även om själva spelet stundtals kan
vara mer eller mindre obegripligt, knasigt, eller besvärligt, för den spelare som
inte har tillgång till koden... Observera att din kod inte behöver vara ”perfekt”
från början. Börja fritt och förbättra efterhand.

• Allteftersom ditt program blir längre ska du omforma och dela upp din kod i
många, korta abstraktioner med väl valda namn för att öka läsbarheten.

• Din kod ska använda de viktiga begrepp som kursen hittills har behandlat, med
speciellt fokus på det som just du behöver träna mest på.

https://github.com/lunduniversity/introprog/tree/master/workspace/

118 KAPITEL 3. FUNKTIONER OCH ABSTRAKTION

3.3.2 Tips för att komma igång

• Skapa en katalog som innehåller en scala-kodfil med valfritt namn.

• Skriv en enkel @main-metod i den nyskapade kodfilen som endast skriver ut
strängen "Hello World!".

• Kompilera och kör, rätta eventuella fel tills programmet fungerar korrekt.

• När programmet fungerar, börja utöka @main-metoden i din kodfil och imple-
mentera mer funktionalitet, ta en titt under inspiration nedan.

• Börja enkelt och försök formulera vad ditt program ska göra med psuedokod som
kommentarer innan du skriver koden.

• Kompilera och kör vid varje tillägg och håll varje tillägg så litet som möjligt,
så slipper du reda ut en massa svåra följdfel vid kompilering och eventuella
körtidsfel blir mer begripliga.

• Fortsätt utöka tills kraven för labben har uppnåtts.

3.3.3 Inspiration

Här följer en lista med olika förslag på funktioner som du kan välja bland, kombinera
och variera på olika vis. Du kan också låta helt andra funktioner ingå i ditt spel. Det
viktigaste är att du kombinerar kodglädje med lärorika utmaningar :)

• Be användaren logga in. Ge knasiga felmeddelande om användaren inte kan
lösenordet.

• Låt användaren hamna i en irriterande oändlig loop av meningslösa frågor om
den gör ”fel”.

• Beskriv en läskig fantasiplats där användaren befinner sig, till exempel en grotta
| en källare | ett rymdskepp | Kemicentrum.

• Låt användaren välja mellan fåniga vapen, till exempel golvmopp | örontops |
foliehatt | förgiftad kexchoklad.

• Låt användaren välja mellan olika vägar | dörrar | tunnlar | sektionscaféer.
Låt valet styra vilka monster som påträffas. Låt användaren bekämpa monstret
med olika vapen.

• Inför någon slags poäng som redovisas under spelets gång och i slutet.

• Inför olika sorters poäng för hälsa, stridskraft, uppnådd skicklighetsnivå, etc.

• Fråga användaren om mer eller mindre relevanta detaljer: namn | skonum-
mer | favorithusdjur. Ge knasiga kommentarer där dessa detaljer ingår som
delsträngar.

• Spela sten | sax | påse med användaren.

• Spela ”gissa talet” och ge ledtrådar om talet är för litet eller för stort.

• Mät hur lång tid det tar för användaren att klara ditt spel och ge poäng därefter.

3.3. LABORATION: IRRITEXT 119

• Kolla reaktionstiden hos användaren genom att mäta tiden det tar att trycka
Enter efter att man fått vänta en slumpmässig tid på att strängen "NU!" skrivs
ut. Om man trycker Enter innan startutskriften ges blir den uppmätta tiden 0
och på så sätt kan ditt program detektera att användaren har tryckt för tidigt.
Mät reaktionstiden upprepade gånger och ge poäng efter medelvärdet.

• Låt användaren på tid så snabbt som möjligt skriva olika ord baklänges.

• Be användaren skriva en palindrom. Ge poäng efter längd.

• Träna användaren i multiplikationstabellen på tid.

• Låt användaren svara på flervalsfrågor om din favoritfilm.

• Gör det möjligt att ge ett extra argument med en ”fuskkod” som ger användaren
speciella förmågor eller på annat sätt underlättar för användaren under spelets
gång.

120 KAPITEL 3. FUNKTIONER OCH ABSTRAKTION

Kapitel 4

Objekt och inkapsling

Begrepp som ingår i denna veckas studier:

� modul
� singelobjekt
� punktnotation
� tillstånd
� medlem
� attribut
� metod
� paket
� filstruktur
� jar
� classpath
� dokumentation
� JDK
� import
� selektiv import
� namnbyte vid import
� export
� tupel
� multipla returvärden

� block
� lokal variabel
� skuggning
� lokal funktion
� funktioner är objekt med apply-

metod
� namnrymd
� synlighet
� privat medlem
� inkapsling
� getter och setter
� principen om enhetlig access
� överlagring av metoder
� introprog.PixelWindow
� initialisering
� lazy val
� typalias
� dod: maskinkod

121

122 KAPITEL 4. OBJEKT OCH INKAPSLING

4.1 Teori

4.1.1 Vad rymmer sköldpaddan i Kojo i sitt tillstånd?

position, riktning, färg, bredd, penna uppe/nere, fyll-färg

4.1.2 Vad är ett objekt?

• Ett objekt är en abstraktion som...

– kan innehålla data som objektet ”håller reda på” och
– kan erbjuda operationer som gör något eller ger ett värde

• Exempel: Sköldpaddan i Kojo

– Vilken data sparas av sköldpaddan?
position, rikting, pennfärg, ...

– Vilka operationer kan man be sköldpaddan att utföra?
fram, höger, vänster, ...

• Terminologi:

– objektets data sparas i variabler som kallas attribut
– alla variablers värden utgör tillsammans objektets tillstånd
– operationerna är funktioner i objektet och kallas metoder
– objektets delar (attribut, metoder, etc.) kallas medlemmar

4.1.3 Deklarera, allokera, referera

Olika saker man kan göra med objekt:

• deklarera: att skriva kod som beskriver objekt;
finns flera sätt: singelobjekt, klass, tupel, ...

4.1. TEORI 123

• allokera: att skapa plats i minnet för objektet vid körtid
• referera: att använda objektet via ett namn;

man kommer åt innehållet i ett objekt med punktnotation:
ref.medlem

• (avallokera): att frigöra minne för objekt som inte längre används; detta sker
automatiskt i Scala, Java, C#, m.fl tack vare skräpsamlaren, men i många
andra språk, t.ex. C++, får man själv hålla reda på avallokering, vilket är knepigt
och det blir lätt svåra buggar.

4.1.4 Olika sätt att allokera objekt

1. Använda en färdig funktion som skapar ett objekt åt oss, t.ex. apply:

Vector(1,2,3) // skapa Vector-objekt med apply-metod
Vector.apply(1,2,3) // explicit apply

En funktion som skapar objekt kallas fabriksmetod (eng. factory method).

2. Göra new på en klass (mer om klasser senare):

new introprog.PixelWindow() // skapa ett fönsterobjekt

Med new kan man skapa många upplagor av samma typ av objekt.
I Scala 3 kan new ofta utelämnas: introprog.PixelWindow()

3. Deklarera ett singelobjekt med nyckelordet object

• Ett singelobjekt finns i exakt en upplaga.
• Allokeras automatiskt första gången man refererar objektet;

man behöver inte, och kan inte, skriva new.

4. Använda en tupel, exempel: val p = (200, 300)

4.1.5 Vad är ett singelobjekt?

• Ett singelobjekt (eng. singelton) deklareras med nyckelordet object och används
för att samla medlemmar (eng. members) som hör ihop.

• Ett singelobjekt kallas också modul (eng. module).
• Medlemmarna kan t.ex. vara variabler (val, var) och metoder (def).
• En metod är en funktion som finns i ett objekt. Metoder kallas även opera-

tioner.
• Exempel: singelobjekt/modul som hanterar highscore:

object Highscore {
var highscore = 0
def isHighscore(points: Int): Boolean = points > highscore

}

• Krullparenteser är valfria i Scala 3:
du kan använda kolon och indentering i stället.

124 KAPITEL 4. OBJEKT OCH INKAPSLING

• Tanken är ofta att abstraktioner ska vara användbar i annan kod, för att under-
lätta när man bygger applikationer, och kallas då ett API (Application Program-
ming Interface). Exempel: ett highscore-API.

4.1.6 Allokering: minne reserveras med plats för data

object Highscore:
var highscore = 0
def isHighscore(points: Int): Boolean = points > highscore

Highscore

highscore 0

4.1.7 Punktnotation, tillståndsförändring med tilldelning

scala> Highscore.isHighscore(5)
res0: Boolean = true

scala> Highscore.highscore = 42

Highscore

highscore 42

4.1.8 Punktnotation och operatornotation

Punktnotation där metodanropet har ett enda argument:

objekt.metod(argument)

kan även skrivas med infix operatornotation:

objekt metod argument

4.1. TEORI 125

Exempel:
1 + 2 1.+(2)
1 to 42 1.to(42)
Highscore isHighscore 1000

Metoder vars namn börjar med bokstäver ger varning vid anrop med operator-

notation om ej deklarerad med infix före def, detta för att uppmuntra konsekvent
användning av punktnotation.

4.1.9 Namnrymd och skuggning

• En namnrymd1 (eng. namespace) är en omgivning (kontext) i vilken alla namn
är unika. Genom att skapa flera olika namnrymder kan man undvika ”krockar”
mellan lika namn med olika betydelser (homonymer).
Exempel: mejladresser kim@företag1.se 6= kim@företag2.se

• Medlemmarna i ett singelobjekt finns i en egen namnrymd, där alla namn måste
vara unika på samma nivå. De ”krockar” inte med namn ”utanför” objektet. Dock
kan det förekomma skuggning (eng. shadowing):

object Game:

val highscore = 42 // ett annat värde än Game.Highscore.highscore

object Highscore:
var highscore = 0 // ett annat värde än Game.highscore
def isHighscore(points: Int): Boolean = points > highscore

4.1.10 Inkapsling: att dölja interna delar

Med nyckelordet private döljs interna delar för omvärlden. Privata medlemmar kan
bara refereras inifrån objektet. Denna princip kallas inkapsling (eng. encapsulation).

object Highscore:
private var myHighscore = 0 // namnet myHighscore syns ej utåt
def highscore: Int = myHighscore // en s.k. getter ger ett attributvärde
def isHighscore(points: Int): Boolean = points > myHighscore
def update(points: Int): Unit = if isHighscore(points) then myHighscore = points

Varför har man nytta av detta?

• Förhindra att man av misstag ändrar objekts tillstånd på fel sätt.
• Förhindra användning av kod som i framtiden kan komma att ändras.
• Erbjuder en enklare ”utsida” genom dölja komplexitet ”på insidan”.
• Inte ”skräpa ner” namnrymden med ”onödiga” namn.

Nackdelar?
1https://sv.wikipedia.org/wiki/Namnrymd

https://sv.wikipedia.org/wiki/Namnrymd

126 KAPITEL 4. OBJEKT OCH INKAPSLING

• Begränsar användningen, har ej tillgång till alla delar.
• Svårare att experimentera med ett API medan man försöker förstå det.

4.1.11 Idiom: Privata variabler med understreck vid ”krock”

Idiom: (d.v.s. ett typiskt, allmänt accepterat sätt att skriva kod)

• Om namnet på en privat variabel krockar med namnet på en getter brukar man
börja det privata namnet med ett understreck:

object Highscore:
private var _highscore = 0
def highscore: Int = _highscore
def isHighscore(points: Int): Boolean = points > _highscore
def update(points: Int): Unit = if isHighscore(points) then _highscore = points

Namnkrock mellan metoder och variabler uppkommer inte i Java m.fl. språk, där
dessa finns i olika namnrymder. Men i Scala har man valt att principen om enhetlig
access ska gälla och alla medlemmar (både metoder och variabler) finns därmed i en
gemensam namnrymd.

4.1.12 Principen om enhetlig access

• I Scala så ser access av attribut och anrop av metoder, som är deklarerade utan
parameterlista, likadana ut.

object A1 { val a = 42 }
object A2 { def a = (41 + math.random()).round.toInt }

scala> A1.a
scala> A2.a

• Många andra språk har olika syntax för access av attribut och anrop av metoder
(t.ex. Java m.fl., där alla metodanrop måste ha parenteser).

• Fördel: Det går lätt att ändra i implementationen och växla mellan att använda
attribut och använda metoder utan att den kod som använder din implementa-
tion behöver ändras.

• Nackdel: Det kan bli namnkrockar mellan metoder och attribut eftersom de
finns i samma namnrymd.

4.1.13 Exempel: singelobjektet med förändringsbart tillstånd

object mittBankkonto:
val kontonr: Long = 123456789L
var saldo: Int = 1000
def ärSkuldsatt: Boolean = saldo < 0

4.1. TEORI 127

scala> mittBankkonto.saldo -= 25000

scala> mittBankkonto.ärSkuldsatt
res0: Boolean = true

(Vi ska i nästa vecka se hur man med s.k. klasser kan skapa många upplagor av
samma typ av objekt, så att vi kan ha flera olika bankkonto.)

4.1.14 Exempel: tillstånd, attribut

Ett objekts tillstånd är den samlade uppsättningen av värden av alla de attribut som
finns i objektet.

object mittBankkonto:
val kontonr: Long = 123456789L
var saldo: Int = 1000
def ärSkuldsatt: Boolean = saldo < 0

mittBankkonto

kontonr 123456789L
saldo 1000

4.1.15 Tillståndsändring

När en variabel tilldelas ett nytt värde sker en tillståndsändring. Ett förändrings-
bart objekt (eng. mutable object) har ett förändringsbart tillstånd (eng. mutable
state).

scala> mittBankkonto.saldo -= 25000

scala> mittBankkonto.saldo
res1: Int = -24000

mittBankkonto

kontonr 123456789L
saldo -24000

128 KAPITEL 4. OBJEKT OCH INKAPSLING

4.1.16 Modul

• En modul samlar kod som utgör en sammanhållen, avgränsad uppsättning ab-
straktioner som kan användas av annan kod för att lösa ett specifikt (del)problem.

• I Scala finns två sätt att skapa moduler:2

– singelobjekt med nyckelordet object och
– paket med nyckelordet package
– Liknar varandra; t.ex. kan man använda punktnotation och göra import

på medlemmar i både singelobjekt och paket.
– Skillnader:

* för varje paket skapar kompilatorn underkataloger för maskinkoden
* paket kan delas upp i flera kodfiler – ett objekt måste vara i en kodfil
* objekt kan ärva medlemmar från klasser & traits (mer sen om detta)

4.1.17 Deklarera paket

Med nyckelordet package först i en kodfil ges alla deklarationer en gemensam namn-
rymd.
Denna kod ligger i filen f1.scala:

package mittpaket

object A:
def hälsa: Unit = println(B.hälsning)

Denna kod ligger i filen f2.scala:

package mittpaket

object B:
def hälsning: String = "hejsan"

Singelobjekten A och B finns båda i namnrymden mittpaket.

4.1.18 Kompilera paket

Paketdeklarationer medför att kompilatorn placerar bytekodfiler i en katalog med
samma namn som paketet:

1 > scala compile . // samkompilering av filer i aktuell katalog
2 > ls .scala-build/*/classes/main/
3 mittpaket
4 > ls .scala-build/*/classes/main/mittpaket
5 'A$.class' A.class A.tasty 'B$.class' B.class B.tasty

Idiom, syntax och semantik:

• Paketnamn brukar bestå av enbart små bokstäver.
2en.wikipedia.org/wiki/Modular_programming

https://en.wikipedia.org/wiki/Modular_programming

4.1. TEORI 129

• Om paketnamn innehåller punkt(er), skapas nästlade underpaket, exempel:
p1.p2.p3 kompilerar kod till katalogen p1/p2/p3

• Du kan ha flera paket och även nästlade paket i samma kodfil, genom att
använda klammerparentes (eller kolon+indentering):
package p1 { object A; package p2 { object B }}
(men detta är inte så vanligt)

4.1.19 Paket i REPL

Paket funkar inte i REPL:

scala> package mittpaket { def hej = println("Hej") }
-- [E103] Syntax Error: -------------------------------
1 |package mittpaket { def hej = println("Hej") }

|^^^^^^^
|this kind of statement is not allowed here

4.1.20 Vad är en tupel?

• En n-tupel är ett objekt som samlar n st objekt i en enkel datastruktur med
koncis syntax; du behöver bara parenteser och kommatecken för att skapa
tupel-objekt: (1,'a',"hej")

• Elementen kan alltså vara av olika typ.
• (1,'a',"hej") är en 3-tupel av typen: (Int, Char, String)
• Du kan komma åt de enskilda elementen med _1, _2, ... _n
• Du kan även använda apply(0), apply(1), ... apply(n-1)

1 scala> val t = ("hej", 42, math.Pi)
2 t: (String, Int, Double) = (hej,42,3.141592653589793)
3

4 scala> t._1 // 1-baserad access
5 res0: String = hej
6

7 scala> t(1) // 0-baserad indexering, implicit apply
8 res1: Int = 42

• Tupler är praktiska när man inte vill ta det lite större arbetet att skapa en egen
klass. (Men med klasser kan man göra mycket mer än med tupler.)

4.1.21 Tupler som parametrar och returvärde.

• Tupler är smidiga som parametrar om man vill kombinera värden som hör
ihop, till exempel x- och y-värdena i en punkt: (3, 4)

• Tupler är smidiga när man på ett enkelt och typsäkert sätt vill låta en funktion
returnera mer än ett värde.

130 KAPITEL 4. OBJEKT OCH INKAPSLING

scala> def längd(p: (Double, Double)): Double = math.hypot(p._1, p._2)

scala> def vinkel(p: (Double, Double)): Double = math.atan2(p._1, p._2)

scala> def polär(p: (Double, Double)): (Double, Double) = (längd(p), vinkel(p))

scala> polär((3,4))
res2: (Double, Double) = (5.0,0.6435011087932844)

• Om typerna passar kan man skippa dubbla parenteser vid ensamt tupel-
argument:

1 scala> polär(3,4)
2 res3: (Double, Double) = (5.0,0.6435011087932844)

https://sv.wikipedia.org/wiki/Polära_koordinater

4.1.22 Ett smidigt sätt att skapa 2-tupler med metoden ->

Det finns en metod vid namn -> som kan användas på objekt av godtycklig typ för
att skapa par:

1 scala> ("Ålder", 42)
2 res0: (String, Int) = (Ålder,42)
3

4 scala> "Ålder".->(42)
5 res1: (String, Int) = (Ålder,42)
6

7 scala> "Ålder" -> 42
8 res2: (String, Int) = (Ålder,42)
9

10 scala> Vector("Ålder" -> 42, "Längd" -> 178, "Vikt" -> 65)
11 res3: scala.collection.immutable.Vector[(String, Int)] =
12 Vector((Ålder,42), (Längd,178), (Vikt,65))

4.1.23 Typalias för att abstrahera typnamn

Med hjälp av nyckelordet type kan man deklarera ett typalias för att ge ett alterna-
tivt namn till en viss typ. Exempel:

1 scala> type Pt = (Int, Int) // typalias
2 scala> type Pts = Vector[Pt] // nästlat typalias
3

4 scala> def distToOrigo(pt: Pt): Double = math.hypot(pt._1, pt._2)
5

6 scala> val xs: Pts = Vector((1,1), (2,2), (3,4))
7 val xs: Pts = Vector((1,1), (2,2), (3,4))
8

9 scala> xs.head

https://sv.wikipedia.org/wiki/Pol%C3%A4ra_koordinater

4.1. TEORI 131

10 val res0: Pt = (1,1)
11

12 scala> xs.map(distToOrigo)
13 val res1: Vector[Double] = Vector(1.4142135623730951, 2.8284271247461903, 5.0)

Typalias kan vara bra när:

• man har en lång och krånglig typ och vill använda ett kortare namn,
• man vill kunna lätt byta implementation senare

(t.ex. om man vill använda en egen klass i stället för en tupel).

4.1.24 Lata variabler med fördröjd initialisering

Med nyckelordet lazy före val sker fördröjd (ä.k. ”lat”) evaluering av initialiserings-
uttrycket.
Motsatsen (det normala i Scala) kallas strikt evaluering.

1 scala> val strikt = Vector.fill(1000000)(math.random())
2 strikt: scala.collection.immutable.Vector[Double] =
3 Vector(0.7583305221813246, 0.9016192590993339, 0.770022134260162, 0.15667718184929746, ...
4

5 scala> lazy val lat = Vector.fill(1000000)(math.random())
6 lat: scala.collection.immutable.Vector[Double] = <lazy>
7

8 scala> lat
9 res0: scala.collection.immutable.Vector[Double] =
10 Vector(0.5391685014341797, 0.14759775960530275, 0.722606095900537, 0.9025572787055386, ...

En lazy val initialiseras inte vid deklarationen utan senare när den refereras
första gången.

4.1.25 Singelobjekt är lata

• Singelobjekt allokeras inte direkt vid deklaration; allokeringen sker först då
objektet refereras första gången.

• Exempel:

object mittLataObjekt:

println("jag är lat")

val storArray = { println("skapar stor Array"); Array.fill(10000)(42) }

lazy val ännuStörreArray = Array.fill(Int.MaxValue)(42)

När sker utskrifterna?
När allokeras variablerna?

4.1.26 Vad är skillnaden mellan val, var, def, lazy val?

132 KAPITEL 4. OBJEKT OCH INKAPSLING

object exempel:

println("hej exempel")

val förAlltidSammaReferens = {println("hej val"); math.random()}

var kanÄndrasMedTilldelning = {println("hej var"); math.random()}

def evaluerasVidVarjeAnrop = {println("hej def"); math.random()}

lazy val fördröjdInit = {println("hej lazy val"); math.random()}

I vilken ordning sker utskrifterna?

Lat evaluering är en viktig princip inom funktionsprogrammering som möjliggör
effektiva, oföränderliga datastrukturer där element allokeras först när de behövs.
en.wikipedia.org/wiki/Lazy_evaluation

4.1.27 Fallgrop: initialiseringsordning och defaultvärden

1 scala> object X:
2 val a = b
3 val b = 42
4

5 scala> val test = X.a
6 val test: Int = 0 // AAAARGH!

Om du använder en variabel i ett objekt innan den är deklarerad får du ett defaultvär-
den (noll eller null). Mer om detta w05.

Lösning: byt ordning om det går, annars gör a till en lazy val

1 scala> object Y:
2 lazy val a = b
3 val b = 42
4

5 scala> val funkar = Y.a
6 val funkar: Int = 42 // :)

4.1.28 Programmeringsparadigm

en.wikipedia.org/wiki/Programming_paradigm:

• Imperativ programmering: programmet är uppbyggt av sekvenser av olika
satser som läser och ändrar tillstånd

• Objektorienterad programmering: en sorts imperativ programmering där
programmet består av objekt som kapslar in tillstånd och erbjuder operationer
som läser och ändrar tillstånd.

• Funktionsprogrammering: programmet är uppbyggt av samverkande (äkta)
funktioner som undviker föränderlig data och tillståndsändringar. Oföränderli-
ga datastrukturer skapar effektiva program i kombination med lat evaluering
och rekursion.

https://en.wikipedia.org/wiki/Lazy_evaluation
https://en.wikipedia.org/wiki/Programming_paradigm

4.1. TEORI 133

4.1.29 Funktioner är äkta objekt i Scala

Scala visar hur man kan förena (eng. unify)
objektorientering och funktionsprogrammering:

En funktion är ett objekt som har en apply-metod.

scala> object öka:
def apply(x: Int) = x + 1

scala> öka.apply(1)
res0: Int = 2

scala> öka(1) // metoden apply behöver ej skrivas explicit
res1: Int = 2

4.1.30 Fördjupning: Äkta funktionsobjekt är av funktionstyp

Egentligen, mer precist:
En funktion är ett objekt av funktionstyp som har en apply-metod.

scala> object öka extends (Int => Int):
def apply(x: Int) = x + 1

scala> öka(1)
res2: Int = 2

scala> Vector(1,2,3).map(öka)
res3: scala.collection.immutable.Vector[Int] = Vector(2, 3, 4)

scala> öka. // tryck TAB
... andThen apply compose ... toString ...

Mer om extends senare i kursen...

4.1.31 Vad är en klass?

Singelobjekt finns bara i exakt EN upplaga:

object mittBankkonto:
val kontonr: Long = 123456789L
var saldo: Int = 1000
def ärSkuldsatt: Boolean = saldo < 0

Om vi vill ha flera bankkonton behöver vi en klass (eng. class).

4.1.32 Vad är en klass?

En klass kan användas för att skapa många objekt av samma typ. Varje upplaga har
sitt eget tillstånd och kallas en instans av klassen (mer om detta nästa vecka).

134 KAPITEL 4. OBJEKT OCH INKAPSLING

class Bankkonto(val kontonr: Long, var saldo: Int): // klassbeskrivning
def ärSkuldsatt: Boolean = saldo < 0

1 scala> val bk1 = new Bankkonto(123456789L, 1000) // instansiera en klass
2 bk1: Bankkonto = Bankkonto@5d7399f9
3

4 scala> val bk2 = new Bankkonto(6789012L, -200)
5 bk2: Bankkonto = Bankkonto@286855ea
6

7 scala> bk1.saldo
8 res0: Int = 1000
9

10 scala> bk2.ärSkuldsatt
11 res1: Boolean = true

4.1.33 Använda klassen Color

• I JDK (Java Development Kit) finns hundratals paket (moduler) och tusentals
färdiga klasser. 3

• En av dessa klasser heter Color och ligger i paketet java.awt och används för
att representera RGB-färger med ett tal som beskriver andelen Rött, Grönt och
Blått.

1 scala> val röd = java.awt.Color(255, 0, 0) // en maximalt röd färg
2

3 scala> import java.awt.Color // namnet Color tillgängligt i aktuell namnrymd
4

5 scala> Color. // tryck TAB och se alla publika medlemmar

• Använd klassen java.awt.Color på veckans övning.
• Hur ska jag veta hur jag kan använda en färdig klass?

1. Läs dokumentationen, visar ”utsidan” som är enklare (?) än ”insidan”
2. Experimentera med hjälp av REPL och/eller en IDE
3. Läs koden, visar ”insidan” med all sin komplexitet; kan vara knepigt...

4.1.34 Lägg till metoder i efterhand med extension

• Ofta vill man kunna lägga till metoder på godtyckliga typer i efterhand, speciellt
när det gäller typer som finns i kod som någon annan skrivit.

• Detta går att göra i Scala med nyckelordet extension:
extension (s: String) def skrikBaklänges = s.reverse.toUpperCase

• En extensionsmetod kan anropas med punktnotation som om den vore en
medlem av typen.

3https://stackoverflow.com/questions/3112882/

https://stackoverflow.com/questions/3112882/

4.1. TEORI 135

• Det går också att anropa en extensionsmetod som en fristående funktion utan
punktnotation.

1 scala> extension (s: String) def skrikBaklänges = s.reverse.toUpperCase
2 def skrikBaklänges(s: String): String
3

4 scala> "hejsan".skrikBaklänges
5 val res1: String = NASJEH
6

7 scala> skrikBaklänges("goddag")
8 val res2: String = GADDOG

4.1.35 Kollektiva extensionsmetoder

• Det går bra att sammanföra flera funktioner under en och samma extension så
här:

extension (s: String)
def baklänges = s.reverse
def skrik = s.toUpperCase

• Detta kallas kollektiva extensionsmetoder (eng. collective extension met-
hods).

• Notera att det inte ska vara något kolon efter extension-deklarationens första
rad.

4.1.36 Import av alla namn i en viss modul

• Man kan importera alla namn i en viss modul (singelobjekt eller paket). Detta
kallas på engelska för wildcard import.

– Syntax: import p1.p2.*

• Exempel:

1 scala> import java.awt.* // importera ALLA namn i paketet awt

• Fördelar:

1. Slipper skriva import på varje enskilt namn.
2. De abstraktioner som är tänkta att användas tillsammans blir alla synliga

i aktuell namnrymd (eng. in scope).

• Nackdelar:

1. Kan ge namnkrockar och svåra buggar vid namnskuggning.
2. Man ”skräpar ner” sin namnrymd med namn som kanske inte är tänkta

att användas, men som vid misstag, t.ex. felstavning, ändå ger effekt.
3. Man kan inte genom att studera import-deklarationerna se exakt vilka

namn som används, vilket kan göra det svårare att förstå vad koden gör.

136 KAPITEL 4. OBJEKT OCH INKAPSLING

4.1.37 Namnbyte vid import

• Man kan undvika namnkrockar med namnbyte vid import.
• Syntax: import p1.p2.befintligtNamn as nyttNamn
• Exempel:

1 scala> import java.awt.Color as JColor //importera och byt namn
2

3 scala> val grön = JColor(0, 255, 0) //skapa instans med nya namnet
4 grön: java.awt.Color = java.awt.Color[r=0,g=255,b=0]

4.1.38 Exkludera (gömma) namn vid import

• Man kan undvika namnkrockar vid import genom att exkludera vissa namn
(eng. import hiding).

• Syntax: import p1.p2.exkluderaMig as _

• Exempel:

1 scala> import java.awt.{Event as _, *} // importera allt UTOM Event

• Kan kombineras med namnbyte och allimport:

1 scala> import java.awt.{Event as _, Color as JColor, *}

4.1.39 Lokal import-deklaration

• Man kan begränsa ”nedskräpningen” av namnrymden genom att göra import-
deklarationer så lokalt som möjligt, till exempel i ett objekt eller i en funktions-
kropp.

• Exempel:

object A:
def x =

import java.awt.Color.RED
/* ... namnet RED syns bara lokalt i denna funktion */

4.1. TEORI 137

4.1.40 Export

• import ger direkt synlighet lokalt inuti en namnrymd
• Med export kan du göra motsatsen till import:

göra medlemmar direkt synliga utanför en namnrymd.

object A:
import java.awt.Color.* // gör färger synliga direkt inuti detta objekt
def test = RED // färgen RED synlig direkt i lokala namnrymden

object B:
export java.awt.Color.* // RED blir medlem som syns utåt via B.RED
export math.{sin, cos} // sin och cos blir metoder i B

scala> A.RED
-- [E008] Not Found Error: ---
1 |A.RED
|^^^^^
|value RED is not a member of object A

scala> B.RED
val res0: java.awt.Color = java.awt.Color[r=255,g=0,b=0]

scala> (B.cos(0), B.sin(0))
val res1: (Double, Double) = (1.0,0.0)

4.1.41 Använda dokumentation för färdiga klasser.

• Dokumentation för standardbiblioteket i Scala finns här:
https://www.scala-lang.org/api/

• Övning: Leta upp dokumentationen för metoden reduceLeft i klassen Vector.

• Dokumentation för standardbiblioteket i Java finns här:
https://docs.oracle.com/en/java/javase/21/docs/api/index.html

• Övning: Leta upp dokumentationen för java.awt.Color
• Läs mer i Appendix E om dokumentation.

4.1.42 Vad är en jar-fil?

• Jar-filer används för att distribuera färdigkompilerad kod så att andra kan
använda den enkelt

• Förkortningen jar kommer från ”Java Archive”
• En jar-fil följer ett standardiserat filformat och används för att paketera flera

filer i en och samma fil, exempelvis:

– .class-filer med bytekod
– resursfiler för en applikation t.ex. bilder .png, .jpg, etc
– information om vilken klass som innehåller main-funktionen

https://www.scala-lang.org/api/
https://docs.oracle.com/en/java/javase/21/docs/api/index.html

138 KAPITEL 4. OBJEKT OCH INKAPSLING

– etc.

• En .jar-fil komprimeras på samma sätt som en .zip-fil.
• Fördjupning för den intresserade:

https://en.wikipedia.org/wiki/JAR_(file_format)

4.1.43 Öppen källkod på Maven Central

• På Maven Central som hanteras av företaget Sonatype finns tusentals öppet
tillgängliga kodbibliotek publicerade som jarfiler.

• Du kan söka bland alla Scala-bibliotek här:
https://index.scala-lang.org/

• Du kan söka bland alla bibliotek här:
https://search.maven.org/

4.1.44 Vad är classpath?

• Hur hittar kompilatorn färdiga moduler?
• Kompilatorerna scalac och javac och programmen scala och java som kör

igång JVM använder en lista med filsökvägar kallad classpath när de söker
efter kompilerad kod.

• Scalas standardbibliotek läggs automatiskt på classpath.
• Med hjälp av optionen --jar kan du lägga till en jar-fil till classpath.
• Exempel: (punkt används för att ange aktuell katalog)

scala run . --jar introprog.jar

4.1.45 Färdiga grafikmetoder i klassen PixelWindow

• På labben ska du använda en .jar-fil med kodbiblioteket introprog.
• Där finns klassen PixelWindow som kan skapa ritfönster.
• Du kan starta REPL så här om du har laddat ner jar-filen manuellt från

https://fileadmin.cs.lth.se/introprog.jar

> scala repl --jar introprog.jar

• Testa PixelWindow i REPL med:

scala> val w = introprog.PixelWindow(300, 200, "hejsan")

• Studera dokumentationen för introprog.PixelWindow här:
https://fileadmin.cs.lth.se/pgk/api

https://en.wikipedia.org/wiki/JAR_(file_format)
https://index.scala-lang.org/
https://search.maven.org/
https://fileadmin.cs.lth.se/introprog.jar
https://fileadmin.cs.lth.se/pgk/api

4.1. TEORI 139

4.1.46 Automatiska beroenden med Scala CLI i REPL:

• Du kan istället låta scala-cli automatiskt ladda ner ett färdigt kodbibliotek
som är publicerat på Maven Central och lägga det på classpath med optionen
--dep som är en förkortning av dependency.

• Notera antalet kolon i adressen till kodbiblioteket:

> scala repl . --dep se.lth.cs::introprog:1.4.0
Welcome to Scala 3.7.3 (17.0.3, Java OpenJDK 64-Bit Server VM).
Type in expressions for evaluation. Or try :help.

scala> introprog.Dialog.show("hello introprog")

4.1.47 Köra program + kodbiblitek med Scala CLI

• scala-cli kan inkludera kodbibliotek från Maven Central om du skriver en
”magisk” kommentar i början av din .scala-filen:

//> using scala 3.7.3
//> using dep se.lth.cs::introprog:1.4.0

@main def run = introprog.Dialog.show("hello introprog")

Notera > efter //
• När du kör ditt program såhär så kommer Scala CLI att ladda ner kodbiblioteket

om det inte redan är gjort:

> scala run .

• Läs mer här:
https://index.scala-lang.org/lunduniversity/introprog-scalalib och i
Appendix C, stycket om Scala CLI. Mer om //> using här:
https://scala-cli.virtuslab.org/docs/reference/directives

4.1.48 Kompilera om vid varje ändring

Ange optionen --watch så körs kommandot om varje gång du sparar en scala-fil med
Ctrl+S.

> scala compile . --watch

Kan skrivas kortare:

> scala compile . -w

Fungerar också för run-kommandot, men det är inte lika användbart om appen är
interaktiv och väntar på input från användaren innan den avslutas.

> scala run . -w

https://index.scala-lang.org/lunduniversity/introprog-scalalib
https://scala-cli.virtuslab.org/docs/reference/directives

140 KAPITEL 4. OBJEKT OCH INKAPSLING

Gör så små ändringar som möjligt och kompilera och testa vid varje ändring!
Många ändringar kan ge svårhittade följdfel...

4.2. ÖVNING OBJECTS 141

4.2 Övning objects

Mål

� Kunna skapa och använda objekt som moduler.
� Kunna förklara hur nästlade block påverkar namnsynlighet och namnöverskugg-

ning.
� Kunna förklara begreppen synlighet, privat medlem, namnrymd och namnskugg-

ning.
� Kunna skapa och använda tupler.
� Kunna skapa funktioner som har multipla returvärden.
� Kunna förklara den semantiska relationen mellan funktioner och objekt i Scala.
� Kunna förklara kopplingen mellan paketstruktur och kodfilstruktur.
� Kunna använda färdiga kodbibliotek i jar-filer.
� Kunna använda import av medlemmar i objekt och paket.
� Kunna byta namn vid import.
� Kunna förklara skillnaden mellan import och export.
� Kunna skapa och använda variabler med fördröjd initialisering.

Förberedelser

� Studera begreppen i kapitel 4
� Läs om hur man fixar buggar i appendix ??.

4.2.1 Grunduppgifter; förberedelse inför laboration

Uppgift 1. Para ihop begrepp med beskrivning.

Koppla varje begrepp med den (förenklade) beskrivning som passar bäst:

modul 1 A funktion som är medlem av ett objekt
singelobjekt 2 B modul som kan ha tillstånd; finns i en enda upplaga
paket 3 C kodenhet med abstraktioner som kan återanvändas
import 4 D modul som skapar namnrymd; maskinkod får egen katalog
export 5 E tillhör ett objekt; nås med punktnotation om synlig
lat initialisering 6 F gör namn tillgängligt lokalt utan att hela sökvägen behövs
medlem 7 G allokering sker först när namnet refereras
attribut 8 H variabel som utgör (del av) ett objekts tillstånd
metod 9 I omgivning där är alla namn är unika
privat 10 J metoder med samma namn men olika parametertyper
överlagring 11 K modifierar synligheten av en objektmedlem
namnskuggning 12 L lokalt namn döljer samma namn i omgivande block
namnrymd 13 M ändring mellan def och val påverkar ej användning
enhetlig access 14 N alternativt namn på typ som ofta ökar läsbarheten
punktnotation 15 O används för att komma åt icke-privata delar
typalias 16 P gör namn synligt utåt som medlem i detta objekt

142 KAPITEL 4. OBJEKT OCH INKAPSLING

Uppgift 2. Nästlade singelobjekt, import, synlighet och punktnotation. I den tvådimen-
sionella Underjorden bor Mullvaden och Masken. Masken har gömt sig för Mullvaden
och befinner sig på en plats långt bort. Masken har även gjort delar av sin position
osynlig för omvärlden:

object Underjorden:
var x = 0
var y = 1

object Mullvaden:
var x = Underjorden.x + 10
var y = Underjorden.y + 9

object Masken:
private var x = Mullvaden.x
var y = Mullvaden.y + 190
def ärMullvadsmat: Boolean = ???

a) Skapa ovan kod i filen Underjorden.scala med en editor och implementera
predikatet ärMullvadsmat så att det blir sant om mullvadens koordinater är samma
som maskens.
b) Testa livet i Underjorden genom att klistra in din modul i REPL. Importera
Underjordens medlemmar med asterisk så att du ser Mullvaden och Masken. Flytta
med hjälp av tilldelning Maskens y-koordinat så att Masken hamnar på samma plats
som Mullvaden. Kontrollera att predikatet ärMullvadsmat fungerar som tänkt.
c) Importera därefter allt i Mullvaden och sedan allt i Masken och tilldela x ett nytt
värde enligt raderna 1–3 nedan. Vad ger uttrycken på raderna 4–6 nedan för värde?
Förklara vad som händer i termer av namnöverskuggning och synlighet?

1 scala> import Mullvaden.*
2 scala> import Masken.*
3 scala> x = -1
4 scala> Mullvaden.x
5 scala> Masken.x
6 scala> Underjorden.x

Uppgift 3. Export.

a) Jämför import och export genom att beskriva en likhet och en skillnad.
b) Skapa ett exempel i REPL som demonstrerar nyttan med export.

Uppgift 4. Tupler. Tupler sammanför flera olika värden i ett oföränderligt objekt.
Nedan används tupler för att representera en 3D-punkt i underjorden med koordinater
(x, y, z) av typen (Int, Int, Double), där z-koordinaten anger hur djupt ner i
underjorden punkten ligger. På en hemlig plats finns uppgången till överjorden.

object Underjorden3D:
private val hemlis = ("uppgången till överjorden", (0, 0, 0.0))

object Mullvaden:
var pos = (5, 3, math.random() * 10 + 1)
def djup = ???

4.2. ÖVNING OBJECTS 143

object Masken:
private var pos = (0, 0, 10.0)
def ärMullvadsmat: Boolean = ???
def ärRaktUnderUppgången: Boolean = ???

a) Funktionen djup ska ge z-koordinaten för Mullvaden. Vilken typ har djup?
b) Vilken typ har hemlis?
c) Skriv in koden för Underjorden3D i en editor och implementera de saknade delar-
na. Predikatet ärMullvadsmat ska vara sant om Masken finns på samma plats som
Mullvaden. Predikatet ärRaktUnderUppgången ska vara sant om x- och y-koordinaterna
sammanfaller med den hemliga uppgången till överjorden. Testa så att dina imple-
mentationer fungerar i REPL.
d) En tupel med n värden kallas n-tupel. Om man betraktar det tomma värdet ()
som en tupel, vad kan man då kalla detta värde?

Uppgift 5. Lat initialisering. Med lazy val kan man fördröja initialiseringen.

a) Vad ger raderna 2 och 3 nedan för resultat?

1 scala> lazy val z = { println("nu!"); Array.fill(1e1.toInt)(0)}
2 scala> z
3 scala> z

b) Prova ovan igen men med så stor array att minnet blir fullt. När sker allokeringen?
c) Singelobjekt är lata. Initialiseringsordningen kan bli fel.

object test:
object zzz { val a = { println("nu!"); 42} }
object buggig { val a = b ; val b = 42 }
object funkar { lazy val a = b; val b = 42 }

Klistra in modulen test i REPL. När skrivs "nu!" ut?
d) Vad händer i REPL om du refererar de tre olika a-variablerna?
e) Vad är det för skillnad på lazy val a = uttryck och def b = uttryck ?

Uppgift 6. Extensionsmetoder. Extensionsmetoder möjliggör punktnotation på värden
av befintliga typer.

a) Skapa extensionsmetod på heltal som möjliggör inkrementering.

scala> 42.inc
val res0: Int = 43

b) Skapa extensionsmetod på heltal som möjliggör dekrementering.

scala> 42.dec
val res1: Int = 41

c) Sammanför extensionsmetoderna så att de blir kollektiva, alltså under en och
samma extension. Använd även math.incrementExact och math.decrementExact
efter att du sökt upp dokumentationen för dessa här: https://docs.oracle.com/en/
java/javase/17/docs/api/

https://docs.oracle.com/en/java/javase/17/docs/api/
https://docs.oracle.com/en/java/javase/17/docs/api/

144 KAPITEL 4. OBJEKT OCH INKAPSLING

d) Vad är fördelen med math.incrementExact och math.decrementExact?

Uppgift 7. Jar-fil. Classpath. Paket. En jar-fil används för att samla färdigkompilerade
program, kod, dokumentation, resursfiler, etc, i en enda fil. En jar-fil är komprimerad
på samma sätt som en zip-fil. I kursen använder vi ett paket med namnet introprog
som ligger i en jarfil som heter något i stil med introprog_3-1.4.0.jar (eller senare
version) där första numret anger den Scala-version som biblioteket är kompilerat för
och andra numret anger bibliotekets version som ändras vid varje ny utgåva.

a) På veckans laboration ska vi använda klassen PixelWindow som finns i paketet
introprog. Vilka parametrar har klassen PixelWindow och vilka defaultargument
finns? Hur skriver man om man vill skapa en PixelWindow-instans?

Tips: Se koden för PixelWindow här (leta efter klassens parametrar):
https://github.com/lunduniversity/introprog-scalalib/blob/master/src/main/
scala/introprog/PixelWindow.scala

b) Ladda ner senaste utgåvan av jar-filen med introprog-paketet här:
https://github.com/lunduniversity/introprog-scalalib/releases
Spara filen som heter introprog_3-1.4.0.jar (eller senare version) på lämplig plats.

c) Testa PixelWindow i REPL enligt nedan. Använd optionen -jar med jar-filens
namn som argumentet. Skriv kod som ritar en kvadrat med sidan 100 och som har
sitt vänstra, övre hörn i punkten (100,100), genom att fortsätta på nedan påbörjade
kod (anpassa namnet på jar-filen efter den version som du laddat ned):

1 > scala repl --jar introprog_3-1.4.0.jar
2 scala> val w = introprog.PixelWindow(400,300,"HEJ")
3 scala> w.line(100, 100, 200, 100)
4 scala> w.line(200, 100, 200, 200)
5 scala> // fortsätt så att en hel kvadrat ritas

d) Skriv nedan program med en editor i filen hello-window.scala och fyll i de
saknade delarna så att en röd kvadrat ritas ut, med ledning av dokumentationen:
https://fileadmin.cs.lth.se/pgk/api

package hello

object Main:
val w = new introprog.PixelWindow(400, 300, "HEJ")

var color = java.awt.Color.red

/** Kvadrat med övre hörnet i punkten p och storleken side pixlar. */
def square(p: (Int, Int))(side: Int): Unit =

if side > 0 then
// side == 1 ger en kvadrat som är en enda pixel
val d = side - 1

w.line(p._1, p._2, p._1 + d, p._2, color)
w.line(p._1 + d, p._2, p._1 + d, p._2 + d, color)
w.line(p._1 + d, p._2 + d, p._1, p._2 + d, color)
???

def main(args: Array[String]): Unit =

https://github.com/lunduniversity/introprog-scalalib/blob/master/src/main/scala/introprog/PixelWindow.scala
https://github.com/lunduniversity/introprog-scalalib/blob/master/src/main/scala/introprog/PixelWindow.scala
https://github.com/lunduniversity/introprog-scalalib/releases
https://fileadmin.cs.lth.se/pgk/api

4.2. ÖVNING OBJECTS 145

println("Rita kvadrat:")
square(300,100)(50)

Kör programmet med

> scala run hello-window.scala --jar introprog_3-1.4.0.jar
Found several main classes. Which would you like to run?
[0] hello.Main
[1] introprog.examples.TestBlockGame
[2] introprog.examples.TestIO
[3] introprog.examples.TestPixelWindow

Det finns, förutom ditt eget huvudprogram vid namn hello.Main, flera exempel-
huvudprogram i paketet introprog.examples. När flera huvudprogram detekteras
får du frågan vilket du vill köra. Välj ditt eget huvudprogram.

e) Du kan slippa frågan om du explicit pekar ut huvudprogrammet genom att lägga
till optionen --main-class. Prova det!

f) Du kan slippa själv ladda ner introprog med hjälp av optionen --dep vid körning
i terminalen, vilket beskrivs i bibliotekets README.md på github här:
https://github.com/lunduniversity/introprog-scalalib
Prova det!

g) Du kan också lägga in beroendet inne i din kodfil med en magisk kommentar,
vilket även det beskrivs i ovan nämna README.md. Prova det!

Uppgift 8. Färg. Det finns många sätt att beskriva färger. I naturligt språk har vi
olika namn på färgerna, till exempel vitt, rosa och magenta. I bildminnen i datorer
är det vanligt att beskriva färger som en blandning av rött, grönt och blått i det så
kallade RGB-systemet.

På veckans labb ska vi använda PixelWindow, som beskriver RGB-färger med
klassen java.awt.Color. Det finns några fördefinierade färger i java.awt.Color, till
exempel java.awt.Color.black för svart och java.awt.Color.green för grönt, se
vidare dokumentationen för java.awt.Color i JDK4. Andra färger kan skapas genom
att du själv anger den specifika mängden rött, grönt och blått som behövs för att
blanda en viss färg. De tre parametrarna till new java.awt.Color(r, g, b) anger
hur mycket rött, grönt respektive blått som färgen ska innehålla, och mängderna ska
vara i intervallet 0–255. Färgen (153,102,51) innebär ganska mycket rött, lite mindre
grönt och ännu mindre blått och det upplevs som brunt.

a) På laborationen behöver du dessa tre brunaktiga färger och det är smidigt att
samla dem i en egen namnrymd via ett singelobjekt som heter Color enligt nedan.

object Color:
val mole = new java.awt.Color(51, 51, 0)
val soil = new java.awt.Color(153, 102, 51)
val tunnel = new java.awt.Color(204, 153, 102)

Men vi vill helst göra import på java.awt.Color för att kunna använda klassens
namn utan att upprepa hela sökvägen, trots att namnet krockar med namnet på vårt
singelobjekt. Skriv om koden ovan med hjälp av namnbyte vid import så att färgerna
kan skapas med new JColor(...). Gör importen lokalt i singelobjektet Color.

4https://docs.oracle.com/en/java/javase/21/docs/api/

https://github.com/lunduniversity/introprog-scalalib
https://docs.oracle.com/en/java/javase/21/docs/api/

146 KAPITEL 4. OBJEKT OCH INKAPSLING

b) Inspireras av REPL-experimenten nedan och ändra ditt program i
hello-window.scala så att tre överlappande färgfyllda kvadrater ri-
tas enligt den övre bilden till höger. I stället för att rita med den färdiga
metoden fill som finns i PixelWindow, ska du träna på iteration ge-
nom att själv implementera ritprocedurerna rak och fyll enligt nedan.
Proceduren rak ska rita en horisontell linje med vänstra punkten p och
med längden d pixlar. Proceduren fyll ska, med många horisontell
linjer, rita en fylld kvadrat med övre vänstra hörnet i punkten p och
sidan s pixlar. Det som ritas ut ska se ut som den övre bilden till höger.
Om du t.ex. tar med en pixel för mycket i dina koordinatberäkningar
kan det bli som i den felaktiga undre bilden.

1 > scala repl --dep se.lth.cs::introprog:1.4.0
2 scala> val w = new introprog.PixelWindow(400,300,"Tre nyanser av brunt")
3 scala> type Pt = (Int, Int)
4 scala> var color = java.awt.Color.red
5 scala> def rak(p: Pt)(d: Int) = w.line(p._1, p._2, ???, ???, color)
6 scala> def fyll(p: Pt)(s: Int) = for i <- ??? do rak((p._1, ???))(s)
7

8 scala> object Color:
9 | ???
10

11 scala> color = Color.soil
12 scala> fyll(100,100)(75)
13

14 scala> color = Color.tunnel
15 scala> fyll(100,100)(50)
16

17 scala> color = Color.mole
18 scala> fyll(150,150)(25)

c) Vid vilka anrop ovan utnyttjas att tupelparenteserna kan skippas?

Uppgift 9. Händelser. På veckans laboration ska du implementera ett enkelt spel där
användaren kan styra en blockmullvad med tangentbordet. Med introprog.PixelWindow
kan du hantera de händelser som genereras när användaren trycker ner eller släpper
en tangent eller en musknapp.

a) Studera dokumentationen för singelobjektet introprog.PixelWindow.Event. Vad
heter den oföränderliga heltalsvariabel som representerar att en nedtryckning av en
tangentbordsknapp har inträffat? Vad har variabeln för värde?

b) Via dokumentationen för av singelobjektet introprog.examples.TestPixelWindow
kan du komma åt koden som implementerar objektet genom att klicka på länken
Source ovanför sökrutan. Vilken rad i huvudprogrammet i main-metoden tar hand om
fallet att en knappnedtryckningshändelse har inträffat?

c) Kör med scala run . (där punkten står för aktuell katalog) huvudprogrammet i
TestPixelWindow med optionerna
--main-class introprog.examples.TestPixelWindow och
--dep se.lth.cs::introprog:1.3.1

Ett testfönster öppnas när main-metoden körs. Klicka i fönstret på olika ställen
och tryck på olika tangenter och observera vad som skrivs ut. Vad skrivs ut när
pil-upp-tangenten trycks ned och släpps upp?

d) Med inspiration från implementationen av TestPixelWindow, skriv ett program

4.2. ÖVNING OBJECTS 147

som ritar gröna linjer mellan positionerna för varje musknapp-nedtryck och musknapp-
uppsläpp som användaren gör.
Tips: När musknappen trycks ned så spara undan positionen i en variabel med
namnet start. När musknappen släpps upp, rita linjen från den sparade positionen
till w.lastMousePos.

148 KAPITEL 4. OBJEKT OCH INKAPSLING

4.2.2 Extrauppgifter; träna mer

Uppgift 10. Funktioner är objekt med en apply-metod.
Metoden apply är speciell.

1 scala> object plus { def apply(x: Int, y: Int) = x + y }
2 scala> plus.apply(42, 43)

Går det att utelämna .apply och anropa plus som en funktion?

Uppgift 11. Skapa moduler med hjälp av singelobjekt.

a) Undersök i REPL vad uttrycket "päronisglass".split('i') har för värde.
b) Vad skrivs ut om du med Test() anropar apply-metoden nedan?

object stringUtils:
object split:

def sentences(s: String): Array[String] = s.split('.')
def words(s: String): Array[String] = s.split(' ').filter(_.nonEmpty)

object count:
def letters(s: String): Int = s.count(_.isLetter)
def words(s: String): Int = split.words(s).size
def sentences(s: String): Int = split.sentences(s).size

object statistics:
var history = ""
def printFreq(s: String = history): Unit =
println(s"\n--- FREKVENSANALYS AV:\n\$s")
println(s"# bokstäver: \${count.letters(s)}")
println(s"# ord : \${count.words(s)}")
println(s"# meningar : \${count.sentences(s)}")
history = (s"\$history \$s").trim

object Test:
import stringUtils.*
def apply(): Unit =

val s1 = "Fem myror är fler än fyra elefanter. Ät gurka."
val s2 = "Galaxer i mina braxer. Tomat är gott. Päronsplitt."
statistics.printFreq(s1)
statistics.printFreq(s2)
statistics.printFreq()

c) Vilket av objekten i modulen stringUtils har tillstånd? Är det förändringsbart?
d) Ändra metoderna i singelobjektet count så att de blir extensionsmetoder och kan
anropas så här:

scala> import stringUtils.count

scala> val s = "Hejsan hoppsan. Gurka är gott."
val s: String = Hejsan hoppsan. Gurka är gott.

scala> (s.nbrOfLetters, s.nbrOfWords, s.nbrOfSentences)
val res0: (Int, Int, Int) = (24,5,2)

4.2. ÖVNING OBJECTS 149

Uppgift 12. Tupler som parametrar. Implementera nedan olika varianter av beräk-
ning av avståndet mellan två punkter. Tips: Använd math.hypot.

def distxy(x1: Int, y1: Int, x2: Int, y2: Int): Double = ???
def distpt(p1: (Int, Int), p2: (Int, Int)): Double = ???
def distp(p1: (Int, Int))(p2: (Int, Int)): Double = ???

Uppgift 13. Tupler som funktionsresultat. Tupler möjliggör att en funktion kan retur-
nera flera olika värden på samma gång. Implementera funktionen statistics nedan.
Den ska returnera en 3-tupel som innehåller antalet element i xs, medelvärdet av
elementen, samt en 2-tupel med variationsvidden (min,max). Ange returtypen ex-
plicit i din implementation. Testa så att den fungerar i REPL. Tips: Du har nytta av
metoderna size, sum, min och max som fungerar på nummersekvenser.

/** Returns the size, the mean, and the range of xs */
def statistics(xs: Vector[Double]) = ???

Uppgift 14. Skapa moduler med hjälp av paket.

a) Koden nedan ligger i filen paket.scala. Rita en bild av katalogstrukturen som
skapas i aktuellt bibliotek i underkatalogen main i .scala-build när nedan kod
kompileras med: scala compile paket.scala

package gurka.tomat.banan

package p1:
package p11:

object hello:
def hello = println("Hej paket p1.p11!")

package p12:
object hello:

def hello = println("Hej paket p1.p12!")

package p2:
package p21:

object hello:
def hello = println("Hej paket p2.p21!")

object Main:
def main(args: Array[String]): Unit =

import p1.*
p11.hello.hello
p12.hello.hello
import p2.{p21 as apelsin}
apelsin.hello.hello

b) Vad skrivs ut när programmet körs?

c) Får paket ha tillståndsvariabler utan att de placeras inuti ett singelobjekt eller
en klass?

150 KAPITEL 4. OBJEKT OCH INKAPSLING

4.2.3 Fördjupningsuppgifter; utmaningar

Uppgift 15. Hur klara sig utan do while i Scala 3? I många språk finns en konstruk-
tion med följande syntax: do <satser> while <villkor> där <satser> görs minst
en gång innan sanningsvärdet för <villkor> testas. Denna ”bakvända while” används
inte så ofta, men kan vara smidig om man vill köra en repetition minst en gång.

Denna konstruktion finns i Scala 2 men inte i Scala 3 eftersom nyckelordet do
i Scala 3 används vid valfria klammerparenteser och indenteringssyntax i ”vanliga
while”. Ett skäl att det kan anses ok att ta bort do <satser> while <villkor> är att
en ”bakvänd while” ändå i Scala 3 går att skriva om till en ”vanlig while” genom att
inkludera satserna som ska göras minst en gång i ett block på villkorets plats och låta
satserna i loopen vara tomma värdet, alltså:

while
<satser>
<villkor>

do ()

a) Nedan funkar i Scala 2, men vad händer om du försöker göra detta i Scala 3:

> scala repl --scala 2
Welcome to Scala 2.13.8 (OpenJDK 64-Bit Server VM, Java 17.0.3).
Type in expressions for evaluation. Or try :help.

scala> var i = 0
var i: Int = 0

scala> do i += 1 while (i < 10)

scala> i
val res20: Int = 10

b) Skriv om ”bakvända” do while till en motsvarande ”vanlig” while do som funge-
rar i Scala 3.

Uppgift 16. Postfixa operatorer för inkrementering och dekrementering. I många språk,
t.ex. Java, C++, C, går det att skriva i++ och i-- om man vill räkna upp eller ner
heltalsvariabeln i. Använd Scalas extensionsmetoder för att göra så att det går att
använda operatorerna ++ och -- på heltal, enligt nedan:

scala> 42.++
val res0: Int = 43

scala> 42.--
val res1: Int = 41

scala> import language.postfixOps // tillåter postfix operatornotation

scala> 43 ++
val res2: Int = 44

scala> 43 --
val res3: Int = 42

4.2. ÖVNING OBJECTS 151

scala> val i = 42
val i: Int = 42

scala> i++
val res4: Int = 43

scala> i--
val res5: Int = 41

Uppgift 17. Använda färdigt paket: Färgväljare. På laborationen har du nytta av att
kunna blanda egna färger så att du kan rita klarblå himmel och frodigt gräs. Du kan
skapa en färgväljare med hjälp av introprog-paketet enligt nedan.

1 > scala repl --dep se.lth.cs::introprog:1.3.1
2 scala> introprog.Dialog.selectColor()

a) Vad händer om du trycker Ok efter att du valt en grön färg?

b) Vad händer om du trycker Cancel ?

c) Vad händer om du trycker Reset ?
d) Läs dokumentationen för metoden selectColor i singelobjektet Dialog i paketet
introprog. Anropa selectColor med default-färgen java.awt.Color.green.

Uppgift 18. Använda färdigt paket: användardialoger.

a) Läs om dokumentationen för singelobjektet Dialog i paketet introprog.
b) Använd proceduren introprog.Dialog.show och ge ett meddelande till använda-
ren att det är "Game over!".
c) Använd funktionen introprog.Dialog.input för att visa frågan "Vad heter du?"
och ta reda på användarens namn. Vad händer om användaren klickar Cancel?
d) Använd funktionen introprog.Dialog.select för att be användaren välja mel-
lan sten, sax och påse. Vad är returtypen?

Uppgift 19.? Skapa din egen jar-fil.

a) Skriv kommandot jar i terminalen och undersök med jar --help vad det finns för
optioner. Vilka optioner ska du använda för skapa (eng. create) en jar i en namngiven
fil (eng. file) med utförlig (eng. verbose) utskrift om vad som händer?
b) Skapa med en editor i filen hello.scala ett enkelt program som skriver ut "Hello
package!" eller liknande. Koden ska ligga i paketet hello och innehålla ett object
Main med en main-metod. Kompilera din fil med optionen --destination . så att din
kod hamnar i aktuell katalog i stället för i .scala-build.
c) Skriv ett jar-kommando i terminalen som förpackar koden i en jar-fil med namnet
my.jar och kör igång REPL med jar-filen på classpath. Anropa din main-funktion
i REPL genom att ange sökvägen paketnamn.objektnamn.metodnamn med en tom
array som argument.
d) Med vilket kommando kan du köra det kompilerade och jar-förpackade program-
met direkt i terminalen (alltså utan att dra igång REPL)?

Uppgift 20.? Hur stor är JDK8? Ta med hjälp av http://stackoverflow.com/ reda
på hur många klasser och paket det finns i Java-plattformen JDK8.

http://stackoverflow.com/

152 KAPITEL 4. OBJEKT OCH INKAPSLING

4.3 Laboration: blockmole

Mål

� Kunna förklara hur singelobjekt kan användas som moduler.
� Kunna förklara hur åtkomst av medlemmar i singelobjekt sker.
� Kunna skapa kod som reagerar på och förändrar objekts tillstånd.
� Kunna förklara nyttan med att samla namngivna konstanter i egen modul.
� Kunna förklara hur import påverkar synlighet av namn.
� Kunna ge exempel på en situation där man har nytta av namnbyte vid import.
� Kunna redogöra för skillnaden mellan paket och singelobjekt.
� Kunna skapa och använda tupler.

Förberedelser

� Gör övning objects och repetera övning functions.
� Repetera appendix ??, ??, och ??.
� Hämta given kod via kursen github-plats.

4.3.1 Bakgrund

Blockmullvad (Talpa laterculus) är
ett fantasidjur i familjen mullvads-
djur. Den är känd för sitt karaktäris-
tiska kvadratiska utseende. Den lever
mest ensam i sina underjordiska gång-
ar som, till skillnad från den verkliga
mullvadens (Talpa europaea) gångar,
har helt raka väggar.

4.3.2 Obligatoriska uppgifter

Uppgift 1. Skapa katalog och kodfil. Du ska, steg för steg, skapa ett program som
låter användaren interagera med en levande blockmullvad. Använd en editor, t.ex. VS
code, kompilera ditt program i terminalen med scala compile . --watch och kör i
annat terminalfönster med scala run .

a) Skapa en ny fil med namnet blockmole.scala i en ny katalog i din hemkatalog,
till exempel ~/pgk/w04/lab/blockmole.scala, där ~ är din hemkatalog.

> mkdir -p ~/pgk/w04/lab
> code ~/pgk/w04/lab/blockmole.scala

b) Navigera till din nya katalog och kontrollera att din nya fil finns där.

> cd ~/pgk/w04/lab/
> ls
blockmole.scala

c) Gör en paketdeklaration i början av filen blockmole.scala så att koden du ska
skriva nedan ingår i paketet blockmole.

https://github.com/lunduniversity/introprog/tree/master/workspace/

4.3. LABORATION: BLOCKMOLE 153

d) Deklarera sedan ett singelobjekt med namnet Main med en @main def run-
procedur som skriver ut texten: "Keep on digging!"

e) Kompilera ditt program med scala compile . och leta efter filer som slutar på
.classi underkataloger till
.scala-build.P Vilket namn har underkatalogen med ditt programs maskinkodsfiler?
Varför fick underkatalogen detta namn?
f) Kör kommandot scala run . --main-class blockmole.run för att exekvera
ditt program och kontrollera utskriften i terminalfönstret.

Nu har du skrivit ett program som uppmanar en blockmullvad att fortsätta gräva. Det
programmet är inte så användbart, eftersom mullvadar inte kan läsa. Nästa steg är
därför att skriva ett grafiskt program.

Uppgift 2. Skapa en grundstruktur för programmet. I mindre program fungerar det
bra att samla alla funktioner i ett singelobjekt, men i stora program blir det lättare
att hitta i koden och förstå vad den gör om man har flera moduler med olika ansvar.
Ditt program ska ha följande övergripande struktur:

package blockmole

object Color:
// Skapar olika färger som behövs i övriga moduler
???

object BlockWindow:
// Har ett introprog.PixelWindow och ritar blockgrafik
???

object Mole: // Representerar en blockmullvad som kan gräva
def dig(): Unit = println("Här ska det grävas!")

object Main:
def drawWorld(): Unit = println("Ska rita ut underjorden!")

@main def run =
drawWorld()
Mole.dig()

Skapa programskelettet ovan i filen blockmole.scala och se till att koden kompilerar
utan fel och går att köra med utskrifter som förväntat. Funktionen ??? i skelettet
används som platshållare för att koden ska kunna kompileras trots att singelobjektens
kroppar just nu är tomma (mer om detta i kapitel 5). Byt ut ??? mot den faktiska
koden för Color och BlockWindow i kommande deluppgifter.

Vi lägger i denna laboration alla moduler i samma fil, men i andra situationer när
modulerna blir stora och/eller ska återanvändas av flera olika program är det bra att
ha dem i olika filer så att de kan kompileras och testas separat.

Uppgift 3. Lägg till färger i färgmodulen. I singelobjektet Color ska vi skapa färger
med hjälp av Java-klassen java.awt.Color. Eftersom vårt singelobjektnamn ”krockar”
med namnet på Java-färgklassen så byter vi namn på Java-klassen till JColor i
importdeklarationen.

154 KAPITEL 4. OBJEKT OCH INKAPSLING

a) Lägg in en importdeklaration med namnbytet direkt efter paketdeklarationen. Vi
lägger importen så att den syns i hela paketet eftersom flera objekt behöver tillgång
till JColor. Säkerställ att koden fortfarande kompilerar utan fel.
b) Skapa sedan nedan färger i objektet Color:

object Color:
val black = new JColor(0, 0, 0)
val mole = new JColor(51, 51, 0)
val soil = new JColor(153, 102, 51)
val tunnel = new JColor(204, 153, 102)
val grass = new JColor(25, 130, 35)

Uppgift 4. Skapa ett ritfönster i modulen för blockgrafik. Lägg till nedan tre variabler
i singelobjektet BlockWindow:

val windowSize = (30, 50) // (width, height) in number of blocks
val blockSize = 10 // number of pixels per block

val window = new PixelWindow(???, ???, ???)

• Importera introprog.PixelWindow lokalt i BlockWindow. (En lokal import-
deklaration är bra här eftersom det bara är detta objekt som behöver tillgång
till PixelWindow.)

• Gör så att storleken på window motsvarar blockstorleken gånger bredd resp. höjd
i windowSize.

• Ge fönstret en lämplig titel, t.ex. "Digging Blockmole".

• När du kompilerar behöver du se till att introprog finns tillgänglig på classpath
(se övning objects).

• Om du glömt ordningen på parametrarna till klassen PixelWindow så kolla i do-
kumentationen för PixelWindow 5. Använd namngivna argument vid skapandet
av fönstret. Tycker du att koden blir mer läsbar med namngivna argument? 6

För att testa fönstret, lägg till en enkel testritning genom att i proceduren drawWorld
använda BlockWindow.window, till exempel:

def drawWorld(): Unit =
BlockWindow.window.line(100, 10, 200, 20)

Kompilera och kör och säkerställ att allt fungerar som förväntat.

Uppgift 5. Skapa procedur för blockgrafik. Nu har du gjort ett grafiskt program, men
ännu syns ingen mullvad. Det är dags att skapa koordinatsystemet i blockmullvadens
blockvärld.

5https://fileadmin.cs.lth.se/pgk/api
6Det går tyvärr inte att använda namngivna argument när man instansierar Java-klasser i Scala,

men PixelWindow är implementerad i Scala så här fungerar det fint.

https://fileadmin.cs.lth.se/pgk/api

4.3. LABORATION: BLOCKMOLE 155

Figur 4.1: Varje block består av många pixlar. Det markerade blocket har koordinat
(1,1) i blockkoordinater medan blockets översta vänstra pixel har koordinat (7,7) i
PixelWindow-koordinater, om det t.ex. går sju-gånger-sju pixlar per block. Vad är
block-koordinaten för blocket till höger om det markerade blocket i bilden? Vad är dess
PixelWindow-koordinater för översta vänstra och nedersta högra pixlarna?

a)P Säkerställ att du kan förklara hur koordinaterna i ett PixelWindow tolkas, genom
att med papper och penna rita en enkel skiss av ungefär var positionerna (0,0),
(300,0), (0,300) och (300,300) ligger i ett fönster som är 300 bildpunkter brett och 500
bildpunkter högt. Använd figur 4.1 för att förklara relationen mellan underliggande
fönsterkoordinater och blockkoordinater. Notera att y-axeln pekar nedåt.

b) Koordinatsystem i BlockWindow ska ha kvadratiska, stora bildpunkter som består
av många fönsterpixlar. Vi kallar dessa stora bildpunkter för block för att lättare skilja
dem från de enpixelstora bildpunkterna i PixelWindow.

I block-koordinatsystemet för BlockWindow gäller följande:

Blockstorleken anger sidan i kvadraten för ett block räknat i antalet pixlar. Om
blockstorleken är b, så ligger koordinaten (x, y) i BlockWindow på koordinaten
(bx,by) i PixelWindow.

Implementera funktionen block i modulen BlockWindow enligt nedan, så att en
kvadrat ritas ut när proceduren anropas. Parametern pos anger block-koordinaten
och parametern color anger färgen. Typ-alias-deklarationen av Pos ger ett beskri-
vande typnamn för en 2-tupel av heltal, som vi kan använda i parameterlistor för
att betecknande positioner i ett BlockWindow. Se dokumentationen av fill-metoden
i PixelWindow. Observera att du behöver räkna om block-koordinaterna i pos till
fönsterkoordinater i windows.fill. Fyll i det som saknas nedan.

type Pos = (Int, Int)

def block(pos: Pos)(color: JColor = JColor.gray): Unit =
val x = ??? //räkna ut blockets x-koordinat i pixelfönstret
val y = ??? //räkna ut blockets y-koordinat i pixelfönstret
window.fill(???)

Säkerställ att koden kompilerar utan fel.

c) För att testa din procedur, anropa funktionen BlockWindow.block några gånger i
Main.drawWorld, dels med utelämnat defaultargument, dels med olika färger ur

156 KAPITEL 4. OBJEKT OCH INKAPSLING

färgmodulen. Kompilera och kör ditt program och kontrollera att allt fungerar som
det ska.

Uppgift 6. Skapa rektangelprocedur och underjorden. Du ska nu skriva en procedur
med namnet rectangle som ritar en rektangel med hjälp av proceduren block. Sen
ska du använda rectangle i Main.drawWorld för att rita upp mullvadens underjor-
diska värld.

a) Lägg till proceduren rectangle i grafikmodulen. Procedurhuvudet ska ha följande
parametrar uppdelade i tre olika paramterlistor, samt returtyp Unit:

(leftTop: Pos)(size: (Int, Int))(color: JColor = JColor.gray)

Parametern leftTop anger blockkoordinaten för rektangelns övre vänstra hörn,
och size anger (bredd, höjd) uttryckt i antal block.

Använd denna nästlade repetition för att rita ut rektangeln:

for y <- ??? do
for x <- ??? do

block(x, y)(color)

b) PI vilken ordning ritas blocken i rektangeln ut (lodrätt eller vågrätt)? Om du är
osäker kan du lägga in en utskrift av (x, y) i den innersta loopen för att se ordningen.
c) Lägg följande kod i Main.drawWorld så att programmet ritar ut underjorden (det
vill säga en massa jord där blockmullvaden kan gräva sina tunnlar) och även lite gräs.

def drawWorld(): Unit =
BlockWindow.rectangle(0, 0)(size = (30, 4))(Color.grass)
BlockWindow.rectangle(0, 4)(size = (30, 46))(Color.soil)

d) Anropa Main.drawWorld i Main.run och testa att det fungerar. Om någon del av
fönstret förblir svart istället för att få gräsfärg eller jordfärg, kontrollera att block och
rectangle är korrekt implementerade.

Uppgift 7. I PixelWindow finns funktioner för att känna av tangenttryckningar och
musklick. Du ska använda de funktionerna för att styra en blockmullvad. Studera
dokumentationen för awaitEvent och Event i PixelWindow, samt koden i exempelpro-
grammet TestPixelWindow i paketet introprog.examples.

a) Lägg till denna funktion i BlockWindow:

val maxWaitMillis = 10

def waitForKey(): String =
window.awaitEvent(maxWaitMillis)
while window.lastEventType != PixelWindow.Event.KeyPressed do

window.awaitEvent(maxWaitMillis) // skip other events
println(s"KeyPressed: ${window.lastKey}")
window.lastKey

Det finns olika sorters händelser som ett PixelWindow kan reagera på, till exempel
tangenttryckningar och musklick. Funktionen som du precis lagt in väntar på en
händelse i ditt PixelWindow med hjälp av (window.awaitEvent) ända tills det kom-
mer en tangenttryckning (KEY_EVENT). När det kommit en tangenttryckning anropas

4.3. LABORATION: BLOCKMOLE 157

window.lastKey för att ta reda på vilken bokstav eller vilket tecken det blev, och det
resultatet blir också resultatet av waitForKey, eftersom det ligger sist i blocket.
b) Utöka proceduren Mole.dig enligt nedan:

def dig(): Unit =
var x = BlockWindow.windowSize._1 / 2
var y = BlockWindow.windowSize._2 / 2
var quit = false
while !quit do

BlockWindow.block(x, y)(Color.mole)
val key = BlockWindow.waitForKey()
if key == "w" then ???
else if key == "a" then ???
else if key == "s" then ???
else if key == "d" then ???
else if key == "q" then quit = true

end while

c) Fyll i alla ??? så att 'w' styr mullvaden ett steg uppåt, 'a' ett steg åt vänster,
's' ett steg nedåt och 'd' ett steg åt höger.
d) Kontrollera så att main bara innehåller två anrop: ett till drawWorld och ett till
dig. Kompilera och kör ditt program för att se om programmet reagerar på tangenterna
w, a, s och d.
e) Om programmet fungerar kommer det bli många mullvadar som tillsammans
bildar en lång mask, och det är ju lite underligt. Lägg till ett anrop i Mole.dig som
ritar ut en bit tunnel på position (x, y) efter anropet till BlockWindow.waitForKey
men innan if-satserna. Kompilera och kör ditt program för att gräva tunnlar med din
blockmullvad.

4.3.3 Kontrollfrågor

DE Repetera teorin för denna vecka och var beredd på att kunna svara på dessa frågor
när det blir din tur att redovisa vad du gjort under laborationen:

1. Hur ändras mullvadens koordinater när den rör sig uppåt på skärmen?
2. Hur representeras färger med RGB?
3. Vad är en tupel och hur används tupler i denna labb?
4. Vad innebär punktnotation?
5. Ge exempel på användning av import och förklara vad som händer.
6. Vad är fördelen med skuggning och lokala namn?
7. Vi använde flera singelobjekt som olika s.k. moduler i denna laboration. Vad är

fördelen med att att dela upp koden i moduler?
8. Gå igenom målen med laborationen och kontrollera så du har uppfyllt dem.

4.3.4 Frivilliga extrauppgifter

Uppgift 8. Mullvaden kan för tillfället gräva sig utanför fönstret. Lägg till några
if-satser i början av while-satsen som upptäcker om x eller y ligger utanför fönstrets
kant och flyttar i så fall tillbaka mullvaden precis innanför kanten.

158 KAPITEL 4. OBJEKT OCH INKAPSLING

Uppgift 9. Mullvadar är inte så intresserade av livet ovanför jord, men det kan vara
trevligt att se hur långt ner mullvaden grävt sig. Lägg till en himmelsfärg i objektet
Color och rita ut himmel ovanför gräset i Mole.drawWorld. Justera också det du gjorde
i föregående uppgift, så att mullvaden håller sig på marken. Tips: Du har nytta av en in-
teraktiv färgväljare som du kan få genom att anropa introprog.Dialog.selectColor()
i Scala REPL.

Uppgift 10. Ändra så att mullvaden inte lämnar någon tunnel efter sig när den
springer på gräset.

Uppgift 11. Ändra i din rectangle-metod så att den ritar ut en likadan rektangel
men utan att använda nästlade loopar. Detta kan åstadkommas genom ett anrop till
PixelWindow.fill.

Uppgift 12. Låt mullvaden fortsätta gräva även om man inte trycker ned någon
tangent. Tangenttryckning ska ändra riktningen.

a) Skapa en ny metod BlockWindow.waitForKeyNonBlocking som möjliggör tan-
gentbordsavläsning som ej blockerar exekveringen enligt nedan:

def waitForKeyNonBlocking(): String =
import PixelWindow.Event.{KeyPressed, Undefined}

window.awaitEvent(maxWaitMillis)
while

window.lastEventType != KeyPressed &&
window.lastEventType != Undefined)

do window.awaitEvent(maxWaitMillis)
if window.lastEventType == KeyPressed then window.lastKey else ""

b) Lägg till en ny metod BlockWindow.delay som ska göra det möjligt att hindra
blockmullvaden från att springa alltför fort:

def delay(millis: Int): Unit = Thread.sleep(millis)

c) Skapa en ny metod Mole.keepOnDigging som från början är en kopia av metoden
dig. Gör följande tillägg/ändringar:

1. Lägg till två variabler var dx och var dy i början, som ska hålla reda på rikt-
ningen som blockmullvaden gräver. Initialisera dem till 0 respektive 1.

2. Lägg in en fördröjning på 200 millisekunder i den oändliga loopen. Deklarera
en konstant delayMillis på lämpligt ställe i Mole och använd denna konstant
som argument till delay.

3. Anropa waitForKeyNonBlocking i stället för waitForKey och kolla efter knapp-
tryckning enligt nedan kodskelett. Fyll i de saknade delarna så att blockmullva-
den rör sig ett steg i rätt riktning i varje looprunda.

if key == "w" then { dy = -1; dx = 0 }
else if key == "a" then { ??? }
else if key == "s" then { ??? }
else if key == "d" then { ??? }
else if key == "q" then { quit = true }
y += ???
x += ???

4.3. LABORATION: BLOCKMOLE 159

Uppgift 13. Fånga blockmasken.

Blockmask (Lumbricus quadratus) är ett fantasidjur i fa-
miljen daggmaskar. Den är känd för att kunna teleportera
sig från en plats till en annan på ett ögonblick och är därför
svårfångad. Den har i likhet med den verkliga daggmas-
ken (Lumbricus terrestris) RGB-färgen (225,100,235), men
är kvadratisk och exakt ett block stor. Blockmasken är ett
eftertraktat villebråd bland blockmullvadar.

a) Lägg till modulen Worm nedan i din kod och använd procedurerna i keepOnDigging
så att blockmullvaden får en blockmask att jaga.

object Worm:
import BlockWindow.Pos

def nextRandomPos(): Pos =
import scala.util.Random.nextInt
val x = nextInt(BlockWindow.windowSize._1)
val y = nextInt(BlockWindow.windowSize._2 - 7) + 7
(x, y)

var pos = nextRandomPos()

def isHere(p: Pos): Boolean = pos == p

def draw(): Unit = BlockWindow.block(pos)(Color.worm)

def erase(): Unit = BlockWindow.block(pos)(Color.soil)

val teleportProbability = 0.02

def randomTeleport(notHere: Pos): Unit =
if math.random() < Worm.teleportProbability then

erase()
while

pos = nextRandomPos()
pos == notHere

do ()
draw()

end Worm

b) Koden i Worm förutsätter att himmel finns i fönstrets översta 7 block. Hur många
block som är himmel kan egentligen med fördel vara en konstant med ett bra namn
på en bra plats. Denna konstant bör användas även i drawWorld. Fixa det!
c) Gör så att texten "WORM CAUGHT!" skrivs ut i terminalen om blockmullvaden är
på samma plats som blockmasken.
d) Använd parametern notHere till att förhindra att blockmasken teleporterar sig
till samma plats som blockmullvaden.

160 KAPITEL 4. OBJEKT OCH INKAPSLING

e) Gör så att blockmullvaden får 1000 poäng varje gång den fångar blockmasken.
f) Gör så att spelet varar en bestämd, lagom lång tid, innan Game Over. Använd
System.currentTimeMillis som ger aktuella antalet millisekunder sedan den förste
januari 1970. När spelet är slut ska den totala poängen som blockmullvaden samlat
skrivas ut i terminalen.
g) Gör så att spelets hastighet ökar (d.v.s. att fördröjningen i spel-loopen minskar)
efter en viss tid. I samband med det ska sannolikheten för att blockmasken teleporterar
sig öka.

Kapitel 5

Klasser och datamodellering

Begrepp som ingår i denna veckas studier:

� applikationsdomän
� datamodell
� objektorientering
� klass
� instans
� Any
� isInstanceOf
� toString
� new
� null
� this
� accessregler
� private
� private[this]
� klassparameter
� primär konstruktor
� fabriksmetod
� alternativ konstruktor
� förändringsbar
� oföränderlig
� case-klass
� kompanjonsobjekt
� referenslikhet
� innehållslikhet
� eq
� ==

161

162 KAPITEL 5. KLASSER OCH DATAMODELLERING

5.1 Teori

Begreppet klass är en viktig abstraktionsmekanism inom objekt-orienterad pro-
grammering (OOP) för att modellera data i en applikationsdomän, t.ex. data om
användare och deras favoritmusik i applikationsdomänen musikspelare. Klasser an-
vänds för att samla funktioner och data. En klass har ett namn och kan ha parametrar.
En klass deklareras med nyckelordet class och är en beskrivning hur en viss typ av
objekt ska utformas när de så småningom skapas. Det går att skapa många objekt ur
en och samma klass.

5.1.1 En metafor för klass: Stämpel

En klass liknar en stämpel. • En stämpel kan tillverkas –
motsvarar deklaration av klas-
sen.

• Det händer inget förrän man
stämplar – motsvarar instan-
siering.

• Då skapas avbildningar av
stämpeln – motsvarar alloke-
ring av ett objekt som är en
instans av klassen.

• Allokering kallas också kon-
struktion och funktionen/ko-
den som gör själva allokeringen
kallas konstruktor.

5.1.2 Vad är en klass?

• En klass är en mall (eng. template) för att skapa objekt.
• Objekt kan skapas med new Klassnamn(parametrar), vilket kallas instansie-

ring.
• I Scala 3 är new valfritt, det räcker med Klassnamn(parametrar).
• Ett objekt som skapats med klassen Klassnamn som mall kallas för en instans

av klassen Klassnamn.
• En klass innehåller medlemmar (eng. members), som bl.a. kan vara:

– attribut, kallas även fält (eng. field): val, lazy val, var
– metoder, kallas även operationer: def

• Varje instans har sin egen uppsättning värden på attributen, som tillsammans
utgör instansens tillstånd.

5.1.3 Datamodellering

Varför behövs klasser?

5.1. TEORI 163

• I en viss applikationsdomän (eng. application domain), tex. skatteverkets
deklarationssystem, behövs en modell av domänspecifik data, t.ex. personer,
personnummer, adresser, inkomster, avdrag, fastigheter, etc.

• Med klasser kan du skapa nya typer (utöver Int, String ...) som bättre repre-
senterar domänens data.

• Med klasser implementerar du modeller som representerar väsentliga attribut
ur applikationsdomänen.

• Med metoder (funktioner i klasser) kan du skapa och behandla domänens data.
• Datamodellering i Scala görs ofta med s.k. case-klasser och oföränderliga

instanser.

5.1.4 Singelobjekt jämfört med klass

Vi har tidigare deklarerat singelobjekt som bara finns i en enda upplaga:

scala> object Björn { var ålder = 54; val längd = 178 }

Med en klass kan man skapa godtyckligt många instanser av klassen med
hjälp av nyckelordet new följt av klassens namn:

scala> class Person { var ålder = 0; var längd = 0 }

scala> val björn = new Person // allokera plats i minnet
björn: Person = Person@7ae75ba6 // unikt id för instansen

björn
Person@7ae75ba6

ålder 0
längd 0

5.1.5 Förändring av objektets tillstånd

scala> björn.ålder = 55

scala> björn.längd = 178

björn
Person@7ae75ba6

ålder 55
längd 178

164 KAPITEL 5. KLASSER OCH DATAMODELLERING

5.1.6 Bättre att initialisera med hjälp av klassparametrar

scala> class Person(var ålder: Int, var längd: Int)

scala> val sandra = new Person(43, 166)
sandra: Person = Person@7878bbdb

sandra
Person@7878bbdb

ålder 43
längd 166

5.1.7 Klassdeklarationer och instansiering

• Syntax för deklaration av klass:
class Klassnamn(parametrar){ medlemmar }

• Exempel: deklaration

class Klassnamn(val attribut1: Int, attribut2: String): //klassparametrar
val attribut3: Double = 42.0 //publikt oföränderligt attribut
private var attribut4: Boolean = false //privat medlem syns inte utåt
def metod(parameter: Int) = attribut1 + 1 //funktion i objekt kallas metod
lazy val attr5 = Vector.fill(100000)(42.0) //fördröjd initialisering

• Klass-parametrar blir attribut som initialiseras med de argument som ges vid new.
(Kompilatorn skapar primärkonstruktor: kod som allokerar & initialiserar alla
attribut.)

• Exempel: instansiering med argument för initialisering av klassparametrar

val instansReferens = new Klassnamn(42, "hej") // new är valfritt i Scala 3

• Parametrar som inte föregås av modifierare (t.ex. private val, val, var) blir attribut
som bara är synliga i denna instans, de kallas då instansprivata.

• Attribut i klasskroppen är publika (alltså synliga utåt) om de inte deklareras private
(eller protected som begränsar synlighet till subtyper som vi ska se senare).

5.1.8 Övning: en klass som representerar en person

1. Deklarera en klass Person med dessa publika attribut:

• oföränderligt förnamn
• oföränderligt efternamn
• förändringsbar ålder med defaultargument 0

5.1. TEORI 165

2. lägg till en metod i klasskroppen med explicit returtyp som ger en 2-tupel med
förnamn och efternamn

3. skriv en deklaration som deklarerar en variabel p som initialiseras med värdet
av ett uttryck som instansierar klassen Person med ditt namn och din ålder som
nyfödd.

4. skriv en sats som skriver ut ditt förnamn genom att referera attribut med
punktnotation

5. skriv en tilldelningssats som ändrar tillståndet för den instans som referensen p
refererar till så att åldersattributets värde blir din nuvarande ålder

5.1.9 Lösning: klassen Person

class Person(
val givenName: String,
val familyName: String,
var age: Int = 0

):
def name: (String, String) = (givenName, familyName)

scala> val p = Person("Björn", "Regnell")
val p: Person = Person@783dc0e7

scala> println(p.name._1)
Björn

scala> p.age = 50

Kan vi få se något som är finare än Person@783dc0e7 ?

5.1.10 Skapa egen najs toString

class Person(
val givenName: String,
val familyName: String,
var age: Int = 0

):
def name: (String, String) = (givenName, familyName)
override def toString = "najs toString"

scala> val p = Person("Björn", "Regnell")
val p: Person = najs toString

scala> println(p.name._1)
Björn

scala> p.age = 55

166 KAPITEL 5. KLASSER OCH DATAMODELLERING

Vad vill du se i stället för "najs toString"?
Övning: Visa instansens tillstånd med stränginterpolatorn s"?"

5.1.11 Instansprivata klassparametrar

• Parametrar som inte föregås av någon modifierare alls (t.ex. val, var etc.) blir med-
lemmar som är bara är synliga i denna instans.

• Exempel på konsekvensen av instansprivata parametrar:

1 scala> class C(a: Int){ def add(other: C): Int = a + other.a }
2 -- Error:
3 1 |class C(a: Int){ def add(other: C): Int = a + other.a }
4 | ^^^^^^^
5 | value a cannot be accessed as a member of (other : C) from class C.

• Men detta fungerar fint:

1 scala> class D(private val a: Int){ def add(other: D): Int = a + other.a }
2

3 scala> D(42).add(D(43))
4 res0: Int = 85

...eftersom modifieraren private val ger en medlem som ”bara” är klassprivat och
ger därmed synlighet i alla D-instanser (men bara där; medlemmen är inte ens synlig
i subtyper till D).

5.1.12 Case-klasser är som vanliga klasser med extra godis

Med case framför class får du en massa godis på köpet, bland annat detta:

• En najs toString-metod med klassens namn och dess attributvärden.

scala> case class Person(name: String, age: Int)

scala> val p = Person("Björn", 55)

scala> p.toString
val res0: String = Person(Björn,55)

• Parameter till case-klass blir automatiskt ett publikt oföränderligt attribut,
alltså en val-medlem utan att du behöver skriva något.

scala> p.age
val res1: Int = 55

• En copy-metod med alla attribut som parametrar och instansens attributvär-
den som default-argument: det blir då smidigt att skapa delvis förändrade
kopior där några attribut ändrats med namngivna argument och andra förblir
som innan.

scala> p.copy(age = p.age + 1)
val res2: Person = Person(Björn,56)

5.1. TEORI 167

5.1.13 Fördjupning: Styra synlighet med private[X]

Med hjälp av private[X] kan du begränsa synlighet till X, där X kan vara ett singel-
objekt, en typ eller ett paket:

scala> object X:
| object Y { private[X] var y = 42 }
| def visaHemlis = Y.y // y syns i X
|

// defined object X

scala> X.Y.y
-- Error:
1 |X.Y.y

|^^^^^
|variable y cannot be accessed as a member of X.Y.type from module class rs$line$26.

scala> X.visaHemlis
val res0: Int = 42

5.1.14 Styra användningen av infixa alfanumeriska operatorer

Metoder som har alfanumeriska namn, alltså namn med bokstäver och ev. siffror
ger en varning vid operatornotation om de inte är deklarerade med nyckelordet
infix.

case class Box(x: Int):
def +(other: Box): Box = Box(x + other.x) // utan varning
def plus(other: Box) = Box(x + other.x) // ger varning
infix def add(other: Box) = Box(x + other.x) // utan varning

scala> Box(41) plus Box(1)
1 warning found
-- Warning: --
1 |Box(41) plus Box(1)

| ^^^^
|Alphanumeric method plus is not declared infix; it should not be used as infix operator.
|Instead, use method syntax .plus(...) or backticked identifier `plus`.

val res0: Box = Box(42)

scala> Box(41) add Box(1)
val res1: Box = Box(41)

5.1.15 Övning: Klassen Complex

Implementera klassen Complex nedan som representerar komplexa tal:

168 KAPITEL 5. KLASSER OCH DATAMODELLERING

class Complex(val re: Double, val im: Double):
def r = ??? // absolutbeloppet
def fi = ??? // vinkeln i radianer
def +(other: Complex): Complex = ??? // resultatet av addition
var imSymbol = 'i' // symbol för imaginärdel, används i toString
override def toString = ??? // en strängrepresentation av talet

Exempel:
z = 3+4i ϕ

real-delen är 3

r
imaginär-delen är 4

5.1.16 Exempel: Klassen Complex

class Complex(val re: Double, val im: Double):
def r = math.hypot(re, im)
def fi = math.atan2(im, re) // motstående sida först
def +(other: Complex) = new Complex(re + other.re, im + other.im)
var imSymbol = 'i'
override def toString = s"$re + imimSymbol"

1 scala> val z1 = new Complex(3, 4) // konstruktion av instans av Complex
2 z: Complex = 3.0 + 4.0i
3

4 scala> val polärForm = (z1.r, z1.fi)
5 polärForm: (Double, Double) = (5.0,0.6435011087932844)
6

7 scala> val z2 = Complex(1, 2) // new behövs inte i Scala 3
8 z2: Complex = 1.0 + 2.0i
9

10 scala> z1 + z2
11 res0: Complex = 4.0 + 6.0i

https://scala-lang.org/api/3.x/scala/math.html#atan2-44b

5.1.17 Exempel: Principen om enhetlig access

class Complex(val re: Double, val im: Double):
val r = math.hypot(re, im)
val fi = math.atan2(im, re)
def +(other: Complex) = new Complex(re + other.re, im + other.im)
var imSymbol = 'i'
override def toString = s"$re + imimSymbol"

https://scala-lang.org/api/3.x/scala/math.html#atan2-44b

5.1. TEORI 169

• Efter som attributen re och im är oföränderliga, kan vi lika gärna ändra i klass-
implementationen och göra om metoderna r och fi till val-variabler utan att
klientkoden påverkas.

• Då anropas math.hypot och math.atan2 bara en gång vid initialisering (och inte
varje gång som med def).

• Vi skulle även kunna använda lazy val och då bara räkna ut r och fi om och
när de verkligen refereras av klientkoden, annars inte.

• Eftersom klientkoden inte ser skillnad på metoder och variabler, kallas detta
principen om enhetlig access. (Många andra språk har inte denna möjlighet,
tex Java där metoder måste ha parenteser.)

5.1.18 Instansiering med direkt användning av new

Instansiering genom direkt användning av new
(här första varianten av Complex med r och fi som metoder)

scala> val c1 = new Complex(3, 4)

c1

re: Double 3.0
im: Double 4.0

imSymbol: Char i

Ofta vill man göra
indirekt instansiering så att vi senare har friheten att ändra hur instansiering
sker.

5.1.19 Indirekt instansiering med fabriksmetoder

En fabriksmetod är en metod som används för att instansiera objekt.

object MyFactory {
def createComplex(re: Double, im: Double) = new Complex(re, im)
def createReal(re: Double) = new Complex(re, 0)
def createImaginary(im: Double) = new Complex(0, im)

}

Instansiera inte direkt, utan indirekt genom användning av fabriksmetoder:

1 scala> import MyFactory.*
2

3 scala> createComplex(3, 4)
4 res0: Complex = 3.0 + 4.0i
5

6 scala> createReal(42)
7 res1: Complex = 42.0 + 0.0i
8

170 KAPITEL 5. KLASSER OCH DATAMODELLERING

9 scala> createImaginary(-1)
10 res2: Complex = 0.0 + -1.0i

5.1.20 Hur förhindra direkt instansiering?

Om vi vill förhindra direkt instansiering kan vi göra primärkonstruktorn privat:

class Complex private (val re: Double, val im: Double):
def r = math.hypot(re, im)
def fi = math.atan2(im, re)
def +(other: Complex) = new Complex(re + other.re, im + other.im)
var imSymbol = 'i'
override def toString = s"$re + imimSymbol"

MEN... då går det ju inte längre att instansiera något alls! :(

scala> new Complex(3,4)
error:
constructor Complex in class Complex cannot be accessed

5.1.21 Kompanjonsobjekt med indirekt instansiering

• Ett kompanjonsobjekt (eng. companion object) är ett singelobjekt som ligger i sam-
ma kodfil som en klass, och som har samma namn som klassen.

• Medlemmar i ett kompanjonsobjekt får accessa privata medlemmar i kompanjons-
klassen (och vice versa) och kompanjonsobjektet får därför accessa privat konstruktor
och kan göra new.

• Fabriksmetod + privat konstruktor: tillåt enbart indirekt instansiering.

class Complex private (val re: Double, val im: Double):
def r = math.hypot(re, im)
def fi = math.atan2(im, re)
def +(other: Complex) = new Complex(re + other.re, im + other.im)
var imSymbol = 'i'
override def toString = s"$re + imimSymbol"

object Complex:
def apply(re: Double, im: Double) = new Complex(re, im) // new behövs här
def real(re: Double) = new Complex(re, 0)
def imag(im: Double) = new Complex(0, im)

• new behövs för att förhindra rekursivt anrop av apply och stack overflow

5.1. TEORI 171

5.1.22 Användning av kompanjonsobjekt med fabriksmetoder

Nu kan vi bara instansiera indirekt! :)

scala> Complex.real(42.0)
res0: Complex = 42.0 + 0.0i

scala> Complex.imag(-1)
res1: Complex = 0.0 + -1.0i

scala> Complex.apply(3,4)
res2: Complex = 3.0 + 4.0i

scala> Complex(3,4)
res3: Complex = 3.0 + 4.0i

scala> new Complex(3, 4)
error:

constructor Complex in class Complex cannot be accessed

5.1.23 Alternativa direktinstansieringar med default-argument

Med default-argument kan vi erbjuda alternativa sätt att direktinstansiera.

class Complex(val re: Double = 0, val im: Double = 0):
def r = math.hypot(re, im)
def fi = math.atan2(im, re)
def +(other: Complex) = new Complex(re + other.re, im + other.im)
var imSymbol = 'i'
override def toString = s"$re + imimSymbol"

1 scala> new Complex()
2 res0: Complex = 0.0 + 0.0i
3

4 scala> new Complex(re = 42) //anrop med namngivet argument
5 res1: Complex = 42.0 + 0.0i
6

7 scala> new Complex(im = -1)
8 res2: Complex = 0.0 + -1.0i
9

10 scala> new Complex(1)
11 res3: Complex = 1.0 + 0.0i

5.1.24 Alternativa sätt att instansiera med fabriksmetod

Vi kan också erbjuda alternativa sätt att instansiera indirekt med fabriksmetoden
apply i ett kompanjonsobjekt genom default-argument:

class Complex private (val re: Double, val im: Double):
def r = math.hypot(re, im)

172 KAPITEL 5. KLASSER OCH DATAMODELLERING

def fi = math.atan2(im, re)
def +(other: Complex) = new Complex(re + other.re, im + other.im)
var imSymbol = 'i'
override def toString = s"$re + imimSymbol"

object Complex:
def apply(re: Double = 0, im: Double = 0) = new Complex(re, im)
def real(r: Double) = apply(re = r)
def imag(i: Double) = apply(im = i)
val zero = apply()

5.1.25 Medlemmar som bara behövs i en enda upplaga

Attributet imSymbol passar bättre att ha i kompanjonsobjektet, eftersom det räcker
att ha en enda upplaga, som kan vara gemensam för alla objekt:

class Complex private (val re: Double, val im: Double):
def r = math.hypot(re, im)
def fi = math.atan2(im, re)
def +(other: Complex) = new Complex(re + other.re, im + other.im)
override def toString = s"$re + im{Complex.imSymbol}"

object Complex:
var imSymbol = 'i'
def apply(re: Double = 0, im: Double = 0) = new Complex(re, im)
def real(r: Double) = apply(re = r)
def imag(i: Double) = apply(im = i)
val zero = apply()

5.1.26 Medlemmar i singelobjekt är statiskt allokerade

Minnesplatsen för attribut i singelobjekt allokeras automatiskt en gång för alla,
och kallas därför statiskt allokerad. Singelobjektets namn Complex utgör en statisk
referens till den enda instansen och är av typen Complex.type.

Complex imSymbol: Char i

Nu bereder vi inte plats för imSymbol i varenda dynamiskt allokerade instans:

scala> val c1 = Complex(3, 4)

5.1. TEORI 173

c1
re: Double 3.0
im: Double 4.0

5.1.27 Attribut i kompanjonsobjekt användas för sådant som är ge-
mensamt för alla instanser

Om vi ändrar på statiska imSymbol så ändras toString för alla dynamiskt allokerade
instanser.

scala> val c1 = Complex(3, 4)
c1: Complex = 3.0 + 4.0i

scala> Complex.imSymbol = 'j'
Complex.imSymbol: Char = j

scala> val c2 = Complex(5, 6)
c2: Complex = 5.0 + 6.0j

scala> c1
res0: Complex = 3.0 + 4.0j

5.1.28 Övning: en läskig mutant

1. Skapa en klass med namnet Mutant som har ett förändringsbart attribut som
klassparameter med namnet i av typen Int med default-argumentet 5.

2.
Deklarera två val-variabler som kallas
fem1 och fem2 och som båda refererar till
samma Mutant-instans.

En Mutant-instans där i
kanske är fem.

3. Skriv kod som ändrar tillstånd via den ena mutantreferensen.
4. Syns ändringen via den andra mutantreferensen?

5.1.29 Case-klasser

Case-klasser är ett smidigt sätt att skapa oföränderliga datastrukturer. Med nyc-
kelordet case framför class får du mycket ”godis på köpet”:

174 KAPITEL 5. KLASSER OCH DATAMODELLERING

• Klassparametrar blir automatiskt publika1 oföränderliga attribut och du slipper
alltså skriva val.

• Du får en automatisk toString med klassens namn och värdet av alla val-
attribut som ges av klassparametrarna

• och en copy-metod för att skapa nya, delvis förändrade instanser, med attribut-
värdena som defaultargument.

• Du får ett kompilator-genererat kompanjonsobjekt med en fabriksmetod
apply för indirekt instansiering där alla klassparametrarnas val-attribut initi-
aliseras.

• ... och mer därtill men mer om det senare...

5.1.30 Exempel: oföränderliga case-klassen Point

case class Point(x: Double, y: Double)

scala> val p1 = Point(3, 4)
p1: Point = Point(3.0,4.0)

scala> val p2 = p1
p2: Point = Point(3.0,4.0)

scala> p1.x = 42
error: reassignment to val

Vi kan utan risk dela med oss av en referens till en oföränderlig klass – ingen kan
ändra dess innehåll. (Jämför läskiga mutanten i tidigare exempel.)

5.1.31 Vad är en konstruktor?

• En konstruktor är den kod som exekveras när klasser instansieras.
• Konstruktorn skapar ett nytt objekt i minnet vid varje anrop.
• I Scala genererar kompilatorn en primärkonstruktor åt dig med maskin-

kod som initialiserar alla attribut baserat på klassparametrarna som du dekla-
rerat.

• I Scala kan man också skriva egna s.k. hjälpkonstruktorer (eng. auxilliary
constructor), men det är ovanligt, eftersom man har möjligheten med fabriks-
metoder i kompanjonsobjekt och default-argument.

5.1.32 Fördjupning: Hjälpkonstruktorer i Scala (ovanliga)

Fördjupning för kännedom:

1alltså inte instansprivata som i vanliga klasser.

5.1. TEORI 175

• I Scala kan man skapa ett alternativ till primärkonstruktorn, en så kallad
hjälpkonstruktor (eng. auxilliary constructor) genom att deklarera en metod
med det speciella namnet this.

• Hjälpkonstruktorer måste börja med att anropa en annan konstruktor som
står före i koden, till exempel primärkonstruktorn.

class Point(val x: Int, val y: Int, val z: Int): // primärkonstruktor
def this(x: Int, y: Int) = this(x, y, 0) // anropa primärkonstruktorn
def this(x: Int) = this(x, 0) // anropa hjälpkonstruktor

• Varför? Enklare att använda från Java-kod jämfört med apply i kompanjonsob-
jekt. (Men om din Scala-kod inte ska användas från Java så är detta onödigt:
använd då hellre kompanjonsobjekt med fabriksmetod.)

5.1.33 Fördjupning: Användning av hjälpkonstruktor

1 scala> val p1 = Point(1)
2 p1: Point = Point@21312342
3

4 scala> val p2 = Point(1, 2)
5 p2: Point = Point@43254325
6

7 scala> val p3 = Point(1, 2, 3)
8 p3: Point = Point@346654

Men man gör mycket oftare så här i Scala:

case class Point(x: Int, y: Int = 0, z: Int = 0)

Använd alltså hellre

• defaultargument i klassparametrar, eller
• fabriksmetoder i kompanjonsobjekt, antingen med default-argument eller över-

lagrade.

5.1.34 Referens saknas: null

• I Java och många andra språk använder man ofta nyckelordet null för att
representera att ett värde saknas.

• En referens som är null refererar inte till någon instans.
• Om du försöker referera till instansmedlemmar med punktnotation genom en

referens som är null kastas ett undantag NullPointerException.
• Oförsiktig användning av null är en vanlig källa till buggar, som kan vara

svåra att hitta och fixa.

176 KAPITEL 5. KLASSER OCH DATAMODELLERING

5.1.35 Exempel: null

1 scala> class Gurka(val vikt: Int)
2

3 scala> var g: Gurka = null // ingen instans allokerad än
4 var g: Gurka = null
5

6 scala> g.vikt
7 java.lang.NullPointerException
8

9 scala> g = Gurka(42) // instansen allokeras
10 g: Gurka = Gurka@1ec7d8b3
11

12 scala> g.vikt
13 val res0: Int = 42
14

15 scala> g = null // instansen kommer att destrueras av skräpsamlaren

• Scala har null av kompatibilitetsskäl, men det är brukligt att endast använda
null om man anropar Java-kod.

• Scala erbjuder smidiga Option, Some och None för säker hantering av saknade
värden; mer om detta kommande vecka.

5.1.36 Defaultvärden under pågående konstruktion

Int 0
Double 0.0

Float 0.0F
Long 0L

Short 0.toShort
Byte 0.toByte
Char 0.toChar

Boolean false

Alla referenstyper, tex. String null

5.1.37 Problem med initialisering av attribut vid konstruktion

class InitBug1:
val HEJ = hej.toUpperCase
val hej = "hej"

class InitBug2:
val b = a
val a = 10

5.1. TEORI 177

class InitBug3:
val hej2 = hej1
val hej1 = "hej"

1 scala> val ib1 = new InitBug1
2 scala> val ib2 = new InitBug2
3 scala> ib2.b
4 scala> val ib3 = new InitBug3
5 scala> ib3.hej2

Vad händer?

5.1.38 Vilka värden har attribut medan konstruktion pågår?

class InitBug1:
val HEJ = hej.toUpperCase
val hej = "hej"

class InitBug2:
var b = a
var a = 10

class InitBug3:
val hej2 = hej1
val hej1 = "hej"

1 scala> val ib1 = new InitBug1 // java.lang.NullPointerException
2 scala> val ib2 = new InitBug2
3 scala> ib2.b // val res0: Int = 0 // WHAT????
4 scala> val ib3 = new InitBug3
5 scala> ib3.hej2 // val res1: String = null //WHAT???

Varför? Vad finns det för lösningar?

5.1.39 Hur undvika initialiseringsproblem vid konstruktion?

Några tips för att undvika initialiseringsproblem av attribut:

• Ändra om möjligt ordningen på attribut-deklarationer
• Använd om möjligt i stället lazy val (init sker senare)
• Använd om möjligt i stället def (evaluering vid varje anrop)
• Använd denna kompilatoroption för att få hjälp med varningar vid risk för

initialiseringsproblem: -Wsafe-init

Om du verkligen behöver ha ett oinitialiserat värde:

178 KAPITEL 5. KLASSER OCH DATAMODELLERING

class Box:
private var x: String = scala.compiletime.uninitialized // tydliggör null-risk
def get: String = if x != null then x else "" // glöm ej kolla null
def getOrElse(alt: String): String = if x != null then x else alt
def set(value: String): Unit = x = value

Försök att undvika null om det går eftersom det ger stor risk för buggar!
(I ovan fiktiva exempel hade vi kunnat undvika detta enkelt genom att ge x startvärdet
"" i stället för null. En sådan lösing förutsätter att det finns en rimlig representation
av ett saknat värde. Mer om hantering av saknade värden senare...)

5.1.40 Be kompilatorn att varna vid initialiseringsproblem

Initialisering i fel ordning kan ge oväntade överraskningar:

scala> class C { val b = a; val a = 42 }

scala> C().b
val res0: Int = 0 // default-värdet för Int är noll och a har ännu inte fått värdet 42

Med kompilator-optionen -Wsafe-init får du en välbehövlig varning.

scala> :settings -Wsafe-init

scala> class C { val b = a; val a = 42 }
1 warning found
-- Warning: ----------------------------
1 |class C { val b = a; val a = 42 }

| ^
| Access non-initialized value a.

5.1.41 Be kompilatorn ge fler bra varningar

Slå på mer utförliga meddelanden och varningar:

//> using options -unchecked -deprecation -Wunused:all -Wvalue-discard -Wsafe-init

-unchecked Extra varningar vid flera fall av osäker kod.
-deprecation Förklaring vid användning av utgående funktioner.
-Wunused:all Varning om deklarationer ej används.
-Wvalue-discard Varning vid förlorat värde.
-Wsafe-init Varna vid användning av ännu ej initialiserade at-

tribut.

Slå på alla varningar och ge kompileringsfel vid varning:

//> using options -Wall -Werror

Se alla tillgängliga varningar med: scala compile -W

Om du tycker en specifik varning är irriterande kan du slå av den så här:

5.1. TEORI 179

@annotation.nowarn
val b = a
val a = 42

5.1.42 Referensen this

• Nyckelordet this ger en referens till den aktuella instansen.

scala> class Gurka(var vikt: Int){def jagSjälv = this}

scala> val g = Gurka(42)
val g: Gurka = Gurka@5ae9a829

scala> g.jagSjälv
val res0: Gurka = Gurka@5ae9a829

scala> g.jagSjälv.vikt
val res1: Int = 42

scala> g.jagSjälv.jagSjälv.vikt
val res2: Int = 42

• Referensen this används ofta för att komma runt ”namnkrockar” där variabler
med samma namn gör så att den ena variabeln inte syns.

5.1.43 Getters och setters

• I många språk (t.ex. Java, Python) finns inget motsvarande nyckelord val som
garanterar oföränderliga attributreferenser. 2

• Därför gör man i dessa språk nästan alltid alla attribut privata för att förhindra
att de ändras på ett okontrollerat sätt.

• Därför är det normalt att införa metoder som kallas getters och setters, som
används för att indirekt läsa och uppdatera attribut.

• Dessa metoder känns i många språk igen genom konventionen att de heter något
som börjar med get respektive set. (Men ej vanligt i Scala.)

• Med indirekt access av attribut kan man åstadkomma flexibilitet, så att
implementationen kan ändras utan att ändra i klientkoden:

– man kan t.ex. i efterhand ändra representation av de privata attributen
eftersom all access sker genom getters och setters.

• Man kan åstadkomma oföränderliga datastrukturer där attributreferenserna
inte förändras efter allokering om klassen inte erbjuder en setter för privata
attribut.

2Java har visserligen final men det är annorlunda som vi ska se senare.

180 KAPITEL 5. KLASSER OCH DATAMODELLERING

5.1.44 Java-exempel: Klassen JPerson

Indirekt access av privata attribut:

public class JPerson {
private String name;
private int age = 0;

public JPerson(String name){
//namnkrock fixas med this
this.name = name;

}

public String getName(){
return name;

}

public int getAge(){
return age;

}

public void setAge(int age){
this.age = age;

}
}

> scala repl .
scala> val p = JPerson("Björn")
val p: JPerson = JPerson@7e774085

scala> p.getAge
val res0: Int = 0

scala> p.setAge(42)

scala> p.getAge
val res1: Int = 42

scala> p.age
-- Error:
p.age
^^^^^
value age is not a member of JPerson

5.1.45 Motsvarande JPerson i Scala

Så här brukar man åstadkomma ungefär motsvarande i Scala:

class Person(val name: String):
var age = 0

Notera att alla attribut här är publika.

5.1.46 Förhindra felaktiga attributvärden med setters

Med hjälp av setters kan vi förhindra felaktig uppdatering av attributvärden, till
exempel negativ ålder i klassen JPerson i Java:

public void setAge(int age){
if (age >= 0) {

this.age = age;
} else {

this.age = 0;
}

5.1. TEORI 181

}

Hur kan vi åstadkomma motsvarande i Scala?
Antag att vi började med nedan variant, men ångrar oss och sedan vill införa funktio-
nalitet som förhindrat negativ ålder utan att ändra i klientkod:

class Person(val name: String):
var age = 0

Om vi inför en ny metod setAge och gör attributet age privat så funkar det inte längre
att skriva p.age = 42 och vi ”kvaddar” klientkoden! :(

5.1.47 Getters och setters i Scala

• Principen om enhetlig access tillsammans med specialsyntax för setters kommer
till vår räddning!

• En setter kan i Scala skapas med en procedur vars namn slutar med _=
• I Scala kan man utan att kvadda klientkod införa getter+setter så här:

class Person(val name: String): // ändrad implementation men samma access
private var myPrivateAge = 0
def age = myPrivateAge // getter
def age_=(a: Int): Unit = // setter

if a >= 0 then myPrivateAge = a else myPrivateAge = 0

1 scala> val p = Person("Björn")
2 val p: Person = Person@28ac3dc3
3

4 scala> p.age = 42 // najs syntax om getter parad med setter enl ovan
5 val p.age: Int = 42
6

7 scala> p.age = -1 // nu förhindras negativ ålder
8 val p.age: Int = 0

5.1.48 Referenslikhet eller innehållslikhet?

Det finns två principiellt olika sorters likhet:

• Referenslikhet (eng. reference equality): två referenser anses lika om de refere-
rar till samma instans i minnet.

• Innehållslikhet, ä.k. strukturlikhet (eng. structural equality): två referenser
anses lika om de refererar till objekt med samma innehåll.

• I Scala finns flera metoder som testar likhet:

– metoden eq testar referenslikhet och r1.eq(r2) ger true om r1 och r2
refererar till samma instans.

– metoden ne testar referensolikhet och r1.ne(r2) ger true om r1 och r2
refererar till olika instanser.

182 KAPITEL 5. KLASSER OCH DATAMODELLERING

– metoden == som anropar metoden equals som default testar referenslikhet
med eq men som kan överskuggas om man själv vill bestämma om det
ska vara referenslikhet eller strukturlikhet.

• Scalas standardbibliotek och grundtyperna Int, String etc. testar inne-
hållslikhet genom metoden ==

5.1.49 Exempel: referenslikhet och innehållslikhet

I Scalas standardbibliotek har man överskuggat equals så att metoden == ger test av
innehållslikhet mellan instanser:

1 scala> val v1 = Vector(1,2,3)
2 v1: scala.collection.immutable.Vector[Int] = Vector(1, 2, 3)
3

4 scala> val v2 = Vector(1,2,3)
5 v2: scala.collection.immutable.Vector[Int] = Vector(1, 2, 3)
6

7 scala> v1 eq v2 //referenslikhetstest: olika instanser
8 res0: Boolean = false
9

10 scala> v1 ne v2
11 res1: Boolean = true
12

13 scala> v1 == v2 //innehållslikhetstest: samma innehåll
14 res2: Boolean = true
15

16 scala> v1 != v2
17 res3: Boolean = false

5.1.50 Referenslikhet och egna klasser

Om du inte gör något speciellt med dina egna klasser så ger metoden == test av
referenslikhet mellan instanser:

scala> class Gurka(val vikt: Int)

scala> val g1 = new Gurka(42)
g1: Gurka = Gurka@2cc61b3b

scala> val g2 = new Gurka(42)
g2: Gurka = Gurka@163df259

scala> g1 == g2 // samma innehåll men olika instanser
res0: Boolean = false

scala> g1.vikt == g2.vikt
res1: Boolean = true

5.1. TEORI 183

5.1.51 Case-klasser ger innehållslikhet

Förutom annat ”godis på köpet” får du med case class även detta:

• Metoden == ger innehållslikhet (och inte referenslikhet).

5.1.52 Likhet och case-klasser

Metoden equals är i case-klasser automatiskt överskuggad så att metoden == ger test
av strukturlikhet.

1 scala> case class Gurka(vikt: Int)
2

3 scala> val g1 = Gurka(42)
4 g1: Gurka = Gurka(42)
5

6 scala> val g2 = Gurka(42)
7 g2: Gurka = Gurka(42)
8

9 scala> g1 eq g2 // olika instanser
10 res0: Boolean = false
11

12 scala> g1 == g2 // samma innehåll!
13 res1: Boolean = true

5.1.53 Sammanfattning case-klass-godis

Kom-ihåg-lista med ”godis” i case-klasser så här långt:

1. klassparametrar blir val-attribut
2. najs toString
3. automatisk fabriksmetod apply i kompanjonsobjekt
4. == ger innehållslikhet (eng. structural equality)

...

Men vi har inte sett allt godis än:
Mönstermatchning (mer om det senare).

5.1.54 Implementation saknas: ???

• Ofta vill man bygga kod iterativt och steg för steg lägga till olika funktionalitet.
• Standardfunktionen ??? ger vid anrop undantaget NotImplementedError och

kan användas på platser i koden där man ännu inte är färdig.
• ??? tillåter kompilering av ofärdig kod.
• Undantag har bottentypen Nothing som är subtyp till alla typer och kan därmed

tilldelas referenser av godtycklig typ.

184 KAPITEL 5. KLASSER OCH DATAMODELLERING

scala> lazy val sprängsSnart: Int = ???

scala> sprängsSnart + 42
scala.NotImplementedError: an implementation is missing

5.1.55 Exempel: ofärdig kod

case class Person(name: String, age: Int):
def ärTonåring = age >= 13 && age <= 19
def ärUng = !ärGammal
def ärGammal: Boolean = ??? //implementation ännu ej klar

scala> Person("Björn", 51).ärTonåring
res23: Boolean = false

scala> Person("Sandra", 39).ärUng
scala.NotImplementedError: an implementation is missing

5.2. ÖVNING CLASSES 185

5.2 Övning classes

Mål

� Kunna deklarera klasser med klassparametrar.
� Kunna skapa instanser med och utan new.
� Kunna ge argument vid instansiering.
� Förstå innebörden av referensvariabler och värdet null.
� Kunna använda nyckelordet private för att styra synlighet av attribut och

konstruktorparametrar.
� Förstå syftet med getters och setters.
� Kunna förklara accessregler för kompanjonsobjekt.
� Kunna skapa fabriksmetod i kompanjonsobjekt.
� Känna till nyttan med en privat konstruktor.
� Förstå skillnaden mellan referenslikhet och strukturlikhet.
� Känna till skillnaden mellan == och eq, samt != och ne.
� Kunna förklara hur case-klasser hanterar instansiering.
� Känna till hur case-klasser hanterar likhet.

Förberedelser

� Studera begreppen i kapitel 5

5.2.1 Grunduppgifter; förberedelse inför laboration

Uppgift 1. Para ihop begrepp med beskrivning.

Koppla varje begrepp med den (förenklade) beskrivning som passar bäst:

klass 1 A indirekt tilldelning av attributvärde
instans 2 B instanser anses olika även om tillstånden är lika
konstruktor 3 C nyckelord vid direkt instansiering av klass
klassparameter 4 D ser privata medlemmar i klass med samma namn
referenslikhet 5 E hjälpfunktion för indirekt konstruktion
innehållslikhet 6 F slipper skriva new; automatisk innehållslikhet
case-klass 7 G ett värde som ej refererar till någon instans
getter 8 H en mall för att skapa flera instanser av samma typ
setter 9 I upplaga av ett objekt med eget tillståndsminne
kompanjonsobjekt 10 J instanser anses lika om de har samma tillstånd
fabriksmetod 11 K binds till argument som ges vid konstruktion
null 12 L indirekt åtkomst av attributvärde
new 13 M skapar instans, allokerar plats för tillståndsminne

Uppgift 2. Klass och instans. Du har i övning objects sett hur singelobjekt i en
egen namnrymd kan samla funktioner (metoder) och ha tillstånd (attribut). Men
singelobjekt finns bara i en upplaga. Vill du kunna skapa många objekt av samma
typ behöver du en klass. En objektupplaga som skapats ur en klass kallas en instans
av klassen. Varje instans har sitt eget tillstånd. Deklarera singelobjektet och klassen
nedan och klistra in i REPL.

186 KAPITEL 5. KLASSER OCH DATAMODELLERING

object Singelpunkt { var x = 1; var y = 2 }
class Punkt { var x = 3; var y = 2 }

a) Antag att uttrycken till vänster evalueras uppifrån och ned. Vilket resultat till
höger hör ihop med respektive uttryck? Prova i REPL om du är osäker.3

Singelpunkt.x 1 A java.lang.NullPointerException

Punkt.x 2 B 1

val p = new Singelpunkt 3 C Not found: type

val p1 = new Punkt 4 D p1: Punkt = Punkt@27a1a53c

val p2 = Punkt() 5 E 3

{ p1.x = 1; p2.x } 6 F p2: Punkt = Punkt@51ab04bd

(new Punkt).y 7 G value is not a member of object

{ val p: Punkt = null; p.x } 8 H 2

b) Vid tre tillfällen blir det fel. Varför? Är det kompileringsfel eller exekveringsfel?

Uppgift 3. Klassparametrar. Klassen Punkt i föregående uppgift är inte så smidig
att använda eftersom man först efter instansiering kan ge attributen x och y de
koordinatvärden man önskar och detta måste ske med explicita tilldelningssatser.

Detta problem kan du lösa med klassparametrar som låter dig initialisera attri-
buten med konstruktionsargument och på så sätt ange ett initialtillstånd direkt i
samband med instansiering.

Deklarera klassen nedan i REPL.

class Point(var x: Int, var y: Int)

a) Antag att uttrycken till vänster evalueras uppifrån och ned. Vilket resultat till
höger hör ihop med respektive uttryck? Prova i REPL om du är osäker.

val p1 = Point(1, 2) 1 A missing argument for parameter

val p2 = Point() 2 B 2

val p2 = Point(3, 4) 3 C p1: Point = Point@30ef773e

p2.x - p1.x 4 D too many arguments for constructor

Point(0, 1).y 5 E p2: Point = Point@218cf600

Point(0, 1, 2) 6 F 1

b) Vid två tillfällen blir det fel. Varför? Är det kompileringsfel eller exekveringsfel?

Uppgift 4. Oföränderlig klass med defaultargument. Det som gäller för parametrar och
argument till funktioner är även tillämpligt på klassparametrar, t.ex. defaultargument
och namngivna argument. Man kan dessutom framför klassparametrar använda
nyckelorden var och val och då blir parametern ett synligt attribut. Vill man ha
privata attribut kan man ange t.ex. private val framför klassparameternamnet. Om
inget anges framför en klassparameter är det den allra mest restriktiva synligheten

3Strängen efter @-tecknet är en hexadecimal representation av det heltal som tillordnas varje objekt
för att systemet ska kunna särskilja olika instanser. https://stackoverflow.com/questions/4712139

https://stackoverflow.com/questions/4712139

5.2. ÖVNING CLASSES 187

private[this] val som gäller, vilket innebär att namnet bara syns i den aktuella
instansen4.

Deklarera nedan klass i REPL.

class Point3D(val x: Int = 0, val y: Int = 0, z: Int = 0)

a) Antag att uttrycken till vänster evalueras uppifrån och ned. Vilket resultat till
höger hör ihop med respektive uttryck? Prova i REPL om du är osäker.

val p1 = Point3D() 1 A false

val p2 = Point3D(y = 1) 2 B Reassignment to val

Point3D(z = 2).z 3 C p1: Point3D = Point3D@2eb37eee

p2.y = 0 4 D true

p2.y == 0 5 E value cannot be accessed

p1.x == Point3D().x 6 F p2: Point3D = Point3D@65a9e8d7

b) Vad är problemet med ovan klass om man vill använda den för att representera
punkter i 3 dimensioner?

Uppgift 5. Case-klass, this, likhet, toString och kompanjonsobjekt.
Klistra in nedan klasser i REPL.

case class Pt(x: Int = 0, y: Int = 0):
def moved(dx: Int = 0, dy: Int = 0): Pt = Pt(x + dx, y + dy)

class MutablePt(private var p: (Int, Int) = (0, 0)):
def x: Int = p._1
def y: Int = p._2
def move(dx: Int = 0, dy: Int = 0) = { p = (x + dx, y + dy); this }
override def toString = s"MPt($x,$y)"

a) Antag att uttrycken till vänster evalueras uppifrån och ned. Vilket REPL-svar till
höger hör ihop med respektive uttryck? Prova i REPL om du är osäker.

val p1 = Pt(1, 2) 1 A MPt(5,6)

val p2 = Pt(y = 3) 2 B false

val p3 = MutablePt(5, 6) 3 C Pt(0,3)

val p4 = Mutable() 4 D Not found

p2.moved(dx = 1) == Pt(1, 3) 5 E Pt(1,2)

p3.move(dy = 1) == MutablePt(5, 7) 6 F true

b) Vilken returtyp kommer kompilatorn härleda för funktionen MutablePt.move?

c) Vad är skillnaden mellan instansiering med universella apply-metoder och instan-
siering med new? Finns det något fall där new måste användas?

d) Vad kallas sådana metoder som def x och def y ovan?

4För case-klasser, som vi ska se snart, är det i stället val medförande synlighet och oföränderlighet
som gäller (alltså inte private[this] val).

188 KAPITEL 5. KLASSER OCH DATAMODELLERING

Uppgift 6. Implementera delar av klasserna Pos, KeyControl, Mole och BlockWindow
som behövs under laborationen blockbattle1. I nästa laboration ska du bygga vidare
på blockmole-labben och göra ett spel för två spelare där varje spelare styr sin egen
instans av en blockmole. Vi måste då göra om Mole så att den blir en klass i stället
för ett singelobjekt. Gör färdigt klasserna nedan och testa noggrant så att de fungerar.

Alla klasser ska tillhöra package blockbattle och ligga i varsin egen fil med
samma namn som klassen, t.ex. Pos.scala.

Tips: Ha ett separat terminalfönster igång och kör Scala CLI med ändringsbevak-
ning enligt nedan kommano. Då kompileras din ändrade kod om automatiskt varje
gång du sparar en scala-fil i aktuell katalog.

scala compile . --watch

Optionen --watch kan skrivas kortare med -w i stället.

a) Under laborationen är det smidigt att kunna representera flyttbara positioner i
ett pixelfönster. Implementera case-klassen Pos i ett nytt terminalfönster enligt nedan
så att den fungerar enligt efterföljande REPL-tester.

package blockbattle

case class Pos(x: Int, y: Int):
def moved(delta: (Int, Int)): Pos = ???

Testa så att Pos fungerar med hjälp av REPL enligt nedan:

1 > scala repl .
2 Welcome to Scala 3.3.0 (17.0.6, Java OpenJDK 64-Bit Server VM).
3 Type in expressions for evaluation. Or try :help.
4

5 scala> blockbattle.Pos(1,2)
6 val res0: blockbattle.Pos = Pos(1,2)
7

8 scala> import blockbattle.*
9

10 scala> val p = Pos(1,2)
11 val p: blockbattle.Pos = Pos(1,2)
12

13 scala> p.moved(0,1)
14 val res1: blockbattle.Pos = Pos(1,3)

Testa även att anropa moved på klassnamnet, t.ex. Pos.moved(0,1). Fungerar det-
ta? Varför/varför inte? Hur skiljer sig anrop till metoder i singelobjekt respektive
klassinstanser?
b) Under laborationen är det smidigt att kunna representera vilka tangenter som
motsvarar de olika riktningar som en användare kan styra sin mullvad i. Gör klart
case-klassen KeyControl enligt nedan så att den fungerar enligt efterföljande REPL-
tester. Metoden direction ska ge ett delta-steg i rätt (x, y)-riktning för ett givet
tangentnamn. Metoden has ska ge true om tangentnamnet finns i någon av de fyra
riktningstangenterna i denna denna KeyControl-instans, annars false.

package blockbattle

case class KeyControl(left: String, right: String, up: String, down: String):
def direction(key: String): (Int, Int) = ???

5.2. ÖVNING CLASSES 189

def has(key: String): Boolean = ???

1 scala> import blockbattle.*
2

3 scala> val kc1 = KeyControl(right="d",left="a",up="w",down="s")
4 val kc1: blockbattle.KeyControl = KeyControl(a,d,w,s)
5

6 scala> val kc2 = KeyControl("Left","Right","Up","Down")
7 val kc2: blockbattle.KeyControl = KeyControl(Left,Right,Up,Down)
8

9 scala> kc2.left
10 val res0: String = Left
11

12 scala> kc2.has("a")
13 val res1: Boolean = false
14

15 scala> kc2.has("Up")
16 val res2: Boolean = true
17

18 scala> kc1.direction("a")
19 val res3: (Int, Int) = (-1,0)
20

21 scala> kc1.direction("s")
22 val res4: (Int, Int) = (0,1)
23

24 scala> kc1.direction("d")
25 val res5: (Int, Int) = (1,0)
26

27 scala> kc1.direction("w")
28 val res6: (Int, Int) = (0,-1)
29

30 scala> Pos(1,2).moved(kc1.direction("a"))
31 val res7: blockbattle.Pos = Pos(0,2)

c) Gör klart klassen Mole enligt nedan. Mole är en klass som representerar en block-
mullvad med föränderliga attribut för position, riktning och poäng. Varje instans har
även oföränderliga attribut som håller reda på dess namn, dess färg och vilka tangen-
ter som kan användas för att styra mullvaden. Implementera klassens medlemmar
en i taget och testa noga med lämpliga testfall efter varje tillägg/buggfix. Skapa ett
huvudprogram t.ex. i filen Main.scala med dina tester som skapar instanser och
skriver ut attribut etc.

package blockbattle

class Mole(
val name: String,
var pos: Pos,
var dir: (Int, Int),
val color: java.awt.Color,
val keyControl: KeyControl

):
var points = 0

override def toString =
s"Mole[name=$name, pos=$pos, dir=$dir, points=$points]"

190 KAPITEL 5. KLASSER OCH DATAMODELLERING

/** Om keyControl.has(key) så uppdateras riktningen dir enligt keyControl */
def setDir(key: String): Unit = ???

/** Uppdaterar dir till motsatta riktningen. */
def reverseDir(): Unit = ???

/** Uppdaterar pos så att den blir nextPos */
def move(): Unit = ???

/** Ger nästa position enligt riktningen dir utan att uppdatera pos */
def nextPos: Pos = ???

d) Under laborationen behöver du en klass blockbattle.BlockWindow som med
hjälp av introprog.PixelWindow erbjuder blockgrafik. Varje instans av BlockWindow
ska ha ett attribut som refererar till en PixelWindow-instans. Detta kallas aggrege-
ring (eng. aggregation).5

För att det ska gå att kompilera och testa din BlockWindow-klass behöver du
ha introprog-paketet på classpath. Ladda ner filen https://fileadmin.cs.lth.se/
introprog.jar via din webbläsare eller med kommandot curl nedan (notera att det
är stora bokstaven O och inte en nolla i optionen -sLO):

curl -o introprog.jar -sLO https://fileadmin.cs.lth.se/introprog.jar
scala run . --jar introprog.jar

Då hamnar introprog.jar automatiskt på classpath.
Gör klart klassen BlockWindow enligt nedan. Metoden setBlock ska med hjälp

av metoden pixelWindow.fill fylla ett kvadratiskt område med sidan blockSize
pixlar på en viss position pos i block-koordinater och med en viss färg color. Metoden
getBlock ska med hjälp av metoden pixelWindow.getPixel ge färgen för övre vänstra
hörnet i blocket på position pos i block-koordinater.

package blockbattle

class BlockWindow(
val nbrOfBlocks: (Int, Int),
val title: String = "BLOCK WINDOW",
val blockSize: Int = 14

):
import introprog.PixelWindow

val pixelWindow = new PixelWindow(
nbrOfBlocks._1 * blockSize, nbrOfBlocks._2 * blockSize, title)

def setBlock(pos: Pos, color: java.awt.Color): Unit = ???

def getBlock(pos: Pos): java.awt.Color = ???

def write(
text: String,
pos: Pos,
color: java.awt.Color,
textSize: Int = blockSize

): Unit = pixelWindow.drawText(

5https://en.wikipedia.org/wiki/Object_composition#Aggregation

https://fileadmin.cs.lth.se/introprog.jar
https://fileadmin.cs.lth.se/introprog.jar
https://en.wikipedia.org/wiki/Object_composition#Aggregation

5.2. ÖVNING CLASSES 191

text, pos.x * blockSize, pos.y * blockSize, color, textSize)

def nextEvent(maxWaitMillis: Int = 10): BlockWindow.Event.EventType =
import BlockWindow.Event._

pixelWindow.awaitEvent(maxWaitMillis)
pixelWindow.lastEventType match
case PixelWindow.Event.KeyPressed => KeyPressed(pixelWindow.lastKey)
case PixelWindow.Event.WindowClosed => WindowClosed
case _ => Undefined

object BlockWindow:
def delay(millis: Int): Unit = Thread.sleep(millis)

object Event:
trait EventType
case class KeyPressed(key: String) extends EventType
case object WindowClosed extends EventType
case object Undefined extends EventType

I instruktionerna till laborationen blockbattle1 finns tips om hur du kan hantera
händelser i ett BlockWindow med hjälp av metoden nextEvent ovan.

e) Gör så att huvudprogrammet i Main.scala ritar några valfria block i en in-
stans av klassen BlockWindow. Skapa även en while (!quit)-loop som med hjälp av
nextEvent() skriver ut händelser i terminalen som inte är av typen Undefined.

Metoden nextEvent() ligger i klassen BlockWindow. Varje looprunda ska även
innehålla en 200 millisekunders fördröjning genom anrop av delay-metoden som
definierats i kompanjonsobjektet BlockWindow ovan. Om händelsen WindowClosed
inträffar ska loopen avslutas. Kör huvudprogrammet och kontrollera så att resultatet
blir som förväntat.

5.2.2 Extrauppgifter; träna mer

Uppgift 7. Instansiering med new och värdet null. Man skapar instanser av klasser
med new. Då anropas konstruktorn och plats reserveras i datorns minne för objektet.
Variabler av referenstyp som inte refererar till något objekt har värdet null.

a) Vad händer nedan? Vilka rader ger felmeddelande och i så fall hur lyder felmed-
delandet?

1 scala> class Gurka(val vikt: Int)
2 scala> var g: Gurka = null
3 scala> g.vikt
4 scala> g = new Gurka(42)
5 scala> g.vikt
6 scala> g = null
7 scala> g.vikt

b) Rita minnessituationen efter raderna 2, 4, 6.

Uppgift 8. Skapa en punktklass som kan hantera polära koordinater och en klass
som representerar en polygon m.h.a. dessa punkter. Du ska skapa en oföränderlig
case-klass Point som kan representera en koordinat både med ”vanliga” kartesiska

192 KAPITEL 5. KLASSER OCH DATAMODELLERING

koordinater6 och med polära koordinater 7. Sedan ska du använda denna klass för att
skapa regelbundna polygoner med en oföränderlig case-klass Polygon.

a) Skapa kod med hjälp av en editor, t.ex. VS code, i filen Point.scala enligt följande
riktlinjer:

1. Point ska ligga i paketet graphics.
2. Point ska ha följande två publika, oföränderliga klassparametrar:

• x: Double för x-koordinaten.
• y: Double för y-koordinaten.

3. Point ska ha följande publika medlemmar (två oföränderliga attribut och en
metod):

• val r: Double ska ge motsvarande polära koordinatens avstånd till origo.
• val theta: Double ska ge polära koordinatens vinkel i radianer.
• def +(p: Point): Point ska ge en ny punkt vars koordinat är summan

av x- respektive y-koordinaterna för denna instans och punkten p.
4. Point ska ha ett kompanjonsobjekt med en metod som konstruerar en punkt

från polära koortdinater. Metoden ska ha detta huvud:
def polar(r: Double, theta: Double): Point

Tips:

• Du har nytta av metoderna r = math.hypot(x, y) och θ = math.atan2(y, x)
vid omvandling till polära koordinater:

x

r
y

θ

• Du har nytta av metoderna math.cos(theta) och math.sin(theta) vid om-
vandling från polära koordinater.

• Notera att klassens attribut är av typen Double och inte Int, trots att vi senare
ska använda punkten för att beskriva en diskret pixelposition i ett PixelWindow.
Anledningen till detta är att det kan uppstå avrundningsfel vid numeriska
beräkningar. Detta blir särskilt märkbart vid upprepad räkning med små värden,
t.ex. när man ritar en approximerad cirkel med många linjesegment.

b) Klassen PolygonWindow nedan innehåller ett PixelWindow och ger möjlighet att ri-
ta ut polygoner. Kopiera koden för PolygonWindow till en ny kodfil PolygonWindow.scala
i samma katalog som du placerade Point ovan i.

//> using dep "se.lth.cs::introprog:1.4.0"
package graphics

import introprog.PixelWindow
import java.awt.Color

6https://sv.wikipedia.org/wiki/Kartesiskt_koordinatsystem
7https://sv.wikipedia.org/wiki/Pol%C3%A4ra_koordinater

https://sv.wikipedia.org/wiki/Kartesiskt_koordinatsystem
https://sv.wikipedia.org/wiki/Pol%C3%A4ra_koordinater

5.2. ÖVNING CLASSES 193

extension (p: Point) def toPixels: Seq[Int] =
Seq(p.x.round.toInt, p.y.round.toInt)

class PolygonWindow:
val black = Color(0, 0, 0)
val coolGreen = Color(0, 255, 111)
val width = 500
val height = 500

val window =
PixelWindow(width, height, title = "Polygons",

background = black, foreground = coolGreen)

def draw(polygon: Polygon): Unit =
for i <- 0 until polygon.nbrOfCorners do

val from = polygon.points(i).toPixels.map(_ + width / 2)
val next = polygon.points((i+1) % polygon.nbrOfCorners)
val to = next.toPixels.map(_ + width / 2)
window.line(from(0), from(1), to(0), to(1), lineWidth = 2)

Skapa en case-klass vid namn Polygon med en parameter points: Vector[Point]
och ett attribut val nbrOfCorners: Int. Case-klassen Polygon ska också ligga i pa-
ketet graphics.

Likt klassen Point ovan ska också Polygon ha ett kompanjonsobjekt. Kompanjon-
sobjektet ska ha en metod regular som skapar en regelbunden polygon. Metoden ska
ha följande parametrar: nbrOfCorners: Int, radius: Double, midPoint: Point
Fundera över hur case-klassen Polygon och dess kompanjonsobjekt ska se ut för att
koden ovan i PolygonWindow ska fungera som tänkt. Testa att allt fungerar i REPL.

c) Kan man använda metoden regular för att rita cirklar? Kan man använda
Polygon för att representera oregelbundna polygoner? Testa i REPL.

Uppgift 9. Klasser, instanser och skräp. För länge sedan i en galax långt långt borta...

case class Arm(ärTillVänster: Boolean)

case class Ben(ärTillVänster: Boolean)

case class Huvud(harHår: Boolean = true)

case class Rymdvarelse(
arm1: Arm = Arm(true),
arm2: Arm = Arm(false),
ben1: Ben = Ben(true),
ben2: Ben = Ben(false),
huvud1: Huvud = Huvud(harHår = false),

var huvud2: Huvud = Huvud()
):

def ärSkallig = !huvud1.harHår && !huvud2.harHår

194 KAPITEL 5. KLASSER OCH DATAMODELLERING

a) Klistra in ovan rymdkod i REPL och evaluera nedan rader. Rita minnessituationen
efter rad 5 och beskriv vad som händer.

1 scala> val alien = Rymdvarelse()
2 scala> alien.ärSkallig
3 scala> val predator = Rymdvarelse()
4 scala> predator.ärSkallig
5 scala> predator.huvud2 = alien.huvud1
6 scala> predator.huvud2 eq alien.huvud1 // test av referenslikhet
7 scala> println(predator)
8 scala> predator.ärSkallig

b) Vad händer så småningom med det ursprungliga huvud2-objektet i predator efter
tilldelningen på rad 5? Går det att referera till detta objekt på något sätt?

Uppgift 10. Case-klass. Oföränderlig kvadrat.

a) Implementera nedan kvadrat med en editor och klistra in den i REPL.

case class Square(val x: Int = 0, val y: Int = 0, val side: Int = 1):
val area: Int = ???

/** Creates a new Square moved to position (x + dx, y + dy) */
def moved(dx: Int, dy: Int): Square = ???

def isEqualSizeAs(that: Square): Boolean = ???

/** Multiplies the side with factor and rounded to nearest integer */
def scale(factor: Double): Square = ???

object Square:
/** A Square at (0, 0) with side 1 */
val unit: Square = ???

b) Testa din kvadrat enligt nedan. Förklara vad som händer.

1 scala> val (s1, s2) = (Square(), Square(1, 10, 1))
2 scala> val s3 = s1 moved (1,-5)
3 scala> s1 isEqualSizeAs s3
4 scala> s2 isEqualSizeAs s1
5 scala> s1 isEqualSizeAs Square.unit
6 scala> s2.scale(math.Pi) isEqualSizeAs s2
7 scala> s2.scale(math.Pi) isEqualSizeAs s2.scale(math.Pi)
8 scala> s2.scale(math.Pi) eq s2.scale(math.Pi)
9 scala> Square.unit eq Square.unit

5.2. ÖVNING CLASSES 195

5.2.3 Fördjupningsuppgifter; utmaningar

Uppgift 11. Innehållslikhet mellan olika typer. Klistra in nedan klasser i REPL och
undersök vad som händer.

class Gurka(val vikt: Int)

class Bil(val typ: String)

1 scala> class Gurka(val vikt: Int)
2 |
3 | class Bil(val typ: String)
4 // defined class Gurka
5 // defined class Bil
6

7 scala> 42 == "Fyrtiotvå"
8

9 scala> Gurka(50) == Bil("Sedan")

Finns det något resultat som är problematiskt, och i så fall, varför?

Uppgift 12. Attributrepresentation. Privat konstruktor. Fabriksmetod. Kim Kodkunnig
skapade för länge sedan denna klass som används på många ställen i befintlig kod:

class Point private (val x: Int, val y: Int)
object Point:

def apply(x: Int = 0, y: Int = 0): Point = new Point(x, y)
val origo = apply()

a) Vad händer om du försöker instansiera Kim Kodkunnigs klass direkt med nyc-
kelordet new?
b) Varför använder Kim Kodkunnig ett kompanjonsobjekt med en fabriksmetod?
Vilka accessregler gäller mellan ett kompanjonsobjekt och klassen med samma namn?
c) Hjälp Kim Kodkunnig att ändra attributrepresentationen så att det oföränderliga
tillståndet utgörs av en 2-tupel val p: (Int, Int) i stället. Befintlig kod ska inte
behöva ändras och klassen Point ska bete sig från ”utsidan” precis som innan.

Uppgift 13. Synlighet av klassparametrar och konstruktor, private[this].

a) En av gurk-klasserna nedan är trasig. Varför och vad blir det för fel?

class Gurka1(vikt: Int)

class Gurka2(val vikt: Int)

class Gurka3(private val vikt: Int)

class Gurka4(private val vikt: Int, kompis: Gurka4):
def kompisVikt = kompis.vikt

class Gurka5(private[this] val vikt: Int, kompis: Gurka5):
def kompisVikt = kompis.vikt

196 KAPITEL 5. KLASSER OCH DATAMODELLERING

class Gurka6 private (vikt: Int)

class Gurka7 private (var vikt: Int)
object Gurka7:

def apply(vikt: Int) =
require(vikt >= 0, "negativ vikt: " + vikt)
new Gurka7(vikt)

b) Undersök nedan vad nyckelorden val och private får för konsekvenser. Förklara
vad som händer. Vilka rader ger vilka felmeddelanden?

1 scala> new Gurka1(42).vikt
2 scala> new Gurka2(42).vikt
3 scala> new Gurka3(42).vikt
4 scala> val ingenGurka: Gurka4 = null
5 scala> new Gurka4(42, ingenGurka).kompisVikt
6 scala> new Gurka4(42, new Gurka4(84, null)).kompisVikt
7 scala> new Gurka6(42)
8 scala> new Gurka7(-42)
9 scala> Gurka7(-42)
10 scala> val g = Gurka7(42)
11 scala> g.vikt
12 scala> g.vikt = -1
13 scala> g.vikt

Uppgift 14. Egendefinierad setter kombinerat med privat konstruktor. Klistra in denna
kod i REPL:

class Gurka8 private (private var _vikt: Int):
def vikt = _vikt
def vikt_=(v: Int): Unit =

require(v >= 0, "negativ vikt: " +v)
_vikt = v

object Gurka8:
def apply(vikt: Int) =

require(vikt >= 0, "negativ vikt: " + vikt)
new Gurka8(vikt)

a) Förklara vad som händer nedan. Vilka rader ger vilka felmeddelanden?

1 scala> val g = Gurka8(-42)
2 scala> val g = Gurka8(42)
3 scala> g.vikt
4 scala> g.vikt = 0
5 scala> g.vikt = -1
6 scala> g.vikt += 42
7 scala> g.vikt -= 1000

b) Vad är fördelen med möjligheten att skapa egendefinierade setters?

Uppgift 15. Objekt med föränderligt tillstånd (eng. mutable state). Du ska implemen-
tera en modell av en hoppande groda som uppfyller följande krav:

5.2. ÖVNING CLASSES 197

1. Varje grodobjekt ska hålla reda på var den är.

2. Varje grodobjekt ska hålla reda på hur långt grodan hoppat totalt.

3. Varje grodobjekt ska kunna beräkna hur långt det är mellan grodans nuvarande
position och utgångsläget.

4. Alla grodor börjar sitt hoppande i origo.

5. En groda kan hoppa enligt två metoder:

• relativ förflyttning enligt parametrarna dx och dy,
• slumpmässig relativ förflyttning [1,10] i x-ledsförändring och [1,10] i y-

ledsförändring.

a) Implementera klassen Frog enligt nedan kodskelett och ovan krav.

class Frog private (initX: Int = 0, initY: Int = 0):
def x: Int = ???
def y: Int = ???

def jump(dx: Int, dy: Int): Unit = ???
def randomJump: Unit = ???

def distanceToStart: Double = ???
def distanceJumped: Double = ???
def distanceTo(that: Frog): Double = ???

object Frog:
def spawn(): Frog = ???

Tips:
• Om namnet man vill ge ett privat föränderligt attribut ”krockar” med ett me-

todnamn, är det vanligt att man börjar attributets namn med understreck, t.ex.
private var _x för att på så sätt undkomma namnkonflikten.

• Inför en metod i taget och klistra in den nya grodan i REPL efter varje utvidgning
och testa.

b) Skapa en metod def test(): Unit i ett singelobjekt FrogTest som innehåller
kod som gör minst en kontroll av varje krav. Om ingen kontroll går fel ska "Test Ok!"
skrivas ut, annars ska exekveringen avbrytas. Tips: Använd assert(b, msg) som
avbryter exekveringen och skriver ut msg om b är falsk.
c) Vad kallas en metod som enbart returnerar värdet av ett privat attribut?
d) Inför setters för attributen som håller reda på x- och y-postitionen. Förändringar
av positionen i x- eller y-led ska räknas som ett hopp och alltså registreras i det
attribut som håller reda på det ackumulerade hoppavståndet.
e) Simulera ett massivt grodhoppande med krockdetektering genom att skapa 100
grodor som till att börja med är placerade på x-axeln med avståndet 8 längdenheter
mellan sig. För varje runda i en while-sats, låt en slumpässigt vald groda göra ett
randomJump tills någon groda befinner sig närmare än 0.5 längdenheter, vilket är
definitionen på att de har krockat. Räkna hur många looprundor som behövs innan
något grodpar krockar och skriv ut antalet. Skriv även ut det totala antalet
Tips: Börja med pseudokod på papper. Använd en grodvektor.

198 KAPITEL 5. KLASSER OCH DATAMODELLERING

Uppgift 16. Objekt med föränderligt tillstånd (eng. mutable state). Webbshoppen
UberSquare säljer flyttbara kvadrater. I affärsmodellen ingår att ta betalt per för-
flyttning. Du ska hjälpa UberSquare att utveckla en enkel prototyp för att imponera
på riskkapitalister. (En variant av denna uppgift ingick i tentamen 2017-08-23.)

a) Implementera Square enligt dokumentationskommentarerna i efterföljande kod-
skiss och enligt dessa krav:

1. Varje instans av Square ska räkna antalet förflyttningar som gjorts sedan in-
stansen konstruerats.

2. För att kunna övervaka sina kunder vill UberSquare även räkna det totala
antalet förflyttningar som gjorts av alla kvadrater som någonsin skapats (s.k.
big data).

3. Varje gång förflyttning sker ska ett visst belopp adderas till den ackumulerade
kostnaden för respektive kvadrat, enligt kostnadsberäkningen i krav 4.

4. UberSquare är oroliga för att kvadraterna flyttas för långt bort och bestämmer
därför att för varje förflyttning ska den ackumulerade kvadratkostnaden ökas
med den nya positionens avstånd till ursprungsläget vid kvadratens konstruk-
tion multiplicerat med aktuell storlek på kvadraten.

5. För att framstå som goda berättar UberSquare i sin marknadsföring att det är
gratis att skala kvadrater. 8

/** A mutable and expensive Square. */
class Square private (val initX: Int, val initY: Int, val initSide: Int):
private var nMoves = 0
private var sumCost = 0.0

private var _x = initX
private var _y = initY

private var _side = initSide

private def addCost(): Unit =
sumCost += ???

def x: Int = ???
def y: Int = ???

def side = ???

/** Scales the side of this square and rounds it to nearest integer */
def scale(factor: Double): Unit = ???

/** Moves this square to position (x + xd, y + dy) */
def move(dx: Int, dy: Int): Unit = ???

/** Moves this square to position (x, y) */
def moveTo(x: Int, y: Int): Unit = ???

/** The accumulated cost of this Square */

8D.v.s. ett anrop av metoden scale orsakar ingen omedelbar kostnad.

5.2. ÖVNING CLASSES 199

def cost: Double = ???

/** Returns the accumulated cost. Sets the accumulated cost to zero. */
def pay: Double = ???

override def toString: String =
s"Square[($x, $y), side: $side, #moves: $nMoves times, cost: $sumCost]"

object Square:
private var created = Vector[Square]()

/** Constructs a new Square object at (x, y) with size side */
def apply(x: Int, y: Int, side: Int): Square =
require(side >= 0, s"side must be positive: $side")
???

/** Constructs a new Square object at (0, 0) with side 1 */
def apply(): Square = ???

/** The total number of moves that have been made for all squares. */
def totalNumberOfMoves: Int = ???

/** The total cost of all squares. */
def totalCost: Double = ???

b) Testa din kvadratprototyp i REPL. Använd t.ex. koden nedan:

1 scala> val xs = Vector.fill(10)(Square())
2 scala> xs.foreach(_.move(2, 3))
3 scala> xs.foreach(_.scale(2.9))
4 scala> val (m, c) = (Square.totalNumberOfMoves, Square.totalCost)
5 val m: Int = 10
6 val c: Double = 36.055512754639885

Uppgift 17.? Hjälpkonstruktor. I tidigare uppgifter har vi möjliggjort alternativa sätt
att skapa instanser genom default-argument och fabriksmetoder i kompanjonsobjekt.

Ett annat sätt att göras detta på, som i Scala är ovanligt9, är att definiera flera
konstruktorer inne i klasskroppen. I Scala kallas en sådan extra konstruktor för
hjälpkonstruktor (eng. auxiliary constructor).

En hjälpkonstruktor skapar man i Scala genom att definiera en metod som har
det speciella namnet this, alltså en deklaration def this(...) = ... Hjälpkon-
struktorer måste börja med att anropa en annan konstruktor, antingen den primära
konstruktorn (d.v.s. den som klasshuvudet definierar) eller en tidigare definierad
hjälpkonstruktor.

a) Läs mer om hjälpkonstruktorer här:
www.artima.com/pins1ed/functional-objects.html#6.7
b) Hitta på en egen uppgift med hjälpkonstruktorer, baserat på någon av klasserna i
tidigare övningar.

9Men i Java är detta mycket vanligt då defaultargument m.m. inte ingår i språket.

http://www.artima.com/pins1ed/functional-objects.html#6.7

200 KAPITEL 5. KLASSER OCH DATAMODELLERING

5.3 Laboration: blockbattle0

Förberedelser

� Gör övning classes i avsnitt 5.2.
� Du har två veckor på dig att göra blockbattle. Läs redan nu igenom alla

uppgifter i avsnitt 6.3, men gör först grundövningarna innan du påbörjar labben,
speciellt uppgift 6 i avsnitt 5.2.

Kapitel 6

Mönster och felhantering

Begrepp som ingår i denna veckas studier:

� mönstermatchning
� match
� Option
� throw
� try
� catch
� Try
� unapply
� sealed
� flatten
� flatMap
� partiella funktioner
� collect
� wildcard-mönster
� variabelbindning i mönster
� sekvens-wildcard
� bokstavliga mönster
� implementera equals
� hashcode

201

202 KAPITEL 6. MÖNSTER OCH FELHANTERING

6.1 Teori

6.1.1 Bastypen för alla typer: Any

Scalas typsystem är fullständigt:

• Exakt alla existerande värden i Scala är objekt som har en typ.
• Alla typer är subtyper till bastypen Any, och därför kallas topptyp.
• Typen Nothing är subtyp till alla typer, och kallas därför bottentyp.

Inget värde har enbart typen Nothing; alla objekttyper är mindre specifika än
så.

• En förenklad beskrivning av topptypen Any som ger alla objekt toString etc:

trait Any:
// metoder som får överskuggas
def toString: String // en strängrepresentation
def equals(other: Any): Boolean = eq(other) // definierar likhet
def hashCode: Int // ska ge samma heltal om equals true

// finala metoder får ej överskuggas:
final def eq(other: Any): Boolean // ger alltid referenslikhet
final def ne(other: Any): Boolean = !eq(other)
final def ==(other: Any) = equals(other)
final def !=(other: Any) = !equals(other)
final def isInstanceOf[T]: Boolean // typtest vid körtid
final def asInstanceOf[T]: T // osäker typkonvertering vid körtid
final def ## = hashCode // annorlunda för värdetyper och null

https://www.scala-lang.org/api/current/scala/Any.html
(Mer om bastyper, traits, equals, hashCode, ... senare.)

6.1.2 Alla typer är subtyper till Any

Any

Matchable

AnyVal AnyRef

• Alla värdetyper, t.ex. Int, Double, Boolean, är subtyper till AnyVal
• Alla referenstyper t.ex. String är subtyper till AnyRef
• Värden av typen Matchable kan användas vid s.k mönstermatchning.
• (Det finns även s.k. opaka typer som inte kan mönstermatchas.)

6.1.3 Dina egna referenstyper är subtyper till AnyRef

Alla typer du skapar är subtyper till AnyRef utan att du behöver skriva det.

https://www.scala-lang.org/api/current/scala/Any.html

6.1. TEORI 203

trait Grönsak: // din egen bastyp
def vikt: Int

case class Gurka(vikt: Int) extends Grönsak // din egen subtyp
case class Tomat(vikt: Int) extends Grönsak // en annan subtyp

Grönsak

Gurka Tomat

Det kommer mer om typhierarkier och extends i veckan om arv.

I ett match-uttryck kan man matcha på ett visst värde eller på en viss typ och match-
uttryck används gärna istället för nästlade if-uttryck, då de ofta är lättare att läsa
och begripa. Med match-uttryck kan man också göra mönstermatchning mot case-
klass-instanser, t.ex. för att på ett smidigt sätt undersöka om attribut har speciella
värden. Match-uttryck i Scala är en mer kraftfull variant av switch-satser som finns i
många andra språk.

6.1.4 Vad är matchning?

• Matchning gör man då man vill jämföra ett värde mot andra värden och hitta
överensstämmelse (eng. match) enligt olika mönster.

• Med mönster kan man även plocka isär objekt i sina beståndsdelar.

6.1.5 Plocka isär ett objekt i sina beståndsdelar med mönster

scala> case class Point(x: Int, y: Int)

scala> val p = Point(1, 2) // konstruera en punkt
val p: Point = Point(1,2)

scala> val Point(a, b) = p // plocka isär en punkt
val a: Int = 1
val b: Int = 2

Point(a, b) kallas ett konstruktormönster.
De godtyckliga namnen a och b blir nya variabler.
Det finns många olika sorters mönster.
Vanligaste användningen av mönster är i match-uttryck.

204 KAPITEL 6. MÖNSTER OCH FELHANTERING

6.1.6 Kolla om det passar med nästlade if-uttryck

Ett vanligt problem:
att kolla vilket bland många värden som passar

Kan göras med nästlade if-then-else-uttryck:

val g = scala.io.StdIn.readLine("Ange en grönsak:")
val smak =

if g == "gurka" then "gott!"
else if g == "tomat" then "jättegott!"
else if g == "broccoli" then "ganska gott..."
else "inte gott :("

println(g + " är " + smak)

6.1.7 Kolla om det passar med match-uttryck

I stället för nästlade if kan du använda Scalas kraftfulla match-uttryck:

val g = scala.io.StdIn.readLine("Ange en grönsak: ")
val smak =

g match
case "gurka" => "gott!"
case "tomat" => "jättegott!"
case "broccoli" => "ganska gott..."
case _ => "mindre gott..."

• Varje case-gren testas var för sig i tur och ordning uppifrån och ned.
• Det som står mellan case och => kallas ett mönster (eng. pattern)
• Om ett mönster matchar så görs det som står efter =>
• Inga efterföljande case-grenar testas efter lyckad match.
• Ovan är exempel på matchning mot konstant-mönster,

i detta fallet tre stycken strängkonstantmönster.
• Sista default-grenen ovan kallas wildcard-mönster: case _ =>
• Det finns många andra sätt att skriva mönster.

6.1.8 Syntax för match-uttryck

Ett match-uttryck består av godtyckligt många case ... => ...

värdeAttUndersöka match {
case mönster1 => resultat1
case mönster2 => resultat2
case mönster3 => resultat3

6.1. TEORI 205

case mönsterN => resultatN
}

• Klammerparenteser efter match valfria om case på ny rad.
• Varje resultat-uttryck kan bestå av många rader.
• Klammerparenteser behövs ej efter => vid många rader.

Om många rader efter case så blir sista uttrycket resultatet.
Vi ska nu se exempel på många olika mönster

6.1.9 Matchning med gard

Man kan stoppa in en s.k gard (eng. guard) innan pilen => för att villkora matchningen:
(notera if utan then)

val g = scala.io.StdIn.readLine("Ange en grönsak: ")
val smak = g match

case "gurka" if math.random() > 0.5 => "gott ibland!"
case "tomat" => "jättegott!"
case "broccoli" => "ganska gott..."
case _ => "mindre gott..."

case-grenen med gard ger bara en lyckad matchning
om uttrycket efter if är sant; annars provas nästa gren, etc.

6.1.10 Matchning med variabelmönster

Om det finns ett namn efter case som börjar med liten begynnelsebokstav, blir detta
namn en variabel som automatiskt binds till uttrycket före match:

val g = scala.io.StdIn.readLine("Ange en grönsak: ")
val smak = g match

case "gurka" if math.random() > 0.5 => "gott ibland!"
case "tomat" => "jättegott!"
case "broccoli" => "ganska gott..."
case other => "smakar bakvänt: " + other.reverse

Ett enkelt variabelmönster, så som
case other => ...
i exemplet ovan, matchar allt!
other får alltså värdet av g om g inte är "gurka", "tomat", "broccoli".

6.1.11 Matchning med eller-mönster

Om man har samma utfall för olika grenar kan dessa slås ihop och mönstret separeras
med vertikalstreck: |

206 KAPITEL 6. MÖNSTER OCH FELHANTERING

val g = scala.io.StdIn.readLine("Ange en grönsak: ")
val smak = g match

case "gurka" => "gott"
case "tomat" => "gott"
case "lök" => "gott"
case _ => "inte gott"

Mer koncist med eller-mönster:

val g = scala.io.StdIn.readLine("grönsak:")
val smak = g match

case "gurka" | "tomat" | "lök" => "gott"
case _ => "inte gott"

6.1.12 Matchning med typade mönster

Antag att vi har nedan oäkta funktion f som vi vill matcha på:

def f() = // Vilken returtyp härleds av kompilatorn?
if math.random() < 0.5 then 42 + math.random()
else s"gurka ${math.random()}"

Med en typannotering efter en variabel får man ett typat mönster (eng. typed pat-
tern). Vid lyckad matchning omvandlas värdet till den specifika typen och binds till
variabeln.

val i: Int = f() match
case x: Double => x.round.toInt // typat mönster som kollar om Double
case s: String => s.length // typat mönster som kollar om String

Matchning mot specifika typer enl. ovan används i idiomatisk Scala hellre än isInstanceOf
och asInstanceOf men man kan göra motsvarande ovan så här:

val i2: Int =
val x = f()
if x.isInstanceOf[Double] then x.asInstanceOf[Double].round.toInt
else if x.isInstanceOf[String] then x.asInstanceOf[String].length
else throw scala.MatchError(x)

6.1.13 Fördjupning: Unionstyper och typen Matchable

• Exempel: För de orelaterade typerna String och Int är den mest specifika
typen som kan härledas Int | String, läses ”Int eller String” och kallas en
unionstyp (eng. union type).

6.1. TEORI 207

scala> def f() = math.random() match
case a if a > 0.5 => 42
case a if a < 0.2 => "hej"

def f(): Int | String

• Alla värden som kan undersökas med match har typen Matchable .
• Typen Matchable är nästan lika generell som topptypen Any.

scala> (f().isInstanceOf[Matchable], f().isInstanceOf[Any])
val res0: (Boolean, Boolean) = (true,true)

• Matchable infördes i Scala 3 med opaka typalias som garanterat aldrig boxas
men inte kan mönstermatchas. (Ingår ej i denna kurs.)

• Fördjupning om Matchable och opaque type i Scala 3 finns här:
https://dotty.epfl.ch/docs/reference/other-new-features

6.1.14 Konstruktormönster med case-klasser

En basklass med gemensamma delar och två subtyper:

trait Grönsak:
def vikt: Int
def ärRutten: Boolean

case class Gurka(vikt: Int, ärRutten: Boolean) extends Grönsak
case class Tomat(vikt: Int, ärRutten: Boolean) extends Grönsak

Tack vare case-klasserna kan man använda konstruktormönster (eng. constructor
pattern) för att se vad som finns inuti en instans:

def testa(g: Grönsak): String = g match
case Gurka(v, false) => "gott, väger " + v
case Gurka(_, true) => "inte gott"
case Tomat(v, r) => (if r then "inte " else "") + s"gott, väger $v"
case _ => s"okänd grönsak: $g"

Konstruktormönster ”plockar isär” det som matchas och binder variabler till de
attribut som finns i case-klassens konstruktor.

6.1.15 Plocka isär samlingar med djupa mönster

• Man kan plocka isär innehållet i en samling så här:

def visa(xs: Vector[Grönsak]): String = xs match
case Vector() => "tom grönsaksvektor"
case Vector(Gurka(v, true)) => s"en rutten gurka som väger $v"
case Vector(g) => s"exakt en grönsak: $g"
case Vector(g1, g2) => s"exakt två grönsaker: $g1, $g2"
case Vector(g, gs*) => s"först en $g och sedan svansen: $gs"

https://dotty.epfl.ch/docs/reference/other-new-features

208 KAPITEL 6. MÖNSTER OCH FELHANTERING

• Vad händer om du byter ordning på 2:a och 3:e mönstret?
• Vector(g, gs*) kan också skrivas som g +: gs

6.1.16 Matchning på tupler

Det går fint att plocka isär tupler med mönstermatchning:1

var pair = ("hej", 42)

pair match
case (a, b) if b == 42 => s"livets mening är funnen: $a"
case (_, b) => s"fattas mening: $b"

Understreck betyder att vi inte är intresserade av att binda ett variabelnamn till
värdet.

6.1.17 Mönstermatchning och uppräkning med case-objekt

En bastyp och specifika singelobjekt av gemensam typ:

trait Färg
case object Spader extends Färg // funkar utan case men vill ha najs toString
case object Hjärter extends Färg
case object Ruter extends Färg
case object Klöver extends Färg

def parallellFärg(f: Färg): Färg = f match
case Spader => Klöver
case Klöver => Spader
case Hjärter => Ruter

Vilken case-gren har vi glömt? Kan kompilatorn hjälpa oss?

1 scala> parallellFärg(Ruter)
2 scala.MatchError: Ruter

Undantag vid körtid :(

6.1.18 Mönstermatchning och förseglade typer

Med nyckelordet sealed får du en förseglad typ: inga fler subtyper får finnas än de
som står i samma kodfil. Du får varning om glömt fall i mönstermatchning.

sealed trait Färg // ESC+Enter i REPL kompilerar fler rader i ett svep
case object Spader extends Färg
case object Hjärter extends Färg

1https://youtu.be/aboZctrHfK8

https://youtu.be/aboZctrHfK8

6.1. TEORI 209

case object Ruter extends Färg
case object Klöver extends Färg

def parallellFärg(f: Färg): Färg = f match
case Spader => Klöver
case Klöver => Spader
case Hjärter => Ruter

1 warning found
|def parallellFärg(f: Färg): Färg = f match
| ^
| match may not be exhaustive.
|
| It would fail on pattern case: Ruter

Varning vid kompilering :) Tack kompilatorn!

6.1.19 Mönstermatcha enumeration

I stället för sealed trait ... case object ... kan du använda en enumeration
(ä.k. uppräkning, uppräknad datatyp, (eng. enumeration)).

enum Färg:
case Spader, Hjärter, Ruter, Klöver

def parallellFärg(f: Färg): Färg =
import Färg.*
f match

case Spader => Klöver
case Klöver => Spader
case Hjärter => Ruter

1 1 warning found
2 | f match
3 | ^
4 | match may not be exhaustive.
5 |
6 | It would fail on pattern case: Ruter

Även här får vi hjälpsam varning vid kompilering :) Tack kompilatorn!

6.1.20 Stora/små begynnelsebokstäver vid matchning

Fallgrop: matcha värde som börjar med liten bokstav.

1 scala> val livetsMening = 42
2

3 scala> def ärLivetsMeningBuggig(svar: Int) = svar match
4 case livetsMening => true // lokalt namn som matchar allt!
5 case _ => false
6

7 scala> ärLivetsMeningBuggig(43)
8 val res0: Boolean = true

210 KAPITEL 6. MÖNSTER OCH FELHANTERING

9

10 scala> val LivetsMening = 42 // stor begynnelsebokstav
11

12 scala> def ärLivetsMening(svar: Int) = svar match
13 case LivetsMening => true // funkar fint!
14 case _ => false
15

16 scala> ärLivetsMening(43)
17 val res1: Boolean = false

6.1.21 Stora/små begynnelsebokstäver vid matchning

Ett sätt att komma runt problemet med liten begynnelsebokstav:
backticks to the rescue!

1 scala> val livetsMening = 42
2

3 scala> def ärLivetsMeningBackTicks(svar: Int) = svar match
4 case `livetsMening` => true // nu funkar det!
5 case _ => false
6

7 scala> ärLivetsMeningBackTicks(43)
8 val res2: Boolean = false

6.1.22 Mönster på andra ställen än i match

Mönster i deklarationer:

1 scala> case class Point(x: Int, y: Int)
2

3 scala> val p = Point(0, 1)
4

5 scala> val Point(x, y) = p // konstruktormönster med case-klass
6 val x: Int = 0
7 val y: Int = 1
8

9 scala> val (x, y, z) = (0, 1, 2) // konstruktormönster med tupel
10 val x: Int = 0
11 val y: Int = 1
12 val z: Int = 2

Mönster i for-uttryck:

1 scala> val xs = for (x, y) <- Vector((1,2), (3,4)) yield x
2 val xs: Vector[Int] = Vector(1, 3)

6.1. TEORI 211

6.1.23 Mönsterdelar och variabelt antal argument

Met två olika specialtecken går det att

• binda variabler till mönsterdelar med @
case Vector(xs@Vector(a), Vector(42)) => ...

• matcha variabelt antal argument med *
case Vector(a, _, c) => ... matchar om 3 element, _ kvittar
case Vector(a, svans*) => ... matchar om minst ett element
case Vector(a, _*) => ... intresserad av första, svans kvittar

6.1.24 Partiella funktioner och metoden collect

• En partiell funktion är, till skillnad från en total funktion, inte definierad
för alla parametervärden.

• Partiella funktioner kan skapas med case utan match:

val pf: PartialFunction[Int, Double] = { case z if z != 0 => 1.0 / z }

• Funktionen är inte definierad för argumentet 0:

scala> pf(0)
scala.MatchError: 0

• Detta är användbart tillsammans med samlingsmetoden collect som applicerar
en partiell funktion endast på definierade värden:

scala> Vector(1, 2, 0, 4).collect(pf)
val res0: Vector[Double] = Vector(1.0, 0.5, 0.25)

scala> Vector(1 -> 2, 0 -> 3, 42 -> 0).collect{ case (a,b) if a > 0 => a }
val res1: Vector[Int] = Vector(1, 42)

• Notera att krullparentes behövs vid case utan match.

6.1.25 Fördjupning: metoden unapply

När du deklarerar en case-klass kommer kompilatorn att automatiskt generera en
metod med namnet unapply.

1 scala> case class Gurka(vikt: Int, ärRutten: Boolean)
2

3 scala> Gurka.unapply // tryck ENTER för att se typen
4 val res0: Gurka => Gurka = Lambda1914/0x00000008408cf840@b0e7bde
5

6 scala> val g = Gurka(100, false)
7

8 scala> Gurka.unapply(g)
9 val res1: Gurka = Gurka(100,false)

212 KAPITEL 6. MÖNSTER OCH FELHANTERING

Vad ska detta vara bra för? Metoden unapply genereras av kompilatorn och an-
vänds internt vid matchning och det är den metoden som gör att case-klasser kan
användas i konstruktormönster. Principen är generell: Man kan skapa egna s.k. ex-
traktorer (eng. extractors) som kan plocka isär ett värde med mönstermatchning,
även utan case-klass.
För den nyfikne: https://docs.scala-lang.org/scala3/reference/changed-features/
pattern-matching.html

6.1.26 Hur hantera saknade värden?

Olika sätt att hantera saknade värden:

• Hitta på ett specialvärde: exempel -1 för saknat värde
• null om värde saknas (vanligt i Java m.fl. språk, mkt ovanligt i Scala)
• Använd en samling och låt tom samling representera saknat värde:

val sums = Vector(Vector(42),Vector(32),Vector(),Vector(21))
• Option[A] gemensam bastyp för:

None som representerar saknat värde, och
Some[A] som representerar att värde finns

6.1.27 En gemensam bastyp för ett värde som kanske saknas

Option[A]

def get: A

def isEmpty: Boolean

Some[A] None

1 scala> var x: Option[Int] = Some(42)
2

3 scala> x.isEmpty
4 val res0: Boolean = false
5

6 scala> x = None
7

8 scala> x.isEmpty
9 val res1: Boolean = true

6.1.28 Option för hantering av ev. saknade värden

Alla vill inte berätta för Facebook vad de har för kön.
Förbättra Facebooks kod med ett litet Scala-program:

https://docs.scala-lang.org/scala3/reference/changed-features/pattern-matching.html
https://docs.scala-lang.org/scala3/reference/changed-features/pattern-matching.html

6.1. TEORI 213

enum Gender:
case Male, Female

case class Person(name: String, gender: Option[Gender])

scala> val p1 = Person("Björn", Some(Gender.Male))
scala> val p2 = Person("Sandra", Some(Gender.Female))
scala> val p3 = Person("Kim", None)

scala> val g2 = p2.gender
val g2: Option[Gender] = Some(Female)

scala> def show(g: Option[Gender]): String = g match
case Some(x) => x.toString
case None => "undefined"

scala> show(g2) // ger "Female"
scala> show(p3.gender) // ger "undefined"
scala> val ps = Vector(p1,p2,p3)
scala> val binary = ps.flatMap(_.gender) // flatMap ignorerar None
val binary: Vector[Gender] = Vector(Male, Female)

6.1.29 Några smidiga metoder på Option

Metoden getOrElse gör att man ofta kan undvika matchning.

var opt: Option[Int] = None

val x = opt.getOrElse(42) // ge mig värdet om finns annars defaultvärde

Flera av de vanliga samlingsmetoderna funkar, t.ex. foreach och map.

opt.foreach(x => println(x)) // inget görs om värde saknas

opt.map(x => x + 1) // inget beräknas om värde saknas

opt = Some(42) // tilldela opt något värde

opt.foreach(x => println(x)) // detta görs då värde finns

opt.map(x => x + 1) // ny option med uppdaterat värde

6.1.30 Några samlingsmetoder som ger en Option, övning

scala> val (xs, ys) = (Vector(1,2,3), Vector())

scala> xs.headOption
???

214 KAPITEL 6. MÖNSTER OCH FELHANTERING

scala> ys.headOption
???

scala> xs.find(_ > 1)
???

scala> xs.find(_ > 5)
???

scala> (xs.lift(0), ys.lift(0))
???

scala> val huvudstad = Map("Sverige" -> "Sthlm", "Skåne" -> "Malmö")

scala> huvudstad.get("Skåne")
???

scala> huvudstad.get("Danmark")
???

6.1.31 Några samlingsmetoder som ger en Option, svar

scala> val (xs, ys) = (Vector(1,2,3), Vector())

scala> xs.headOption
val res0: Option[Int] = Some(1)

scala> ys.headOption
val res1: Option[Nothing] = None

scala> xs.find(_ > 1)
val res2: Option[Int] = Some(2)

scala> xs.find(_ > 5)
val res3: Option[Int] = None

scala> (xs.lift(0), ys.lift(0))
val res4: (Option[Int], Option[Nothing]) = (Some(1),None)

scala> val huvudstad = Map("Sverige" -> "Sthlm", "Skåne" -> "Malmö")

scala> huvudstad.get("Skåne")
val res5: Option[String] = Some(Malmö)

scala> huvudstad.get("Danmark")
val res6: Option[String] = None

6.1.32 Vad är ett undantag (eng. exception)?

Undantag representerar ett fel eller ett onormalt tillstånd som upptäcks under exe-
kvering och som behöver hanteras på särskilt sätt vid sidan av det normala exekve-
ringsflödet.

6.1. TEORI 215

sv.wikipedia.org/wiki/Undantagshantering

Exempel på undantag:

• Indexering utanför vektorns indexgränser.
• Läsning bortom filens slut.
• Försök att öppna en fil som inte finns.
• Minnet är slut.
• Heltalsdivision med noll ger java.lang.ArithmeticException.
• "hej".toInt ger java.lang.NumberFormatException

6.1.33 Orsaka undantag indirekt med require och assert

• Med funktionen require(b) skapas ett
IllegalArgumentException("requirement failed")
om b är false

• require används om man vill begränsa vilka argument som är giltiga
• Med funktionen assert(b) skapas ett AssertionError("assertion failed")

om b är false
• assert används om man vill förhindra ogiltiga tillstånd

Se implementationen av require här:
https://github.com/scala/scala/blob/v2.13.17/src/library/scala/Predef.scala#
L322

6.1.34 Kasta undantag direkt med primitiva throw

Man kan själv generera ett undantag med throw, vilket kallas att kasta ett undantag
som (om det inte fångas), gör att exekveringen avbryts.

1 scala> def pang = throw Exception("PANG!")
2 pang: Nothing
3

4 scala> pang
5 java.lang.Exception: PANG!

Olika sätt att hantera undantag och förhindra att exekveringen avbryts:

• try catch-uttryck omvandlar undantag till ngt lämpligt värde.
• scala.util.Try kapslar in kod som kan ge undantag.

6.1.35 En gemensam bastyp för något som kan misslyckas

import scala.util.{Try, Success, Failure}

https://sv.wikipedia.org/wiki/Undantagshantering
https://github.com/scala/scala/blob/v2.13.17/src/library/scala/Predef.scala#L322
https://github.com/scala/scala/blob/v2.13.17/src/library/scala/Predef.scala#L322

216 KAPITEL 6. MÖNSTER OCH FELHANTERING

Try[T]

def get: T

def isFailure: Boolean

def isSuccess: Boolean

Success[T]

val value: T

Failure[T]

val exception: Throwable

6.1.36 Hantera undantag som ett värde med Try

scala> def pang = throw new Exception("PANG!")

scala> def kanskePang = if math.random() < 0.5 then 42 else pang

scala> import scala.util.{Try, Success, Failure}

scala> def försök = Try { kanskePang }

scala> val xs = Vector.fill(15){försök}

scala> val trettonde = xs(12) match
case Success(value) => value
case Failure(e) => println(e); -1

scala> (xs(12).isSuccess, xs(12).isFailure)

scala> xs(12).getOrElse(0)

scala> xs(12).toOption

scala> försök.foreach(println)

scala> försök.map(_ + 1)

scala> for Success(x) <- xs yield x

6.1.37 Primitiva try-catch-uttryck

Man kan fånga undantag direkt med ett try ... catch-uttryck:

def carola =
try

if math.random() > 0.5 then throw Exception("stormvind")
42

catch
case e: Exception =>

6.1. TEORI 217

println("Fångad av en " + e.getMessage)
-1

1 scala> Vector.fill(5)(carola)
2 Fångad av en stormvind
3 Fångad av en stormvind
4 Fångad av en stormvind
5 val res0: Vector[Int] = Vector(-1, 42, 42, -1, -1)

https://www.youtube.com/watch?v=4Ml6pJqc_bw

6.1.38 Undvik undantag om det går

Fördelar med undantag:

• Vid allvarliga fel då det inte är mycket att göra än att starta om, t.ex. OutOfMemoryException,
är det bra att få veta vad som är fel.

• Onormala fall som uppkommer sällan kan hanteras separat (t.ex. i huvudpro-
grammet) utan att koden för normalfallet blir tillkrånglad.

Nackdelar med undantag:

• Ett slags ”goto” som gör exekveringsflödet svårt att följa.
• Skapa stack-trace tar tid; undantag som sker ofta påverkar prestanda.

Exempel: undantagslösa toIntOption är både säker och snabb!

scala> def time(op: => Unit): Long = {val t0 = System.nanoTime; op; System.nanoTime - t0}

scala> def min(op: => Unit, n: Int = 1000): Long = Seq.fill(n)(time(op)).drop(n / 20).min

scala> min(util.Try("hello".toInt))
val res0: Long = 3549

scala> min(try "hello".toInt catch (_: Throwable) => ())
val res1: Long = 3046

scala> min("hello".toIntOption)
val res2: Long = 157

6.1.39 Fördjupning: Kontrollerade undantag

• Det finns en risk att hantering av undantag glöms bort.
Vad händer då? Pang! – det blir körtidsfel och tvärstopp :(

• Det finns möjligheter i Scala att låta kompilatorn kontrollera om undantag
hanteras med s.k. kontrollerade undantag (eng. checked exceptions)

• Den nyfikne kan läsa mer här:
https://docs.scala-lang.org/scala3/reference/experimental/canthrow.
html

https://www.youtube.com/watch?v=4Ml6pJqc_bw
https://docs.scala-lang.org/scala3/reference/experimental/canthrow.html
https://docs.scala-lang.org/scala3/reference/experimental/canthrow.html

218 KAPITEL 6. MÖNSTER OCH FELHANTERING

När du jämför värden med == anropas metoden equals som finns för alla typer. Du
kan i dina egna klasser överskugga equals med en din egna definition av vad likhet
ska innebära. Då är det lämpligt att använda matchning. Det är dock ett ganska
omfattande arbete att implementera en korrekt likhetsjämförelse som fungerar under
alla omständigheter. Ett recept för en fullständig implementation av equals ges i
fördjupningen nedan.

6.1.40 Fördjupning: Implementera equals med match

Det visar sig att innehållslikhet är förvånansvärt komplicerat att implementera,
speciellt i samband med arv.

• Det enklare fallet: Gör fördjupningsuppgift ”Metoden equals” och implementera
equals för innehållslikhet utan arv.
En bra träning på att använda match!

• Svårare: Gör fördjupningsuppgifterna ”Överskugga equals” och ”Överskugga
equals vid arv” om du vill se hur en komplett equals ska se ut som fungerar i
alla lägen.

Det krävs i denna kurs inte att du själv ska kunna implementera en generellt funge-
rande equals. Men du ska förstå skillnaden mellan referenslikhet och innehållslikhet.
Mer om equals i fortsättningkursen, men en liten inblick i problemet nu...

Om en klass markeras final kan den ej ha några subklasser. Kompilatorn kontrol-
lerar att detta gäller alla finala klasser och ger kompileringsfel om du försöker göra
extends på en final klass. Om en klass garanterat inte har några subklasser kan
implementationen av equals göra enklare.

6.1.41 Fördjupning: equals som fungerar för finala klasser

Recept för implementation av equals som fungerar för typer som inte har några
subtyper:

final class Gurka(val vikt: Int, val ärÄtbar: Boolean):
override def equals(other: Any): Boolean = other match

case that: Gurka => vikt == that.vikt && ärÄtbar == that.ärÄtbar
case _ => false

override def hashCode: Int = (vikt, ärÄtbar).## // ger bra hashcode

• Du måste alltid överskugga hashCode också om du överskuggar equals annars
funkar inte gurksamlingar (lång story ...)

• Notera typen Any – detta följer hur man valde att göra i Java (tyvärr?).
• Ett typsäkrare innehållslikhetstest som garanterat bara jämför en gurka

med en gurka och inget annat:

def ===(other: Gurka): Boolean =
vikt == other.vikt && ärÄtbar == other.ärÄtbar

6.1. TEORI 219

6.1.42 Fördjupning: Recept i 8 steg för arvssäker equals

1. Inför denna metod: def canEqual(other: Any): Boolean
Observera att typen på parametern ska vara Any. Om subklass behövs override.

2. Metoden canEqual ska ge true om other är av samma typ som this, t.ex.:
override def canEqual(other: Any): Boolean = other.isInstanceOf[Gurka]

3. Inför metoden equals och var noga med att parametern har typen Any:
override def equals(other: Any): Boolean

4. Implementera metoden equals med ett match-uttryck som börjar så här:
other match

5. Match-uttrycket ska ha två grenar. Den första grenen ska ha ett typat mönster
för den klass som ska jämföras, t.ex.:

case that: Gurka =>
6. Om du implementerar equals i den klass som inför canEqual, börja med:

(that canEqual this) &&
och skapa därefter en fortsättning som baseras på innehållet i klassen, t.ex.:
this.vikt == that.vikt && this.längd == that.längd
Om du överskuggar equals vill du nog börja med super.equals(that) &&

7. Den andra grenen i matchningen ska vara: case _ => false
8. Överskugga hashCode, t.ex. med tupel av attributvärden och metoden ##:

override def hashCode: Int = (vikt, längd).##

http://www.artima.com/pins1ed/object-equality.html

6.1.43 Fördjupning: Säkrare likhetstest i Scala 3

• Problem: equals tar värden av vilken typ som helst.
• Detta kallas universell likhet.

scala> case class Hund(namn: String)
scala> case class Katt(namn: String)
scala> Hund("bob") == Katt("bob") // knasig jämförelse; kan aldrig bli sant
val res0: Boolean = false // men kompilatorn låter dig göra likhetstestet

• I Scala 3 kan du få typsäker likhetstest med derives CanEqual
• Detta kalla multiversell likhet.

scala> case class Hund(namn: String) derives CanEqual
scala> Hund("bob") == Katt("bob") // tack kompilatorn för fel:
-- Error:
1 |Hund("bob") == Katt("bob")
|^^^^^^^^^^^^^^^^^^^^^^^^^^
|Values of types Hund and Katt cannot be compared with == or !=

• Du slipper skriva derives CanEqual om du gör:
import scala.language.strictEquality

• Läs mer här: https://docs.scala-lang.org/scala3/reference/contextual/
multiversal-equality.html

http://www.artima.com/pins1ed/object-equality.html
https://docs.scala-lang.org/scala3/reference/contextual/multiversal-equality.html
https://docs.scala-lang.org/scala3/reference/contextual/multiversal-equality.html

220 KAPITEL 6. MÖNSTER OCH FELHANTERING

6.2. ÖVNING PATTERNS 221

6.2 Övning patterns

Mål

� Kunna skapa och använda match-uttryck med konstanta värden, garder och
mönstermatchning med case-klasser.

� Kunna skapa och använda case-objekt för matchningar på uppräknade värden.
� Kunna hantera saknade värden med hjälp av typen Option och mönstermatch-

ning på Some och None.
� Kunna fånga undantag med scala.util.Try.
� Känna till try, catch och throw.
� Känna till nyckelordet sealed och förstå nyttan med förseglade typer.

Förberedelser

� Studera begreppen i kapitel 6

6.2.1 Grunduppgifter; förberedelse inför laboration

Uppgift 1. Matcha på konstanta värden.

a) Skriv nedan program med en kodeditor och spara i filen Match.scala. Kompilera
och kör och och ge som argument din favoritgrönsak. Vad händer? Förklara hur ett
match-uttryck fungerar.

1 object Match:
2 def main(args: Array[String]): Unit =
3 val favorite = if args.length > 0 then args(0) else "selleri"
4 println("Din favoritgrönsak: " + favorite)
5 val firstChar = favorite.toLowerCase.charAt(0)
6 val meThink = firstChar match
7 case 'g' => "gurka är gott!"
8 case 't' => "tomat är gott!"
9 case 'b' => "broccoli är gott!"

10 case _ => s"$favorite är mindre gott..."
11 println(s"Jag tycker att $meThink")

b) Vad blir det för felmeddelande om du tar bort case-grenen för defaultvärden
och indata väljs så att inga case-grenar matchar? Är det ett exekveringsfel eller ett
kompileringsfel?

Uppgift 2. Gard i case-grenar. Med hjälp en gard (eng. guard) i en case-gren kan man
begränsa med ett villkor om grenen ska väljas.

Utgå från koden i uppgift 1a och byt ut case-grenen för 'g'-matchning till nedan
variant med en gard med nyckelordet if (notera att det inte behövs parenteser runt
villkoret):

case 'g' if math.random() > 0.5 => "gurka är gott ibland..."

Kompilera om och kör programmet upprepade gånger med olika indata tills alla grenar
i match-uttrycket har exekverats. Förklara vad som händer.

222 KAPITEL 6. MÖNSTER OCH FELHANTERING

Uppgift 3. Mönstermatcha på attributen i case-klasser. Scalas match-uttryck är extra
kraftfulla om de används tillsammans med case-klasser: då kan attribut extraheras
automatiskt och bindas till lokala variabler direkt i case-grenen som nedan exempel
visar (notera att v och rutten inte behöver deklareras explicit). Detta kallas för
mönstermatchning. Vad skrivs ut nedan? Varför? Prova att byta namn på v och
rutten.

1 scala> case class Gurka(vikt: Int, ärRutten: Boolean)
2 scala> val g = Gurka(100, true)
3 scala> g match { case Gurka(v,rutten) => println("G" + v + rutten) }

Uppgift 4. Matcha på case-objekt och nyttan med sealed. Skriv nedan kodrader i en
REPL en för en. Notera nyckelordet sealed som används för att försegla en typ. En
förseglad typ måste ha alla sina subtyper i en och samma kodfil.

1 scala> sealed trait Färg
2 scala> case object Spader extends Färg

a) Hur lyder felmeddelandet och varför sker det? Är det ett kompileringsfel eller ett
körtidsfel?

b) Skapa nu nedan kod i en editor och klistra in i REPL.

object Kortlek:
sealed trait Färg
object Färg:

val values = Vector(Spader, Hjärter, Ruter, Klöver)
case object Spader extends Färg
case object Hjärter extends Färg
case object Ruter extends Färg
case object Klöver extends Färg

c) Skapa en funktion def parafärg(f: Färg): Färg i en editor, som med hjälp av
ett match-uttryck returnerar parallellfärgen till en färg. Parallellfärgen till Hjärter
är Ruter och vice versa, medan parallellfärgen till Klöver är Spader och vice versa.
Klistra in funktionen i REPL. Passa även på att skriva en import-sats för det yttre
objektet Kortlek, så medlemmarna av objektet kan nås enkelt.

1 scala> parafärg(Spader)
2 scala> val xs = Vector.fill(5)(Färg.values((math.random() * 4).toInt))
3 scala> xs.map(parafärg)

d) Vi ska nu undersöka vad som händer om man glömmer en av case-grenarna i
matchningen i parafärg. ”Glöm” alltså avsiktligt en av case-grenarna och klistra in
den nya parafärg med den ofullständiga matchningen. Hur lyder varningen? Kommer
varningen vid körtid eller vid kompilering?

e) Anropa parafärg med den ”glömda” färgen. Hur lyder felmeddelandet? Är det ett
kompileringsfel eller ett körtidsfel?

f) Förklara vad nyckelordet sealed innebär och vilken nytta man kan ha av att
försegla en supertyp.

6.2. ÖVNING PATTERNS 223

Uppgift 5. Mönstermatcha enumeration. Vi ska nu undersöka och jämföra skillnad
mellan nyckelorden enum och sealed trait. Skriv nedan kod i en REPL.

enum Färg:
case Spader, Hjärter, Ruter, Klöver

a) Skapa med hjälp av en editor igen en funktion def parafärg(f: Färg): Färg,
nästintill likadan som den som vi skapade i deluppgift 4c. Funktionen ska återigen
utnyttja match-uttryck för att returnera paralellfärgen till argumentet som ges. Tänk
på att denna gången är Färg inget sealed trait, utan istället en enumeration (enum).
Klistra in funktionen i REPL.

1 scala> parafärg(Färg.Ruter)
2 scala> val xs = Vector.fill(5)(Färg.values((math.random() * 4).toInt))
3 scala> xs.map(parafärg)

b) Fundera på skillnader och likheter mellan att utnyttja sealed trait ihop med
case-objekt gentemot att använda sig av enum vid mönstermatchning.

Uppgift 6. Betydelsen av små och stora begynnelsebokstäver vid matchning. För att
åstadkomma att namn kan bindas till variabler vid matchning utan att de behöver
deklareras i förväg (som vi såg i uppgift 3) så har identifierare med liten begyn-
nelsebokstav fått speciell betydelse: den tolkas av kompilatorn som att du vill att
en variabel binds till ett värde vid matchningen. En identifierare med stor begyn-
nelsebokstav tolkas däremot som ett konstant värde (t.ex. ett case-objekt eller ett
case-klass-mönster).

a) En case-gren som fångar allt. En case-gren med en identifierare med liten begyn-
nelsebokstav som saknar gard kommer att matcha allt. Prova nedan i REPL, men
försök lista ut i förväg vad som kommer att hända. Vad händer?

1 scala> val x = "urka"
2 scala> x match
3 case str if str.startsWith("g") => println("kanske gurka")
4 case vadsomhelst => println("ej gurka: " + vadsomhelst)
5 scala> val g = "gurka"
6 scala> g match
7 case str if str.startsWith("g") => println("kanske gurka")
8 case vadsomhelst => println("ej gurka: " + vadsomhelst)

b) Fallgrop med små begynnelsebokstäver. Innan du provar nedan i REPL, försök
gissa vad som kommer att hända. Vad händer? Hur lyder varningarna och vad innebär
de?

1 scala> val any: Any = "varken tomat eller gurka"
2 scala> case object Gurka
3 scala> case object tomat
4 scala> any match
5 case Gurka => println("gurka")
6 case tomat => println("tomat")
7 case _ => println("allt annat")

c) Använd backticks för att tvinga fram match på konstant värde. Det finns en utväg
om man inte vill att kompilatorn ska skapa en ny lokal variabel: använd specialtecknet

224 KAPITEL 6. MÖNSTER OCH FELHANTERING

backtick, som skrivs ` och kräver speciella tangentbordstryck.2 Gör om föregående
uppgift men omgärda nu identifieraren tomat i tomat-case-grenen med backticks, så
här: case `tomat` => ...

Uppgift 7. Matcha på innehåll i en Vector. Kör nedan i REPL. Vad skrivs ut? Förklara
vad som händer.

1 scala> val xss = Vector(Vector("hej"),Vector("på", "dej"),Vector("4","x","2"))
2 scala> xss.map(_ match
3 case Vector() => "tom"
4 case Vector(a) => a.reverse
5 case Vector(_, b) => b.reverse
6 case Seq(a, "x", b) => a + b
7 case _ => "ANNARS DETTA"
8).foreach(println)

Uppgift 8. Använda Option och matcha på värden som kanske saknas. Man behöver
ofta skriva kod för att hantera värden som eventuellt saknas, t.ex. saknade telefon-
nummer i en persondatabas. Denna situation är så pass vanlig att många språk har
speciellt stöd för saknande värden.

I Java3 används värdet null för att indikera att en referens saknar värde. Man får
då komma ihåg att testa om värdet saknas varje gång sådana värden ska behandlas,
t.ex. med if (ref != null) { ...} else { ... }. Ett annat vanligt trick är att
låta -1 indikera saknade positiva heltal, till exempel saknade index, som får behandlas
med if (i != -1) { ...} else { ... }.

I Scala finns en speciell typ Option som möjliggör smidig och typsäker hantering
av saknade värden. Om ett kanske saknat värde packas in i en Option (eng. wrapped
in an Option), finns det i en speciell slags samling som bara kan innehålla inget eller
något värde, och alltså har antingen storleken 0 eller 1.

a) Förklara vad som händer nedan.

1 scala> var kanske: Option[Int] = None
2 scala> kanske.size
3 scala> kanske = Some(42)
4 scala> kanske.size
5 scala> kanske.isEmpty
6 scala> kanske.isDefined
7 scala> def ökaOmFinns(opt: Option[Int]): Option[Int] = opt match
8 case Some(i) => Some(i + 1)
9 case None => None
10 scala> val annanKanske = ökaOmFinns(kanske)
11 scala> def öka(i: Int) = i + 1
12 scala> val merKanske = kanske.map(öka)

b) Mönstermatchingen ovan är minst lika knölig som en if-sats, men tack vare
att en Option är en slags (liten) samling finns det smidigare sätt. Förklara vad som
händer nedan.

1 val meningen = Some(42)
2 val ejMeningen = Option.empty[Int]
3 meningen.map(_ + 1)

2Fråga någon om du inte hittar hur man gör backtick ` på ditt tangentbord.
3Scala har också null men det behövs bara vid samverkan med Java-kod.

6.2. ÖVNING PATTERNS 225

4 ejMeningen.map(_ + 1)
5 ejMeningen.map(_ + 1).orElse(Some("saknas")).foreach(println)
6 meningen.map(_ + 1).orElse(Some("saknas")).foreach(println)

c) Samlingsmetoder som ger en Option. Förklara för varje rad nedan vad som händer.
En av raderna ger ett felmeddelande; vilken rad och vilket felmeddelande?

1 val xs = (42 to 84 by 5).toVector
2 val e = Vector.empty[Int]
3 xs.headOption
4 xs.headOption.get
5 xs.headOption.getOrElse(0)
6 xs.headOption.orElse(Some(0))
7 e.headOption
8 e.headOption.get
9 e.headOption.getOrElse(0)
10 e.headOption.orElse(Some(0))
11 Vector(xs, e, e, e)
12 Vector(xs, e, e, e).map(_.lastOption)
13 Vector(xs, e, e, e).map(_.lastOption).flatten
14 xs.lift(0)
15 xs.lift(1000)
16 e.lift(1000).getOrElse(0)
17 xs.find(_ > 50)
18 xs.find(_ < 42)
19 e.find(_ > 42).foreach(_ => println("HITTAT!"))

d) Vilka är fördelerna med Option jämfört med null eller -1 om man i sin kod
glömmer hantera saknade värden?

Uppgift 9. Kasta undantag. Om man vill signalera att ett fel eller en onormal
situtation uppstått så kan man kasta (eng. throw) ett undantag (eng. exception). Då
avbryts programmet direkt med ett felmeddelande, om man inte väljer att fånga (eng.
catch) undantaget. a) Vad händer nedan?

1 scala> throw new Exception("PANG!")
2 scala> java.lang. // Tryck TAB efter punkten
3 scala> throw new IllegalArgumentException("fel fel fel")
4 scala> val carola =
5 try
6 throw new Exception("stormvind!")
7 42
8 catch
9 case e: Throwable =>
10 println("Fångad av en " + e)
11 -1

b) Nämn ett par undantag som finns i paketet java.lang som du kan gissa vad de
innebär och i vilka situationer de kastas.
c) Vilken typ har variabeln carola ovan? Vad hade typen blivit om catch-grenen
hade returnerat en sträng i stället?

Uppgift 10. Fånga undantag med scala.util.Try. I paketet scala.util finns typen
Try med stort T som är som en slags samling som kan innehålla antingen ett ”lyckat”
eller ”misslyckat” värde. Om beräkningen av värdet lyckades och inga undantag kastas

226 KAPITEL 6. MÖNSTER OCH FELHANTERING

blir värdet inkapslat i en Success, annars blir undantaget inkapslat i en Failure.
Man kan extrahera värdet, respektive undantaget, med mönstermatchning, men det
är oftast smidigare att använda samlingsmetoderna map och foreach, i likhet med
hur Option används. Det finns även en smidig metod recover på objekt av typen Try
där man kan skicka med kod som körs om det uppstår en undantagssituation.

a) Förklara vad som händer nedan.

1 scala> def pang = throw new Exception("PANG!")
2 scala> import scala.util.{Try, Success, Failure}
3 scala> Try{pang}
4 scala> Try{pang}.recover{case e: Throwable => "desarmerad bomb: " + e}
5 scala> Try{"tyst"}.recover{case e: Throwable => "desarmerad bomb: " + e}
6 scala> def kanskePang = if math.random() > 0.5 then "tyst" else pang
7 scala> def kanskeOk = Try{kanskePang}
8 scala> val xs = Vector.fill(100)(kanskeOk)
9 scala> xs(13) match
10 case Success(x) => ":)"
11 case Failure(e) => ":(" + e
12 scala> xs(13).isSuccess
13 scala> xs(13).isFailure
14 scala> xs.count(_.isFailure)
15 scala> xs.find(_.isFailure)
16 scala> val badOpt = xs.find(_.isFailure)
17 scala> val goodOpt = xs.find(_.isSuccess)
18 scala> badOpt
19 scala> badOpt.get
20 scala> badOpt.get.get
21 scala> badOpt.map(_.getOrElse("bomben desarmerad!")).get
22 scala> goodOpt.map(_.getOrElse("bomben desarmerad!")).get
23 scala> xs.map(_.getOrElse("bomben desarmerad!")).foreach(println)
24 scala> xs.map(_.toOption)
25 scala> xs.map(_.toOption).flatten
26 scala> xs.map(_.toOption).flatten.size

b) Vad har funktionen pang för returtyp?

c) Varför får funktionen kanskePang den härledda returtypen String?

6.2.2 Fördjupningsuppgifter; utmaningar

Uppgift 11. Använda matchning eller dynamisk bindning? Man kan åstadkomma
urskiljningen av de ätbara grönsakerna i uppgift 3 med dynamisk bindning i stället
för match.

a) Gör en ny variant av ditt program enligt nedan riktlinjer och spara den modifiera-
de koden i filen vegopoly.scala och kompilera och kör.

• Ta bort predikatet ärÄtvärd i objektet Main och inför i stället en abstrakt metod
def ärÄtbar: Boolean i traiten Grönsak.

• Inför konkreta val-medlemmar i respektive grönsak som definierar ätbarheten.
• Ändra i huvudprogrammet i enlighet med ovan ändringar så att ärÄtvärd

anropas som en metod på de skördade grönsaksobjekten när de ätvärda ska
filtreras ut.

6.2. ÖVNING PATTERNS 227

b) Lägg till en ny grönsak case class Broccoli och definiera dess ätbarhet. Ändra
i slump-funktionerna så att broccoli blir ovanligare än gurka.
c) Jämför lösningen med match i uppgift 3 och lösningen ovan med polymorfism.
Vilka är för- och nackdelarna med respektive lösning? Diskutera två olika situatio-
ner på ett hypotetiskt företag som utvecklar mjukvara för jordbrukssektorn: 1) att
uppsättningen grönsaker inte ändras särskilt ofta medan definitionerna av ätbarhet
ändras väldigt ofta och 2) att uppsättningen grönsaker ändras väldigt ofta men att
ätbarhetsdefinitionerna inte ändras särskilt ofta.

Uppgift 12. Metoden equals. Om man överskuggar den befintliga metoden equals
så kommer metoden == att fungera annorlunda. Man kan då själv åstadkomma
innehållslikhet i stället för referenslikhet. Vi börjar att studera den befintliga equals
med referenslikhet.

a) Vad händer nedan? Undersök parametertyp och returvärdestyp för equals.

1 scala> class Gurka(val vikt: Int, val ärÄtbar: Boolean)
2 scala> val g1 = new Gurka(42, true)
3 scala> val g2 = g1
4 scala> val g3 = new Gurka(42, true)
5 scala> g1 == g2
6 scala> g1 == g3
7 scala> g1.equals // tryck ENTER för att se funktionstyp

b) Rita minnessituationen efter rad 4.
c) Överskugga metoderna equals och hashCode.

Bakgrund: Det visar sig förvånande komplicerat att implementera innehållslikhet med me-
toden equals så att den ger bra resultat under alla speciella omständigheter. Till exempel
måste man även överskugga en metod vid namn hashCode om man överskuggar equals,
eftersom dessa båda används gemensamt av effektivitetsskäl för att skapa den interna
lagringen av objekten i vissa samlingar. Om man missar det kan objekt bli ”osynliga” i
hashCode-baserade samlingar – men mer om detta i senare kurser. Om objekten ingår i en
öppen arvshierarki blir det också mer komplicerat; det är enklare om man har att göra
med finala klasser. Dessutom krävs speciella hänsyn om klassen har en typparameter.

Definera klassen nedan i REPL med överskuggade equals och hashCode; den ärver
inte något och är final.

// fungerar fint om klassen är final och inte ärver något
final class Gurka(val vikt: Int, val ärÄtbar: Boolean):

override def equals(other: Any): Boolean = other match
case that: Gurka => vikt == that.vikt && ärÄtbar == that.ärÄtbar
case _ => false

override def hashCode: Int = (vikt, ärÄtbar).## //förklaras sen

d) Vad händer nu nedan, där Gurka nu har en överskuggad equals med innehållslik-
het?

1 scala> val g1 = new Gurka(42, true)
2 scala> val g2 = g1
3 scala> val g3 = new Gurka(42, true)
4 scala> g1 == g2
5 scala> g1 == g3

228 KAPITEL 6. MÖNSTER OCH FELHANTERING

e) Hur märker man ovan att den överskuggade equals medför att == nu ger inne-
hållslikhet? Jämför med deluppgift a.

I uppgift 18 får du prova på att följa det fullständiga receptet i 8 steg för att
överskugga en equals enligt konstens alla regler. I efterföljande kurs kommer mer
träning i att hantera innehållslikhet och hash-koder. I Scala får man ett objekts
hash-kod med metoden ##.4

Uppgift 13. Polynom. Med hjälp av koden nedan, kan man göra följande:

1 scala> import polynomial.*
2

3 scala> Const(1) * x
4 res0: polynomial.Term = x
5

6 scala> (x*5)^2
7 res1: polynomial.Prod = 25x^2
8

9 scala> Poly(x*(-5), y^4, (z^2)*3)
10 res2: polynomial.Poly = -5x + y^4 + 3z^2

a) Förklara vad som händer ovan genom att studera koden nedan5.

1 object polynomial:
2
3 sealed trait Term:
4 def *(that: Term): Term
5
6 case class Const(value: BigDecimal) extends Term:
7
8 def toSilentString: String = this match
9 case Const.One => ""

10 case Const.MinusOne => "-"
11 case _ => value.toString
12
13 override def toString = value.toString
14
15 override def *(that: Term): Term = that match
16 case Const(d) => Const(d * value)
17 case v: Var => Prod(this, Set(v))
18 case Prod(c, vs) => Prod(Const(c.value * value), vs)
19
20 def *(d: BigDecimal): Const = Const(d * value)
21
22 def ^(e: Int): Const = Const(value.pow(e))
23
24
25 object Const:
26 final val Zero = Const(BigDecimal(0))
27 final val One = Const(BigDecimal(1))
28 final val MinusOne = Const(BigDecimal(-1))
29

4Om du är nyfiken på hash-koder, läs mer här: en.wikipedia.org/wiki/Hash_function
5Koden finns även här:

github.com/lunduniversity/introprog/tree/master/compendium/examples/polynomial

https://en.wikipedia.org/wiki/Hash_function
https://github.com/lunduniversity/introprog/tree/master/compendium/examples/polynomial

6.2. ÖVNING PATTERNS 229

30 case class Var(name: Char, exp: Int = 1) extends Term:
31
32 private def silentExpString: String =
33 if exp == 1 then "" else "^"+exp.toString
34
35 override def toString = s"$name$silentExpString"
36
37 def ^(e: Int): Var = Var(name, e * exp)
38
39 def *(c: BigDecimal) = Prod(Const(c), Set(this))
40
41 override def *(that: Term): Term = that match
42 case c: Const => Prod(c, Set(this))
43
44 case v: Var =>
45 if v.name == name then Var(name, v.exp + exp)
46 else Prod(Const.One, Set(this, v))
47
48 case p: Prod => p * this
49
50
51 object Var:
52
53 def apply(d: BigDecimal, name: Char): Prod =
54 Prod(Const(d), Set(Var(name)))
55
56 def apply(d: BigDecimal, name: Char, exp: Int): Prod =
57 Prod(Const(d), Set(Var(name, exp)))
58
59 def addExp(v1: Var, v2: Var): Var = Var(v1.name, v1.exp + v2.exp)
60
61 def multiply(v1: Var, vs: Set[Var]): Set[Var] =
62 if !vs.contains(v1) then vs + v1
63 else vs.map(v2 => if v1.name == v2.name then addExp(v1, v2) else v2)
64
65 def multiply(vs1: Set[Var], vs2: Set[Var]): Set[Var] =
66 var result = vs2
67 vs1.foreach{ v1 => result = multiply(v1, result) }
68 result
69
70
71 case class Prod(const: Const, vars: Set[Var]) extends Term :
72
73 override def toString = s"${const.toSilentString}${vars.mkString}"
74
75 override def *(that: Term): Term = that match
76 case Const(d) => Prod(Const(d * const.value), vars)
77
78 case v: Var => Prod(const, Var.multiply(v, vars))
79
80 case Prod(Const(d), vs) =>
81 Prod(Const(const.value * d), Var.multiply(vs, vars))
82

230 KAPITEL 6. MÖNSTER OCH FELHANTERING

83 def ^(e: Int) = Prod(const ^ e, vars.map(_ ^ e))
84
85 case class Poly(xs: Set[Term]):
86 override def toString = xs.mkString(" + ")
87
88 object Poly:
89 def apply(ts: Term*) : Poly = Poly(ts.toSet)
90
91 val (x, y, z, s, t) = (Var('x'), Var('y'), Var('z'), Var('s'), Var('t'))

b) Bygg vidare på object polynomial och implementera addition mellan olika ter-
mer.

Uppgift 14. Option som en samling. Studera dokumentationen för Option här och se
om du känner igen några av metoderna som också finns på samlingen Vector:
www.scala-lang.org/api/current/scala/Option.html
Förklara hur metoden contains på en Option fungerar med hjälp av dokumentatio-
nens exempel.

Uppgift 15. Fånga undantag med catch i Java och Scala. Gör motsvarande program
i Scala som visas i uppgift ??, men utnyttja att Scalas try-catch är ett uttryck.
Kompilera och kör och testa så att de ur användarens synvinkel fungerar precis på
samma sätt. Notera de viktigaste skillnaderna mellan de båda programmen.

Uppgift 16. Polynom, fortsättning: reducering. Bygg vidare på object polynomial i
uppgift 13 på sidan 228 och implementera metoden def reduce: Poly i case-klassen
Poly som förenklar polynom om flera Prod-termer kan adderas.

Uppgift 17. Typsäker innehållstest med metoden ===. Metoderna equals och == tillå-
ter jämförelse med vad som helst. Ibland vill man ha en typsäker innehållsjämförelse
som bara tillåter jämförelse av objekt av en mer specifik typ och ger kompileringsfel an-
nars. Man brukar då definiera en metod === som har en parameter that som har en så
specifik typ som önskas. Inför nedan abstrakta metod === i traiten polynomial.Term
i uppgift 13 på sidan 228 och överskugga den sedan i alla subklasser till Term. Testa
så att du får kompileringsfel om du försöker jämföra en Term med något helt annat,
t.ex. en String eller Vector.

def ===(that: Term): Boolean

Uppgift 18. Överskugga equals med innehållslikhet även för icke-finala klasser. Ne-
dan visas delar av klassen Complex som representerar ett komplext tal med realdel och
imaginärdel. I stället för att, som man ofta gör i Scala, använda en case-klass och en
equals-metod som automatiskt ger innehållslikhet, ska du träna på att implementera
en egen equals.

class Complex(val re: Double, val im: Double):
def abs: Double = math.hypot(re, im)
override def toString = s"Complex($re, $im)"
def canEqual(other: Any): Boolean = ???
override def hashCode: Int = ???
override def equals(other: Any): Boolean = ???

http://www.scala-lang.org/api/current/scala/Option.html

6.2. ÖVNING PATTERNS 231

case object Complex:
def apply(re: Double, im: Double): Complex = new Complex(re, im)

Följ detta recept6 i 8 steg för att överskugga equals med innehållslikhet som fungerar
även för klasser som inte är final:

1. Inför denna metod: def canEqual(other: Any): Boolean
Observera att typen på parametern ska vara Any. Om detta görs i en subklass till
en klass som redan implementerat canEqual, behövs även override.

2. Metoden canEqual ska ge true om other är av samma typ som this, alltså till
exempel:
def canEqual(other: Any): Boolean = other.isInstanceOf[Complex]

3. Inför metoden equals och var noga med att parametern har typen Any:
override def equals(other: Any): Boolean

4. Implementera metoden equals med ett match-uttryck som börjar så här:
other match

5. Match-uttrycket ska ha två grenar. Den första grenen ska ha ett typat mönster för
den klass som ska jämföras:

case that: Complex =>

6. Om du implementerar equals i den klass som inför canEqual, börja uttrycket med:
(that canEqual this) &&
och skapa därefter en fortsättning som baseras på innehållet i klassen, till exempel:
this.re == that.re && this.im == that.im
Om du överskuggar en annan equals än den standard-equals som finns i AnyRef,
vill du förmodligen börja det logiska uttrycket med att anropa superklassens equals-
metod: super.equals(that) && men du får fundera noga på vad likhet av under-
klasser egentligen ska innebära i ditt speciella fall.

7. Den andra grenen i matchningen ska vara: case _ => false

8. Överskugga hashCode, till exempel genom att göra en tupel av innehållet i klassen
och anropa metoden ## på tupeln så får du i en bra hashcode:
override def hashCode: Int = (re, im).##

Uppgift 19. Överskugga equals vid arv. Bygg vidare på exemplet nedan och överskug-
ga equals vid arv, genom att följa receptet i uppgift 18.

trait Number:
override def equals(other: Any): Boolean = ???

class Complex(re: Double, im: Double) extends Number:
override def equals(other: Any): Boolean = ???

class Rational(numerator: Int, denominator: Int) extends Number:
override def equals(other: Any): Boolean = ???

6Detta recept bygger på http://www.artima.com/pins1ed/object-equality.html

http://www.artima.com/pins1ed/object-equality.html

232 KAPITEL 6. MÖNSTER OCH FELHANTERING

Uppgift 20. Speciella matchningar. Läs om användning av speciella matchningar
här:
dotty.epfl.ch/docs/reference/changed-features/vararg-splices.html

a) Prova variabelbinding med @ i en matchning i REPL.
b) Prova sekvensmönster med _ och _* i en matching i REPL.

Uppgift 21. Extraktorer. Läs mer om extraktorer här:
dotty.epfl.ch/docs/reference/changed-features/pattern-matching.html
Skapa ditt eget extraktor-objekt för http-addresser som i t.ex.:
http://my.host.domain/path/to/this
extraherar my.host.domain och path/to/this med metoden unapply och testa i en
matchning.

Uppgift 22. Polynom, fortsättning: polynomdivision. Implementera polynomdivision
på lämpligt sätt genom att bygga vidare på object polynomial i uppgift 13 på sidan
228.
Läs mer om polynomdivision här: sv.wikipedia.org/wiki/Polynomdivision

https://dotty.epfl.ch/docs/reference/changed-features/vararg-splices.html
https://dotty.epfl.ch/docs/reference/changed-features/pattern-matching.html
https://sv.wikipedia.org/wiki/Polynomdivision

6.3. LABORATION: BLOCKBATTLE1 233

6.3 Laboration: blockbattle1

Mål

� Kunna förklara skillnader och likheter mellan ett singelobjekt och objekt som är
instanser av klasser.

� Kunna förklara skillnaden mellan förändringsbara och oföränderliga objekt.
� Kunna definiera och instansiera klasser och case-klasser, samt kunna beskriva

när en case-klass är lämpligast och ge några exempel på vad en sådan erbjuder
utöver en vanlig klass.

� Kunna skapa och använda klasser vars instanser innehåller referenser till andra
instanser (aggregering).

� Förstå innebörden av instansreferensen this.
� Kunna skapa enkla match-uttryck.

Förberedelser

� Gör övning classes i avsnitt 5.2, speciellt uppgift 6.
� Gör övning patterns i avsnitt 6.2.
� Läs igenom hela laborationen och planera ditt arbete.
� Hämta given kod via kursen github-plats.

6.3.1 Bakgrund

Figur 6.1: En duell om blockmaskar
mellan två lundensiska blockmullva-
der fångade på bild under intensivt
grävanade.

Under denna laboration ska du träna
på att deklarera klasser och skapa fle-
ra instanser av samma klass. Du tränar
även på att bygga ett större program
från grunden.

Du ska utveckla ett spel för två spe-
lare som sitter vid samma tangentbord,
där den vänstra spelaren styr en block-
mullvad med tangenterna A,S,D,W, och
den högra spelaren styr en annan block-
mullvad med piltangenterna.

I bilden till vänster ser du hur spelet
kan se ut. Det finns en ljusbrun och en
mörkbrun mullvad. Poängräkningen vi-
sas överst i himlen. Det finns fyra rosa
blockmaskar (se uppgift 13 i laboration
blockmole) som mullvadarna tävlar om
att försöka fånga. När en blockmask te-
leporterar sig till en ny slumpmässig po-
sition lämnar den jord efter sig. När en
mullvad gräver sig upp till gräsytan blir
det hål i gräset. Det ger poäng att gräva
tunnlar och att fånga blockmaskar.

Du bestämmer själv hur poängsätt-
ningen ska ske och kriteriet för när spe-
let är slut etc.

https://github.com/lunduniversity/introprog/tree/master/workspace/

234 KAPITEL 6. MÖNSTER OCH FELHANTERING

6.3.2 Obligatoriska krav

Följande funktionella krav ska uppfyllas av ditt program:
� Varje mullvad rör sig i sin aktuella riktning tills användaren ändrar riktning

genom att trycka på ”sin” motsvarande knapp, t.ex. W eller pil-upp.
� Då en mullvad går i mörkbrun jord ska ljusbruna tunnlar grävas.
� Då en blockmullvad når fönstrets kant eller himlen ska dess riktning reverseras.
� Det ska ge poäng att gräva tunnlar.
� Varje spelares poäng ska visas under spelets gång.
� Ett spel ska avslutas och Game over visas när något valfritt kriterium uppfyllts.

Din kod ska utformas enligt dessa design-krav:
� Ett Game skapas i huvudprogrammet med metoden start som kör igång spelet.
� Konstanter ska namnges och placeras i lämpligt kompanjonsobjekt.
� Varje klass med ev. tillhörande kompanjonsobjekt ska finnas i en egen kodfil och

tillhöra paketet blockbattle.
� Du ska utgå från klasserna som du implementerat i uppgift 6 i övning classes.
� Klassen BlockWindow omvandlar till interna fönsterkoordinater. Övriga klasser

ska använda block-koordinater.

6.3.3 Valbara krav – välj minst ett

Du ska implementera minst ett (gärna flera) av dessa krav:
� Det ska finnas lagom många blockmaskar (se labb blockmole uppg. 13, sid. 159).
� Blockmullvadarna ska även ha ett attribut som representerar hälsan, t.ex. ett

numeriskt värde mellan 0 och 100. Hälsan ska försvagas något när man gräver
tunnlar. Hälsan ska synas i spelfönstret, t.ex. som en sekvens med röda block i
himlen som indikerar andelen av maxhälsan för resp. spelare.

� Att springa på gräset ska påverka poäng och/eller hälsa.
� Att fånga blockmask ska påverka poäng och/eller hälsa.
� Det ska finnas gula blockdiamanter som ger många poäng om man tar dem först.
� Det ska vid spelstart gå att välja namn på respektive blockmullvad och namnet

ska synas i spelet vid poängutskriften.
� Det ska gå fortare att gå i gångar jämfört med att gräva i jord.
� Om en blockmullvad fångar en blockmask ska dess grävhastighet öka.
� Om en blockmullvad krockar med en annan blockmullvad ska något hända, t.ex.

att dess riktning reverseras.
� Visa highscore vid Game Over. Highscore sparas med introprog.IO i en fil som

skapas om den inte finns annars läses in vid uppstart om den finns och uppdate-
ras vid behov. Spara hela highscore-listan eller bara högsta poäng hittills.

6.3.4 Förberedelser inför redovisningen

DEInnan du redovisar din implementation ska du muntligt kunna redogöra för följande:
� Studera någon annans spel och ge din kamrat minst ett tips om hur kodens

läsbarhet kan förbättras. Skriv ner dina tips och beskriv dem vid redovisningen.
� Beskriv vilka åtgärder du gjort för att din kod ska vara lätt att läsa och förstå.
� Beskriv hur du stegvis utvecklat ditt program från enklare till mer avancerad

funktionalitet, samt vilka buggar du upptäckt och fixat.
� Beskriv vilket eller vilka valfria krav som din implementation uppfyller.
� Beskriv hur du hade behövt ändra i klassen Mole för att det ska gå att skriva

new Mole().move().move().reverseDir().move()

6.3. LABORATION: BLOCKBATTLE1 235

6.3.5 Tips och förslag

1. Många små steg. Kör kompilering under ändringsbevakning med --watch i ett
eget terminalfönster, så att du vid varje ändring kan rätta ev. kompileringsfel. Kör
och testa ditt program i ett annat terminalfönster.

2. Inför bra namn. Din kod blir lättare att läsa och ändra i om du hittar på bra namn
på medlemmar och lägger dem på lämpligt ställe. T.ex. kan du samla globala spel-
konstanter i kompanjonsobjektet till klassen Game. Du kan bygga vidare på nedan
kod och lägga till medlemmar allteftersom du upptäcker att de behövs. Nedan finns
exempelvis en funktion som ger bakgrundsfärgen för en viss y-koordinat, vilken är
användbar när du ska återställa bakgrunden efter att en mullvad har flyttat sig.

package blockbattle

object Game:
val windowSize = (30, 50)
val windowTitle = "EPIC BLOCK BATTLE"
val blockSize = 14
val skyRange = 0 to 7
val grassRange = 8 to 8
object Color { ??? }
/** Used with the different ranges and eraseBlocks */
def backgroundColorAtDepth(y: Int): java.awt.Color = ???

class Game(
val leftPlayerName: String = "LEFT",
val rightPlayerName: String = "RIGHT"

):
import Game.* // direkt tillgång till namn på medlemmar i kompanjon

val window = new BlockWindow(windowSize, windowTitle, blockSize)
val leftMole: Mole = ???
val rightMole: Mole = ???

def drawWorld(): Unit = ???

/** Use to erase old points, e.g updated score */
def eraseBlocks(x1: Int, y1: Int, x2: Int, y2: Int): Unit = ???

def update(mole: Mole): Unit = ??? // update, draw new, erase old

def gameLoop(): Unit = ???

def start(): Unit =
println("Start digging!")
println(s"$leftPlayerName ${leftMole.keyControl}")
println(s"$rightPlayerName ${rightMole.keyControl}")
drawWorld()
gameLoop()

3. Dela upp din kod i funktioner. Din kod blir lättare att läsa och ändra i om du
delar upp den i många små funktioner med bra namn. I Game-klassen ovan finns
exempel på några användbara funktioner. Allteftersom du utvidgar ditt program
kan du lägga till fler funktioner som t.ex. heter showPoints, gameOver, etc.

236 KAPITEL 6. MÖNSTER OCH FELHANTERING

4. Tänk igenom den övergripande strukturen. Programmet du ska skriva i den-
na laboration är större än det du gjort tidigare. Det är därför viktigt att tänka
igenom strukturen på ditt program, vilka klasser som har hand om vad och hur de
samarbetar. Diskutera gärna med handledare om du är osäker på hur de koddelar
du utvecklat i föregående veckas övning 6, klasserna Pos, KeyControl, Mole och
BlockWindow, är tänkta att samverka. Var noga med att testa så de olika klasserna
och deras metoder fungerar var för sig.

5. Utformning av gameLoop(). I ett spel behövs en s.k. spel-loop (eng. game loop)
som upprepar den kod som ska köras vid varje ny skärmbild, ofta kallad frame. I
varje runda i spel-loopen sker uppdatering av data och ritning i spelfönstret, samt
en lämplig fördröjning. En skiss på en typisk spel-loop visas nedan:

var quit = false
val delayMillis = 80

def gameLoop(): Unit =
while !quit do

val t0 = System.currentTimeMillis
handleEvents() // ändrar riktning vid tangenttryck etc.
update(leftMole) // flyttar, ritar, suddar, etc.
update(rightMole)

val elapsedMillis = (System.currentTimeMillis - t0).toInt
Thread.sleep((delayMillis - elapsedMillis) max 0)

end while
end gameLoop

6. Hantering av händelser. Ett BlockWindow, som du implementerade i uppgift 6 i
övning classes, kan via anrop av nextEvent ge KeyPressed(key) vid knapptryck
och WindowClosed vid fönsterstängning. Om ingen händelse finns att behandla
returneras Undefined. Använd en loop som betar av alla händelser tills Undefined
påträffas, enligt nedan:

def handleEvents(): Unit =
var e = window.nextEvent()
while e != BlockWindow.Event.Undefined do

e match
case BlockWindow.Event.KeyPressed(key) =>
??? // ändra riktning på resp. mullvad

case BlockWindow.Event.WindowClosed =>
??? // avsluta spel-loopen

e = window.nextEvent()
end while

end handleEvents

7. Flimmerfri grafik. För att minska mängden flimmer (eng. flicker) är det bäst att
i varje iteration i spel-loopen (1) bara rita om det som ändrats för att minimera
tiden som spenderas på att rita, och (2) vid ändringar rita nya delar före att gamla
delar raderas. För att slippa mullvadsflimmer kan du ”rita först – sudda sen” enligt

6.3. LABORATION: BLOCKBATTLE1 237

nedan.7

window.setBlock(mole.nextPos, mole.color) // draw new
window.setBlock(mole.pos, Color.tunnel) // erase old
mole.move() // update

7Inom spelutveckling använder man oftast istället så kallad double buffering (eller till och med triple
buffering) för att få helt flimmerfri grafik. Det ligger dock bortom kursen och stöds inte av PixelWindow.

238 KAPITEL 6. MÖNSTER OCH FELHANTERING

Kapitel 7

Sekvenser och enumerationer

Begrepp som ingår i denna veckas studier:

� översikt av Scalas samlingsbiblio-
tek och samlingsmetoder

� klasshierarkin i scala.collection
� Iterable
� Seq
� List
� ListBuffer
� ArrayBuffer
� WrappedArray
� sekvensalgoritm
� algoritm: SEQ-COPY
� in-place vs copy
� algoritm: SEQ-REVERSE
� registrering
� algoritm: SEQ-REGISTER
� linjärsökning

� algoritm: LINEAR-SEARCH
� tidskomplexitet
� minneskomplexitet
� översikt strängmetoder
� StringBuilder
� ordning
� inbyggda sökmetoder
� find
� indexOf
� indexWhere
� inbyggda sorteringsmetoder
� sorted
� sortWith
� sortBy
� repeterade parametrar

239

240 KAPITEL 7. SEKVENSER OCH ENUMERATIONER

7.1 Teori

7.1.1 Vad är en sekvens?

• En sekvens är en följd av element som

– har ordningsnummer (t.ex. numrerade från noll)
– är av en viss typ (t.ex. heltal).

• En sekvens kan innehålla flera element som är lika.
• En sekvens kan vara tom och har då längden noll.
• Exempel på en icke-tom sekvens med dubbletter:

scala> val xs = Vector(42, 0, 42, -9, 0, 5)
xs: scala.collection.immutable.Vector[Int] =
Vector(42, 0, 42, -9, 0, 5)

• Indexering ger ett element via dess ordningsnummer:

scala> xs(2)
res0: Int = 42

scala> xs.apply(2)
res1: Int = 42

7.1.2 Exempel: En sträng är en sekvens av tecken

scala> "haj po daj"

Längd? Vad ligger på första platsen? Elementtyp? Dubbletter?

scala> "haj po daj".length
res1: Int = 10

scala> "haj po daj".apply(0)
res2: Char = h

scala> "haj po daj"(0)
res3: Char = h

scala> "haj po daj".distinct
res4: String = haj pod

7.1.3 Iterera över element i en sekvens

• Att iterera (eng. iterate), ä.k. traversera (eng. traverse), innebär att gå igenom
och behandla element i en samling.

• Exempel på iterering med foreach, map, for:

7.1. TEORI 241

scala> val xs = Vector(1,2,3)
val xs: Vector[Int] = Vector(1, 2, 3)

scala> xs.foreach(x => println(x + 1))
2
3
4

scala> xs.map(_ + 1)
val res0: Vector[Int] = Vector(2, 3, 4)

scala> for x <- xs yield x - 1
val res1: Vector[Int] = Vector(0, 1, 2)

7.1.4 Lägg till i början och i slutet av en sekvens

• Med metoderna +: och :+ kan du skapa en ny sekvens med nya element tillagda
i början resp. i slutet.

• Minnesregel: ”Colon on the collection side”

scala> val xs = Vector(1,2,3)
scala> xs :+ 42 // ger ny Vector(1, 2, 3, 42)
scala> 42 +: xs // ger ny Vector(42, 1, 2, 3)

• Semantik: operatornotation med operatorer som slutar med kolon är höge-
rassociativa

• Anropet 42 +: xs skrivs av kompilatorn om till xs.+:(42)

1 scala> xs.+:(42)
2 res4: scala.collection.immutable.Vector[Int] = Vector(42, 1, 2, 3)
3

• Konkatenering (sammanfogning) av sekvenser: xs ++ ys

7.1.5 Egenskaper hos några sekvenssamlingar i Scala
• Vector

– Oföränderlig. Snabb på att skapa kopior med små förändringar.
– Allsidig prestanda: bra till det mesta.

• List

– Oföränderlig. Snabbt att skapa kopior med uppdatering i början.
– Snabbt jobba i början, men långsamt jobba i slutet av listan.
– Smidig & snabb vid rekursiva algoritmer.
– Långsam vid upprepad indexering på godtyckliga ställen.

• ArrayBuffer

242 KAPITEL 7. SEKVENSER OCH ENUMERATIONER

– Föränderlig: snabb indexering & uppdatering.
– Kan ändra storlek efter allokering. Snabb att indexera överallt.

• ListBuffer

– Föränderlig: snabb indexering & uppdatering i början.
– Snabb om du bygger upp sekvens genom många tillägg i början.

• Array eller scala.collection.mutable.ArraySeq

– Föränderlig: snabb indexering & uppdatering.
– Kan ej ändra storlek; storlek ges vid allokering.
– Har särställning i JVM: ger snabb allokering och access.

7.1.6 Vilken sekvenssamling ska jag välja?
• Välj Vector om ...

a) du vill ha oföränderlighet: val xs = Vector[Int](1,2,3)
b) du behöver föränderlighet (notera var):

var xs = Vector.empty[Int]
c) du ännu inte vet vilken sekvenssamling som är bäst; du kan alltid ändra

efter att du mätt prestanda och kollat flaskhalsar vid upprepade körningar.

• Välj List om ...

du har en rekursiv sekvensalgoritm eller mestadels jobbar i början.

• Välj ArrayBuffer om ...

det behövs av prestandaskäl och du inte vet storlek vid allokering:
val xs = scala.collection.mutable.ArrayBuffer.empty[Int]

• Välj ListBuffer om ...

det behövs av prestandaskäl och du bara behöver lägga till i början:
val xs = scala.collection.mutable.ListBuffer.empty[Int]

• Välj Array eller ArraySeq om ...

det verkligen behövs av prestandaskäl och du vet storlek vid allokering:
val xs = Array.fill(initSize)(initValue)

7.1.7 Några konstigheter med Array

• Referenslikhet (och inte innehållslikhet):

scala> Vector(1,2,3) == Vector(1,2,3) //innehållslikhet
val res0: Boolean = true

scala> Array(1,2,3) == Array(1,2,3) // referenslikhet
val res1: Boolean = false // aaargh!!

Notera: Metoden == mellan två ArraySeq ger innehållslikhet.
• Special-syntax för allokering utan explicit initialisering:

val xs = new Array[String](1000) // 1000 null-referenser

7.1. TEORI 243

• Fungerar inte lika bra med generiska typer:

scala> def box[T](x: T) = Vector[T](x) //funkar fint

scala> def abox[T](x: T) = Array[T](x)
error: No ClassTag available for T

7.1.8 Oföränderlig eller förändringsbar?

• Oföränderlig: Kan ej ändra elementreferenserna, men effektiv på att skapa
kopia som är (delvis) förändrad Vector eller List

• Förändringsbar: kan ändra elementreferenserna

– Kan ej ändra storlek efter allokering:
Array eller ArraySeq: indexera och uppdatera varsomhelst

– Kan även ändra storlek efter allokering:
ArrayBuffer eller ListBuffer

• Ofta funkar oföränderlig sekvenssamling utmärkt, men om man efter
prestandamätning upptäcker en flaskhals kan man ändra från Vector till
t.ex. ArrayBuffer.

7.1.9 Vad är en sekvensalgoritm?

• En algoritm är en stegvis beskrivning av lösningen på ett problem.
• En sekvensalgoritm är en algoritm där element i sekvens utgör en viktig

del av problembeskrivningen eller lösningen.
• Exempelproblem: sortera en sekvens av personer efter deras ålder.
• Sju ofta återkommande programmeringsproblem som löses med en sekvensalgo-

ritm:

– Kopiering av alla element i en sekvens till en ny sekvens
– Uppdatering av sekvensen: ta bort, lägga till, ändra enskilda element
– Transformering: applicera en funktion på alla element
– Filtrering: urval av vissa element som uppfyller ett villkor
– Sökning efter ett element som uppfyller ett sökkriterium
– Sortering enligt någon ordning
– Registrering kategorisera eller räkna element med vissa egenskaper

KUT FSSR

7.1.10 Använda färdiga sekvenssamlingsmetoder

• Ofta kan man implementera sekvensalgoritmer genom anrop av en eller flera
färdiga metoder.

• Dessa färdiga metoder är optimerade och vältestade och är att föredra om
möjligt.

https://youtu.be/0ArlUSVDQIw?t=27s

244 KAPITEL 7. SEKVENSER OCH ENUMERATIONER

• Studera quickref för att se vad man kan göra med färdiga samlingar.
• Det är lärorikt att ”uppfinna hjulet” och implementera några grundläggande

sekvensalgoritmer själv för bättre förståelse, även om de redan finns färdiga i
Scalas samlingsbibliotek.

• Fördjupning: En översikt av samlingarna i Scalas standardbibliotek: https:
//docs.scala-lang.org/overviews/collections-2.13/introduction.html

• (Det kommer mer om implementation av samlingar och algoritmer i fördjup-
ningskursen pfk.)

7.1.11 Några användbara samlingsmetoder vid implementation av
sekvensalgoritmer

xs.map(f) transformering, motsv. for x <- xs yield f(x)
xs.map(x => x) kopiering, motsv. for x <- xs yield x
xs.filter(p) filtrering, ta med x om p(x)
xs.filterNot(p) filtrering, ta med x om !p(x)
xs.distinct filtrering, ta bort dubbletter
xs.take(n) ny sekvens med de första n elements, resten skippade
xs.drop(n) ny sekvens där de första n elements är skippade
xs.takeWhile(p) filtrera, ta med i början så länge p(x)
xs.dropWhile(p) filtrera, skippa i början så länge p(x)
xs.find(p) sök framifrån efter första element x där p(x) är sant
xs.indexOf(x) sök framifrån efter index för element som är samma som x
xs.lastIndexOf(x) sök bakifrån efter index för element som är samma som x
xs.sorted sortera med inbyggd (implicit given) ordning
xs.sorted.reverse sortera i omvänd ordning
xs.sortBy(f) sortera i ordning enligt f(x)
xs.sortWith(lt) sortera enligt ”less than”-funktionen lt: (A, A) => Boolean
xs.count(p) räkna antalet element där p(x) är sant

Lär dig fler smidiga metoder i quickref

7.1.12 Uppdaterad sekvens med kraftfulla metoden patch

Metoden patch kan användas så: xs.patch(fromPos, ys, nbrReplaced)
för att skapa en ny sekvens där ett eller flera element i xs är...

• utbytta (eng. replaced)
• borttagna (eng. removed)
• tillagda (eng. inserted)

.. med nya element ur ys

1 scala> val xs = Vector(1,2,3)
2

3 scala> xs.patch(2, Vector(-1), 1) // replaced one elem
4 res0: scala.collection.immutable.Vector[Int] = Vector(1, 2, -1)
5

6 scala> xs.patch(1, Vector(42), 0) // inserted one elem
7 res11: scala.collection.immutable.Vector[Int] = Vector(1, 42, 2, 3)

https://docs.scala-lang.org/overviews/collections-2.13/introduction.html
https://docs.scala-lang.org/overviews/collections-2.13/introduction.html

7.1. TEORI 245

8

9 scala> xs.patch(0, Vector(), 2) // removed two elems
10 res2: scala.collection.immutable.Vector[Int] = Vector(3)

7.1.13 Använda for-uttryck för filtrering med hjälp av gard

I ett for-uttryck kan man ha en gard (eng. guard) i form av ett booleskt uttryck efter
nyckelordet if. Då kommer uttrycket efter yield bara göras om gard-uttrycket är
sant.

Syntaxen är så här: (parenteser behövs ej runt gard-uttrycket)

for x <- xs if uttryck1 yield uttryck2

Exempel:

scala> val udda = for x <- 1 to 6 if x % 2 == 1 yield x

udda blir Vector(1, 3, 5)

7.1.14 Använda samlingsmetoden filter för filtrering

Alla samlingar i scala.collection har metoden filter. Den har ett predikat som pa-
rameter p: T => Boolean och ger en ny samling med de element för vilka predikatet
är sant.

xs.filter(p)

Exempel: Antag att xs är (1 to 6).toVector

xs.filter(_ % 2 == 1)

uttryckets resultat blir Vector(1, 3, 5), vilket motsvarar:

for x <- xs if x % 2 == 1 yield x

I själva verket skriver Scala-kompilatorn om for-uttryck med gard till anrop av meto-
den filter före kodgenerering sker.

7.1.15 Vanliga sekvensproblem som funktionshuvuden

Indata och utdata för några vanliga sekvensproblem:

def copy(xs: Vector[Int]): Vector[Int] = ???

def filter(xs: Vector[Int], p: Int => Boolean): Vector[Int] = ???

def findIndices(xs: Vector[Int], p: Int => Boolean): Vector[Int] = ???

def sort(xs: Vector[Int]): Vector[Int] = ???

246 KAPITEL 7. SEKVENSER OCH ENUMERATIONER

def freq(xs: Vector[Int]): Vector[(Int, Int)] = ??? // (heltal, frekvens)

Övning: Hur implementera dessa med for-uttryck eller färdiga samlingsmetoder?
Tips: För sort&freq se sorted, distinct, count i quickref

7.1.16 Implementation av sekvensproblem med for-uttryck eller fär-
diga samlingsmetoder

def copy(xs: Vector[Int]): Vector[Int] = for x <- xs yield x

def filter(xs: Vector[Int], p: Int => Boolean): Vector[Int] =
for x <- xs if p(x) yield x

def findIndices(xs: Vector[Int], p: Int => Boolean): Vector[Int] =
(for i <- xs.indices if p(xs(i)) yield i).toVector

def sort(xs: Vector[Int]): Vector[Int] = xs.sorted // mer om sortering sen

def freq(xs: Vector[Int]): Vector[(Int, Int)] = // mer om registrering snart
for x <- xs.distinct yield x -> xs.count(_ == x)

Övning: Hur implementera dessa med map och filter eller andra färdiga samlings-
metoder?

7.1.17 Implementation av sekvensproblem med map, filter

def copy(xs: Vector[Int]): Vector[Int] = xs.map(x => x)

def filter(xs: Vector[Int], p: Int => Boolean): Vector[Int] = xs.filter(p)

def findIndices(xs: Vector[Int], p: Int => Boolean): Vector[Int] =
xs.indices.filter(i => p(xs(i))).toVector

def sort(xs: Vector[Int]): Vector[Int] = xs.sorted // mer om sortering sen

def freq(xs: Vector[Int]): Vector[(Int, Int)] = // mer om registrering snart
xs.distinct.map(x => x -> xs.count(_ == x))

7.1.18 Hierarki av samlingstyper i scala.collection v2.13

Iterable

Seq Set Map

Iterable har metoder som är im-
plementerade med hjälp av:
def foreach[U](f: Elem => U): Unit

https://fileadmin.cs.lth.se/pgk/quickref.pdf

7.1. TEORI 247

def iterator: Iterator[A]

Seq: ordnade i sekvens

Set: unika element
Map: par av (nyckel, värde)

Samlingen Vector är en Seq som är en Iterable.
De konkreta samlingarna är uppdelade i dessa paket:

scala.collection.immutable där flera är automatiskt importerade
scala.collection.mutable som måste importeras explicit
(undantag: primitiva scala.Array)

7.1.19 Lämna det öppet: använd Seq

Typen collection.immutable.Seq är supertyp till alla sekvenssamlingar i collection.immutable.
Exempel: kopiering av sekvens:

• Kopiering av specifik heltalssekvens:

def copyIntVector(xs: Vector[Int]): Vector[Int] = for x <- xs yield x

• Kopiering som fungerar för alla oföränderliga heltalssekvenser:

def copyIntSeq(xs: Seq[Int]): Seq[Int] = for x <- xs yield x

1 scala> val xs = Vector(1,2,3)
2 xs: Vector[Int] = Vector(1, 2, 3)
3

4 scala> val ys = copyIntVector(xs)
5 ys: Vector[Int] = Vector(1, 2, 3)
6

7 scala> val zs = copyIntSeq(xs)
8 val zs: Seq[Int] = Vector(1, 2, 3)

7.1.20 Implementation med generiska funktioner

Genom att generalisera funktionshuvudena blir våra lösningar användbara för alla
sekvenser av typen Seq[T], där den obundna typparametern T vid anrop kan bindas
till godtycklig typ. (Mer om typparametrar senare.)

def copy[T](xs: Seq[T]): Seq[T] = xs.map(x => x)

def filter[T](xs: Seq[T], p: T => Boolean): Seq[T] = xs.filter(p)

def findIndices[T](xs: Seq[T], p: T => Boolean): Seq[Int] =
xs.indices.filter(i => p(xs(i))).toVector

def sort[T: Ordering](xs: Seq[T]): Seq[T] = xs.sorted // mer om Ordering sen

def freq[T](xs: Seq[T]): Seq[(T, Int)] =
xs.distinct.map(x => x -> xs.count(_ == x))

248 KAPITEL 7. SEKVENSER OCH ENUMERATIONER

Standardbibliotekets metoder försöker ordna så att det blir samma konkreta typ in
som ut, men ibland väljs annan lämplig konkret samling, t.ex. kan en Array bli en
ArrayBuffer.

7.1.21 Fördjupning: Använda Java-samlingar i Scala med CollectionConverters

Med hjälp av import scala.jdk.CollectionConverters.*
får man smidig interoperabilitet med Java och dess standardbibliotek,
speciellt metoderna asJava och asScala:

1 scala> import scala.jdk.CollectionConverters.*
2

3 scala> Vector(1,2,3).asJava
4 res0: java.util.List[Int] = [1, 2, 3]
5

6 scala> val xs = new java.util.ArrayList[String]()
7 xs: java.util.ArrayList[String] = []
8

9 scala> xs.add("hej")
10 res1: Boolean = true
11

12 scala> xs.asScala
13 res2: scala.collection.mutable.Buffer[String] = Buffer(hej)

Läs mer här:
https://docs.scala-lang.org/overviews/collections-2.13/conversions-between-java-and-scala-collections.
html

7.1.22 Fördjupning: Skapa generisk Array

• I JVM bytekod går det tyvärr inte att skapa en primitiv generisk array.
• Maskinkoden måste istället skapa en array av den mest generella referenstypen

Object och sedan typtesta och typkonvertera under körtid.
Se t.ex. Java-implementationen av ArrayList:
http://developer.classpath.org/doc/java/util/ArrayList-source.html

• Men det går att skapa en generisk array i Scala (men inte i Java). Då behövs en
reflect.ClassTag som möjliggör typinformation vid körtid för arrayer.

scala> def fyll[T](n: Int, x: T): Array[T] = Array.fill(n)(x)
-- Error:
1 |def fyll[T](n: Int, x: T): Array[T] = Array.fill(n)(x)

| ^
| No ClassTag available for T

scala> def fyll[T: reflect.ClassTag](n: Int, x: T): Array[T] = Array.fill(n)(x)

scala> fyll(42, "hej")
res2: Array[String] = Array(hej, hej)

• Kompilatorn skapar då maskinkod som automatiskt gör typkonverteringarna.

https://docs.scala-lang.org/overviews/collections-2.13/conversions-between-java-and-scala-collections.html
https://docs.scala-lang.org/overviews/collections-2.13/conversions-between-java-and-scala-collections.html
http://developer.classpath.org/doc/java/util/ArrayList-source.html

7.1. TEORI 249

7.1.23 Repeterade parametrar blir sekvens

Med en asterisk efter parametertypen kan antalet argument variera:

def sumSizes(xs: String*): Int = xs.map(_.length).sum

scala> sumSizes("Zaphod")
res0: Int = 6

scala> sumSizes("Zaphod","Beeblebrox")
res1: Int = 16

scala> sumSizes("Zaphod","Beeblebrox","Ford","Prefect")
res3: Int = 27

scala> sumSizes()
res4: Int = 0

Repeterade parametrar (eng. repeated parameters) blir en sekvens av typen Seq och
som mer specifikt är en ArraySeq

7.1.24 Sekvenssamling som argument till repeterade parametrar

def sumSizes(xs: String*): Int = xs.map(_.size).sum

val veg = Vector("gurka","tomat")

Om du redan har en sekvenssamling så kan du applicera den på en funktion som har
repeterade parametrar med hjälp av en asterisk *
Den ska skrivas direkt efter den sekvenssamling, som du vill att kompilatorn ska

tolka som en sekvens av argument, så här:

scala> sumSizes(veg*)
res5: Int = 10

7.1.25 Enumerationer har en ordning

En uppräkning av färger i en kortlek med enum:

enum Suit:
case Spade, Heart, Club, Diamond

Viktiga enum-metoder för att hantera elementens ordning:
ordinal fromOrdinal values valueOf

250 KAPITEL 7. SEKVENSER OCH ENUMERATIONER

scala> Suit.Spade.ordinal // från element till heltal
val res0: Int = 0

scala> Suit.Club.ordinal
val res1: Int = 2

scala> Suit.fromOrdinal(3) // från heltal till element
val res2: Suit = Diamond

scala> Suit.values // alla element i ordning
val res3: Array[Suit] = Array(Spade, Heart, Club, Diamond)

scala> Suit.valueOf("Spade") // från sträng till element
val res4: Suit = Spade

7.1.26 Enumerationer kan ha parametrar och medlemmar

En enum kan ha parametrar. Använd val för extern synlighet:

enum Color(val consoleColor: String):
case Black extends Color(Console.BLUE) //Blå färg syns på svart bakgrund
case Red extends Color(Console.RED)

I enum-kroppen kan du ha medlemmar, tex metoder:

enum Suit(val color: Color):
def show(isConsoleColor: Boolean = true): String =

if isConsoleColor then color.consoleColor + toString + Console.RESET
else toString

case Spade extends Suit(Color.Black)
case Heart extends Suit(Color.Red)
case Club extends Suit(Color.Black)
case Diamond extends Suit(Color.Red)

scala> println(Suit.Club.show(isConsoleColor = false))
Club

7.1.27 Enum kan motsvara fullfjädrade case-klasser

Vill du kunna göra mönster-matching på enum-värden så behövs parametrar på
alternativen för att det ska bli motsvarande case-klasser:

enum Veg:
def taste: String
case Tomato(taste: String)
case Banana(taste: String)

Ovan expanderas automatiskt av kompilatorn till motsvarande detta:

7.1. TEORI 251

sealed trait Veg:
def taste: String

object Veg:
case class Tomato(taste: String) extends Veg
case class Banana(taste: String) extends Veg

7.1.28 Enum och mönster-matchning

Med parametrar på varje fall och en abstrakt medlem för varje attribut...

enum Veg:
def taste: String
case Tomato(taste: String)
case Banana(taste: String)

...så gör den automatiska expansionen till case-klasser att detta fungerar fint:

scala> val v = Veg.Tomato("nice")
val v: Veg = Tomato(nice) // notera typen : Veg

scala> v.taste // funkar eftersom Veg har en taste
val res0: String = najs

scala> val dontLikeBananas = v match:
case Veg.Tomato(t) => t
case Veg.Banana(_) => "always bad!"

Den abstrakta medlemmen def taste: String behövs för att attributet ska synas
via referenser som är av den mindre specifika typen Veg.
(Mer om abstrakta medlemmar i veckan om arv.)

7.1.29 Fördelar med enum jämfört med uppräkning med heltal

Varför inte bara så här?

val (spade, heart, club, diamond) = (0, 1, 2, 3)

Alla element har samma specifika typ enligt enum-deklarationen:

1 scala> Suit.Heart // alla element är av typen Suit
2 val res5: Suit = Heart

• Detta är säkrare jämfört med att bara använda heltalsvärden: kompilatorn
kan hjälpa dig att skilja på element av olika typ och ge felmeddelande om du
använder fel typ oavsiktligt.

• Ej tillåtna värden kan inte representeras (jmf alla möjliga heltal, där bara några
är relevanta).

Träna på enum på veckans övning sequences och labb shuffle.

252 KAPITEL 7. SEKVENSER OCH ENUMERATIONER

7.1.30 Registrering

• Registrering innefattar algoritmer för att kategorisera eller räkna antalet
förekomster av element med vissa specifika egenskaper.

• Exempel:
Utfallsfrekvens vid kast med en tärning 1000 gånger:

utfall antal
1 → 178
2 → 187
3 → 167
4 → 148
5 → 155
6 → 165

7.1.31 Registrering av tärningskast i Array

Vi låter plats 0 representera antalet ettor, plats 1 representerar antalet tvåor etc.
Övning: implementera ???

scala> def rollDice(): Int = scala.util.Random.nextInt(6) + 1

scala> val reg = new Array[Int](6)
reg: Array[Int] = Array(0, 0, 0, 0, 0, 0)

scala> for k <- 1 to 1000 do
val i = ??? //kasta tärning, räkna ut rätt index
??? //registrera kast i reg på rätt plats

scala> for i <- 1 to 6 do println(s"$i: ${reg(i - 1)}")
1: 178
2: 187
3: 167
4: 148
5: 155
6: 165

7.1.32 Registrering av tärningskast i Array

Lösning:

scala> def rollDice() = scala.util.Random.nextInt(6) + 1

scala> val reg = new Array[Int](6)
reg: Array[Int] = Array(0, 0, 0, 0, 0, 0)

scala> for k <- 1 to 1000 do
val i = rollDice() - 1
reg(i) = reg(i) + 1 // eller: reg(i) += 1

scala> for i <- 1 to 6 do println(s"$i: ${reg(i - 1)}")

7.1. TEORI 253

1: 178
2: 187
3: 167
4: 148
5: 155
6: 165

7.1.33 Skapa lösningar på sekvensproblem från grunden

• Normalt använder man färdiga samlingsmetoder
• Det finns ofta en färdig metod som gör det man vill
• Annars kan man ofta göra det man vill genom att kombinera flera färdiga

samlingsmetoder

• Vi ska nu i lärosyfte implementera några egna varianter av uppdatering från
grunden.

För problem av typen KUTFSSR ingår det i kursen att kunna 1) lösa dessa med
färdiga samlingsmetoder, och 2) implementera egna lösningar med hjälp av sekvens,
alternativ, repetition, abstraktion (SARA).

7.1.34 Skapa ny sekvenssamling eller ändra på plats?

Två olika principer vid sekvensalgoritmkonstruktion:

• Skapa ny sekvens utan att förändra insekvensen
• Ändra på plats (eng. in-place) i förändringsbar sekvens

Välja mellan att skapa ny sekvens eller ändra på plats?

• Ofta är det lättast att skapa ny samling och kopiera över elementen efter
eventuella förändringar medan man loopar.

• Om man har mycket stora samlingar kan man behöva ändra på plats för att
spara tid/minne.

7.1.35 Algoritm: SEQ-COPY

Pseudokod för algoritmen SEQ-COPY som kopierar en sekvens, här en Array med
heltal:

254 KAPITEL 7. SEKVENSER OCH ENUMERATIONER

Indata :Heltalsarray xs
Utdata :En ny heltalsarray som är en kopia av xs.

1 result ← en ny array med plats för xs.length element
2 i ← 0
3 while i < xs.length do
4 result(i)← xs(i)
5 i ← i+1
6 end
7 result

7.1.36 Implementation av SEQ-COPY med while

1 object seqCopy:
2
3 def arrayCopy(xs: Array[Int]): Array[Int] =
4 val result = new Array[Int](xs.length)
5 var i = 0
6 while i < xs.length do
7 result(i) = xs(i)
8 i += 1
9 result

10
11 def test: String =
12 val xs = Array(1,2,3,4,42)
13 val ys = arrayCopy(xs)
14 if xs sameElements ys then "OK!" else "ERROR!"
15
16 def main(args: Array[String]): Unit = println(test)

xs.sameElements(ys) behövs då == på en Array ger referenslikhet.

7.1.37 Typ-alias för att abstrahera typnamn

Med hjälp av nyckelordet type kan man deklarera ett typ-alias för att ge ett alter-
nativt namn till en viss typ. Exempel:

1 scala> type Pt = (Int, Int) // typalias
2 scala> type Pts = Vector[Pt] // nästlad typalias
3

4 scala> def distToOrigo(pt: Pt): Double = math.hypot(pt._1, pt._2)
5

6 scala> val xs: Pts = Vector((1,1), (2,2), (3,4))
7 val xs: Pts = Vector((1,1), (2,2), (3,4))
8

9 scala> xs.head
10 val res0: Pt = (1,1)
11

12 scala> xs.map(distToOrigo)

7.1. TEORI 255

13 val res1: Vector[Double] = Vector(1.4142135623730951, 2.8284271247461903, 5.0)

Typ-alias kan vara bra när:

• man har en lång och krånglig typ och vill använda ett kortare namn,
• man vill kunna lätt byta implementation senare

(t.ex. om man vill använda en case-klass i stället för en tupel).

7.1.38 Exempel: SEQ-INSERT/REMOVE-COPY

Nu ska vi ”uppfinna hjulet” och som träning implementera insättning och bort-
tagning till en ny sekvens utan användning av sekvenssamlingsmetoder (förutom
length och apply):

object PointSeqUtils:
type Pt = (Int, Int) // a type alias to make the code more concise

def primitiveInsertCopy(pts: Array[Pt], pos: Int, pt: Pt): Array[Pt] = ???

def primitiveRemoveCopy(pts: Array[Pt], pos: Int): Array[Pt] = ???

7.1.39 Pseudo-kod för SEQ-INSERT-COPY

Indata :pts: Array[Pt], pt: Pt, pos: Int
1

Utdata :En kopia av pts men där pt är infogat på plats pos
2

3

4 result ← en ny Array[Pt] med plats för pts.length+1 element
5 for i ← 0 to pos−1 do
6 result(i)← pts(i)
7 end
8 result(pos)← pt
9 for i ← pos+1 to xs.length do

10 result(i)← pts(i−1)
11 end
12 result
13

Övning: Skriv pseudo-kod för SEQ-REMOVE-COPY

7.1.40 Insättning/borttagning i kopia av primitiv Array

256 KAPITEL 7. SEKVENSER OCH ENUMERATIONER

1 object PointSeqUtils:
2 type Pt = (Int, Int) // a type alias to make the code more concise
3
4 def primitiveInsertCopy(pts: Array[Pt], pos: Int, pt: Pt): Array[Pt] =
5 val result = new Array[Pt](pts.length + 1) // initialized with null
6 for i <- 0 until pos do result(i) = pts(i)
7 result(pos) = pt
8 for i <- pos + 1 to pts.length do result(i) = pts(i - 1)
9 result

10
11 def primitiveRemoveCopy(pts: Array[Pt], pos: Int): Array[Pt] =
12 if pts.length > 0 then
13 val result = new Array[Pt](pts.length - 1) // initialized with null
14 for i <- 0 until pos do result(i) = pts(i)
15 for i <- pos + 1 until pts.length do result(i - 1) = pts(i)
16 result
17 else Array.empty
18
19 // ovan metoder implementerade med hjälp av den kraftfulla metoden patch:
20
21 def insertCopy(pts: Array[Pt], pos: Int, pt: Pt) = pts.patch(pos, Array(pt), 0)
22
23 def removeCopy(pts: Array[Pt], pos: Int) = pts.patch(pos, Array.empty[Pt], 1)

Man gör mycket lätt fel på gränser/specialfall: +-1, to/until, tom sekvens etc.

7.1.41 Exempel: PolygonWindow

• En polygon kan representeras som en punktsekvens, där varje punkt är ett heltalspar.
• PolygonWindow nedan är ett fönster som kan rita en polygon.

1 class PolygonWindow(width: Int, height: Int):
2 val w = new introprog.PixelWindow(width, height, title = "PolygonWindow")
3
4 def draw(pts: Seq[(Int, Int)]): Unit =
5 if pts.size > 0 then
6 for i <- 1 until pts.size do
7 w.line(pts(i - 1)._1, pts(i - 1)._2, pts(i)._1, pts(i)._2)
8 val last = pts.length - 1
9 w.line(pts(last)._1, pts(last)._2, pts(0)._1, pts(0)._2)

1 object PolygonTest:
2 val star = Array((100,180), (150,100), (180,180), (90,130), (200, 130))
3 val pw = new PolygonWindow(400,400)
4 def main(args: Array[String]): Unit = pw.draw(star.toSeq)

7.1.42 Implementera Polygon

• En polygon kan representeras som en sekvens av punkter.
• Vi vill kunna lägga till punkter, samt ta bort punkter.
• En polygon kan implementeras på många olika sätt:

7.1. TEORI 257

– Förändringsbar (eng. mutable)

* Med punkterna i en Array

* Med punkterna i en ArrayBuffer

* Med punkterna i en ListBuffer

* Med punkterna i en Vector

* Med punkterna i en List

– Oföränderlig (eng. immutable)

* Som en case-klass med en oföränderlig Vector som returnerar nytt ob-
jekt vid uppdatering. Vi kan låta datastrukturen vara publik eftersom
allt är oföränderligt.

* Som en ”vanlig” klass med någon lämplig privat datastruktur där vi
inte möjliggör förändring av efter initialisering och där vi returnerar
nytt objekt vid uppdatering.

Val av implementation beror på sammanhang & användning!

7.1.43 Exempel: PolygonArray, ändring på plats

1 class PolygonArray(val maxSize: Int):
2 type Pt = (Int, Int)
3 private val points = new Array[Pt](maxSize) // initialized with null
4 private var n = 0
5 def size = n
6
7 def draw(w: PolygonWindow): Unit = w.draw(points.take(n).toSeq)
8
9 def append(pts: Pt*): Unit =

10 for i <- pts.indices do points(n + i) = pts(i)
11 n += pts.length
12
13 def insert(pos: Int, pt: Pt): Unit = // exercise: change pt to varargs pts
14 for i <- n until pos by -1 do points(i) = points(i - 1)
15 points(pos) = pt
16 n += 1
17
18 def remove(pos: Int): Unit = // exercise: change pos to fromPos, replaced
19 for i <- pos until n do points(i) = points(i + 1)
20 n -= 1
21
22 override def toString = points.mkString("PolygonArray(",",",")")

• Från början är points fylld med null.
• Variabeln n håller reda på hur många som verkligen används.

7.1.44 Exempel: PolygonVector, variabel referens till oföränderlig da-
tastruktur

258 KAPITEL 7. SEKVENSER OCH ENUMERATIONER

1 class PolygonVector:
2 type Pt = (Int, Int)
3 private var points = Vector.empty[Pt] // note var declaration to allow mutation
4 def size = points.size
5
6 def draw(w: PolygonWindow): Unit = w.draw(points.take(size))
7
8 def append(pts: Pt*): Unit =
9 points ++= pts.toVector

10
11 def insert(pos: Int, pt: Pt): Unit = // exercise: change pt to varargs pts
12 points = points.patch(pos, Vector(pt), 0)
13
14 def remove(pos: Int): Unit = // exercise: change pos to fromPos, replaced
15 points = points.patch(pos, Vector(), 1)
16
17 override def toString = points.mkString("PrimitivePolygon(",",",")")

7.1.45 Exempel: Polygon som oföränderlig case class

1 object Polygon:
2 type Pt = (Int, Int)
3 type Pts = Vector[Pt]
4 def apply(pts: Pt*) = new Polygon(pts.toVector)
5
6 case class Polygon(points: Polygon.Pts):
7 import Polygon.Pt
8
9 def size = points.size // for convenience but not really necessary (why?)

10
11 def append(pts: Pt*): Polygon = copy(points ++ pts.toVector)
12
13 def insert(pos: Int, pts: Pt*): Polygon = copy(points.patch(pos, pts, 0))
14
15 def remove(pos: Int, replaced: Int = 1): Polygon =
16 copy(points.patch(pos, Seq(), replaced))
17
18 override def toString = points.mkString("Polygon(", "," ,")")

7.1.46 Att sortera och jämföra strängar lexikografiskt

Teckenstandard UTF-8: Alla stora bokstäver är ”mindre” än alla små:

scala> Array("hej","Hej","gurka").sorted

res0: Array[String] = Array(Hej, gurka, hej)

• Antag att vi vill lösa detta problem ”från scratch”:
att sortera en sekvens med strängar

https://sv.wikipedia.org/wiki/UTF-8
https://www.youtube.com/watch?v=MijmeoH9LT4

7.1. TEORI 259

• Följdfrågor:

– Vad betyder det att två strängar är ”lika”?
– Vad betyder det att en sträng är ”mindre” än en annan?

• För att sortera en strängsekvens behöver vi lösa dessa delproblemen:

– att jämföra strängar
– sökning i sekvenser
– SWAP (om på-plats-sortering i förändringsbar sekvens)

Vi använder här strängjämförelse, sökning och sortering för att illustrera typiska
imperativa algoritmer. Normalt använder man färdiga lösningar på dessa pro-
blem!

7.1.47 Jämföra strängar: likhet

Antag att vi inte kan göra s1 == s2 utan bara kan jämföra strängar tecken för
tecken, t.ex. så här: s1(i) == s2(i). Antag också att vi inte har tillgång till annat
än metoderna length och apply på strängar, samt while och variabler av grundtyp.
Lös problemet att avgöra om två strängar är lika.

• Indata: två strängar
• Utdata: true om lika annars false

1. Klura ut din lösningsidé
2. Formulera algoritmen i pseudokod
3. Implementera algoritmen i Scala:

def isEqual(s1: String, s2: String): Boolean = ???

7.1.48 Algoritmexempel: stränglikhet, pseudokod

def isEqual(s1: String, s2: String): Boolean =
if (/* lika längder */) then

var foundDiff = false
var i = /* första index */
while !foundDiff && /* i inom indexgräns */ do

if /* tecken på plats i är olika */ then foundDiff = true
else i = /* nästa index */

end while
!foundDiff

else false
end isEqual

Detta är en variant av s.k. linjärsökning där vi söker från början i en sekvens till vi
hittar det vi söker efter (här söker vi efter tecken som skiljer sig åt).

Hur ser implementationen i exekverbar Scala ut?

260 KAPITEL 7. SEKVENSER OCH ENUMERATIONER

7.1.49 Algoritmexempel: stränglikhet, implementation

def isEqual(s1: String, s2: String): Boolean =
if s1.length == s2.length then

var foundDiff = false
var i = 0
while !foundDiff && i < s1.length do

if s1(i) != s2(i) then foundDiff = true
else i += 1

end while
!foundDiff

else false
end isEqual

7.1.50 Jämföra strängar: ”mindre än”

Med s1 < s2 menar vi att strängen s1 ska sorteras före strängen s2 enligt hur de
enskilda tecknen är ordnade med uttrycket s1(i) < s2(i).
Antag också att vi inte har tillgång till annat än metoderna length och apply på
strängar, samt while och variabler av grundtyp, samt math.min
Lös problemet att avgöra om en sträng är ”mindre” än en annan.

• Indata: två strängar, s1, s2
• Utdata: true om s1 ska sorteras före s2 annars false

1. Klura ut din lösningsidé
2. Formulera algoritmen i pseudokod
3. Implementera algoritmen i Scala:

def isLessThan(s1: String, s2: String): Boolean = ???

7.1.51 Jämföra strängar: ”mindre än”

Pseudokod:

def isLessThan(s1: String, s2: String): Boolean =
val minLength = /* minimum av längderna på s1 och s2 */

def firstDiff(s1: String, s2: String): Int =
/* index för första skillnaden (om de börjar lika: minLength) */

val diffIndex = firstDiff(s1, s2)
if diffIndex == minLength then /* s1 är kortare än s2 */
else /* tecknet s1(diffIndex) är mindre än tecknet s2(diffIndex) */

7.1. TEORI 261

7.1.52 Jämföra strängar: ”mindre än”

def isLessThan(s1: String, s2: String): Boolean =
val minLength = math.min(s1.length, s2.length)

def firstDiff(s1: String, s2: String): Int =
var foundDiff = false
var i = 0
while !foundDiff && i < minLength do

if (s1(i) != s2(i)) foundDiff = true
else i += 1

end while
i

end firstDiff

val diffIndex = firstDiff(s1, s2)
if diffIndex == minLength then s1.length < s2.length
else s1(diffIndex) < s2(diffIndex)

end isLessThan

7.1.53 Sökning

• Sökning återkommer i många skepnader:
i en datastruktur, vilken det än må vara, vill man ofta kunna
hitta ett element med en viss egenskap.
Några färdiga linjärsökningar i Scalas standardbibliotek:

1 scala> Vector("gurka","tomat","broccoli").indexOf("tomat")
2 res0: Int = 1
3

4 scala> Vector("gurka","tomat","broccoli").indexWhere(_.contains("o"))
5 res1: Int = 1
6

7 scala> Vector("gurka","tomat","broccoli").find(_.contains("o"))
8 res2: Option[String] = Some(tomat)

• Sökning efter ett visst index i en sekvens:

– Indata: en sekvens och ett sökkriterium
– Utdata: index för första eftersökta element, annars -1

• Två typiska varianter av sökning i en sekvens:

– Linjärsökning: börja från början och sök tills ett eftersökt element är funnet
– Binärsökning: antag sorterad sekvensen; börja i mitten, välj rätt halva ...

262 KAPITEL 7. SEKVENSER OCH ENUMERATIONER

7.1.54 Linjärsökning: hitta index för elementet x

Implementera indexOf:

def indexOf(xs: Vector[Int], x: Int): Int = ???

Utdata: index i där xs(i) == x
Om värde saknas. returnera -1

def indexOf(xs: Vector[Int], x: Int): Int =
var i = 0
var found = false
while !found && i < xs.length do

if (xs(i) == x) found = true
else i += 1

if (found) i else -1

(Är du nyfiken på binärsökning, se kapitel 12: Valfri fördjupning.)

7.1.55 Sortering

Problem: Vi har en osorterad sekvens med heltal. Vi vill ordna denna osorterade
sekvens i en sorterad sekvens från minst till störst.

En generalisering av problement:

Vi har många element av godtycklig typ och en ordningsrelation som säger vad vi
menar med att ett element är mindre än eller större än eller lika med ett annat element.

Vi vill lösa problemet att ordna elementen i sekvens så att för varje element på plats i
så är efterföljande element på plats i+1 större eller lika med elementet på plats i.

• Insättningssortering lösningsidé: Ta ett element i taget från den osorterade
listan och sätt in det på rätt plats i den sorterade listan och upprepa till det
inte finns fler osorterade element.

7.1.56 Algoritmisk komplexitet

• Komplexiteten hos en algoritm undersöks ofta genom att analysera hur min-
nesåtgång och tidsåtgång växer om problemets storlek växer

• Exempel på olika tidskomplexitet: tiden kan t.ex. växa linjärt, exponentiellt,
eller logaritmiskt med antalet element

• Exempel linjärsökning (alltså leta från början tills hittat):
Antalet repretionsrundor är proportionellt mot antalet element och i värsta fall
behöver vi söka ända till slutet.

• Mer om komplexitet i nästa kurs (pfk).

7.1. TEORI 263

7.1.57 Det finns många olika sorteringsalgoritmer

• Visualisering av 15 olika sorteringsalgoritmer på 6 min:
https://www.youtube.com/watch?v=kPRA0W1kECg

• Olika sorteringsalgoritmer har olika tids- & minneskomplexitet: i bästa fall, i
värsta fall, i medeltal, för nästan sorterad, etc.
https://en.wikipedia.org/wiki/Sorting_algorithm

• Olika sorteringsalgoritmer lämpar sig olika väl för parallellisering på många
kärnor.

7.1.58 Bogo sort

def bogoSort(xs: Vector[Int]) =
var result = xs
while result != result.sorted do

result = scala.util.Random.shuffle(result)
result

När blir denna färdig?

Antal jämförelser i medeltal vid n element: n ·n!

https://en.wikipedia.org/wiki/Bogosort

7.1.59 Sortera till ny vektor med insättningssortering: pseudo-kod

Det är nog lättare att förstå insertion sort om man sorterar till en ny vektor.
Vi ska sedan se hur man sorterar ”på plats” (eng. in place) i en array.

Indata: en osorterad vektor med heltal
Utdata: en ny, sorterad vektor med heltal

def insertionSort(xs: Vector[Int]): Vector[Int] =
val sorted = /* tom ArrayBuffer */
for /* alla element i xs */ do

/* linjärsök rätt position i sorted */
/* sätt in element på rätt plats i sorted */

end for
sorted.toVector

7.1.60 Sortera till ny vektor med insättningssortering: implementation

https://www.youtube.com/watch?v=kPRA0W1kECg
https://en.wikipedia.org/wiki/Sorting_algorithm
https://en.wikipedia.org/wiki/Bogosort

264 KAPITEL 7. SEKVENSER OCH ENUMERATIONER

def insertionSort(xs: Vector[Int]): Vector[Int] =
val sorted = scala.collection.mutable.ArrayBuffer.empty[Int]
for elem <- xs do

// linjärsök rätt position i sorted:
var pos = 0
while pos < sorted.length && sorted(pos) < elem do

pos += 1
end while
// sätt in element på rätt plats i sorted:
sorted.insert(pos, elem)

end for
sorted.toVector

end insertionSort

7.1.61 Sortera till ny samling med godtyckligt ordningspredikat

def sortWith(xs: Vector[Int])(lt: (Int, Int) => Boolean): Vector[Int] =
val sorted = scala.collection.mutable.ArrayBuffer.empty[Int]
for elem <- xs do // insertion sort using lt as "less than"

var pos = 0
while pos < sorted.length && lt(sorted(pos), elem) do
pos += 1

end while
sorted.insert(pos, elem)

end for
sorted.toVector

end sortWith

1 scala> val xs = Vector(1,2,1,2,12,42,1)
2

3 scala> sortWith(xs)(_ < _)
4 val res0: Vector[Int] = Vector(1, 1, 1, 2, 2, 12, 42)
5

6 scala> sortWith(xs)(_ > _)
7 val res1: Vector[Int] = Vector(42, 12, 2, 2, 1, 1, 1)

7.1.62 Insättningssortering på plats – pseudo-kod

Indata: en array med heltal
Utdata: samma array, men nu sorterad

def insertionSortInPlace(xs: Array[Int]): Unit =
for i <- 1 until xs.length do //från ANDRA till sista

var j = i
while j > 0 && xs(j - 1) > xs(j) do

7.1. TEORI 265

/* byt plats på xs(j) och xs(j - 1) */
j -= 1; // stega bakåt

Se animering här: Insättningssortering på wikipedia
Gå igenom alla specialfall och kolla så att detta fungerar!

7.1.63 Insättningssortering på plats – implementation

def insertionSortInPlaceSwap(xs: Array[Int]): Unit =
def swap(i: Int, j: Int): Unit =

val temp = xs(i)
xs(i) = xs(j)
xs(j) = temp

end swap

for i <- 1 until xs.length do //från ANDRA till sista
var j = i
while j > 0 && xs(j - 1) > xs(j) do

swap(j, j - 1)
j -= 1; // stega bakåt

end while
end for

end insertionSortInPlaceSwap

https://sv.wikipedia.org/wiki/Ins%C3%A4ttningssortering

266 KAPITEL 7. SEKVENSER OCH ENUMERATIONER

7.2 Övning sequences

Mål

� Kunna läsa och skriva pseudokod för sekvensalgoritmer och implementera
sekvensalgoritmer enligt pseudokod.

� Kunna implementera sekvensalgoritmer, både genom kopiering till ny sekvens
och genom förändring på plats i befintlig sekvens.

� Kunna använda inbyggda metoder för uppdatering av, linjärsökning i, och sorte-
ring av sekvenssamlingar.

� Kunna beskriva skillnaden i användningen av föränderliga och oföränderliga
sekvenser, speciellt vid uppdatering.

� Förstå hur sorteringsordningen är definierad för strängar.
� Kunna sortera sekvenssamlingar innehållande objekt av grundtyper med hjälp

av inbyggda och egendefinierade sorteringsordningar med metoderna sorted,
sortBy och sortWith.

� Kunna implementera linjärsökning enligt olika sökkriterier.
� Kunna beskriva egenskaperna hos sekvenssamlingarna Vector, List, Array,

ArrayBuffer och ListBuffer.
� Förstå bieffekter av uppdatering av delade referenser till föränderliga element.
� Kunna använda funktioner med repeterade parametrar.
� Känna till hur man implementerar funktioner med repeterade parametrar.
� Kunna implementera heltalsregistrering i en heltalsarray.

Förberedelser

� Studera begreppen i kapitel 7

7.2.1 Grunduppgifter; förberedelse inför laboration

Uppgift 1. Para ihop begrepp med beskrivning.

Koppla varje begrepp med den (förenklade) beskrivning som passar bäst:

element 1 A definierar hur element av en viss typ ska ordnas
samling 2 B datastruktur med element av samma typ
samlingsbibliotek 3 C algoritm som ordnar element i en viss ordning
sekvens(samling) 4 D algoritm som letar upp element enligt sökkriterium
sekvensalgoritm 5 E hur exekveringstiden växer med problemstorleken
ordning 6 F sökalgoritm som letar i sekvens tills element hittas
sortering 7 G objekt i en datastruktur
sökning 8 H algoritm som räknar element med vissa egenskaper
linjärsökning 9 I lösning på problem som drar nytta av sekvenssamling
registrering 10 J många färdiga samlingar med olika egenskaper
tidskomplexitet 11 K hur minnesåtgången växer med problemstorleken
minneskomplexitet 12 L noll el. flera element av samma typ i viss ordning

7.2. ÖVNING SEQUENCES 267

Uppgift 2. Olika sekvenssamlingar. Koppla varje sekvenssamling med den (förenkla-
de) beskrivning som passar bäst:

Vector 1 A förändringsbar, snabb indexering, kan ändra storlek
List 2 B oföränderlig, ger snabbt godtyckligt ändrad samling
Array 3 C oföränderlig, ger snabbt ny samling ändrad i början
ArrayBuffer 4 D primitiv, förändringsbar, snabb indexering, fix storlek
ListBuffer 5 E förändringsbar, snabb att ändra i början

Uppgift 3. Använda sekvenssamlingar. Antag att nedan variabler finns synliga i
aktuell namnrymd:

val xs: Vector[Int] = Vector(1, 2, 3)
val x: Int = 0

a) Koppla varje uttryck till vänster med motsvarande resultat till höger. Om du är
osäker på resultatet, läs i snabbreferensen och testa i REPL.
Tips: ”colon on the collection side”.

x +: xs 1 A true

xs +: x 2 B Vector(2, 2, 3)

xs :+ x 3 C 1

xs ++ xs 4 D error: value tail is not a member of Int

xs.indices 5 E (0 until 3)

xs apply 0 6 F Vector(1, 2, 3)

xs(3) 7 G Vector(0, 1, 2, 3)

xs.length 8 H false

xs.take(4) 9 I java.lang.IndexOutOfBoundsException

xs.drop(2) 10 J Vector(1, 2, 3, 0)

xs.updated(0, 2) 11 K Vector(3)

xs.tail.head 12 L error: value +: is not a member of Int

xs.head.tail 13 M Vector(1, 2, 3, 1, 2, 3)

xs.isEmpty 14 N 2

xs.nonEmpty 15 O 3

b) Vid tre tillfällen blir det fel. Varför? Är det kompileringsfel eller exekveringsfel?

Tips inför fortsättningen: Scalas standardbibliotek har många användbara samling-
ar med enhetlig metoduppsättning. Om du lär dig de viktigaste samlingsmetoderna
får du en kraftfull verktygslåda. Läs mer här:

• snabbreferensen (enda tentahjälpmedel):
https://fileadmin.cs.lth.se/pgk/quickref.pdf

• översikt (av Prof. Martin Odersky, uppfinnare av Scala, m.fl.):
https://docs.scala-lang.org/overviews/collections-2.13/introduction.

html

https://fileadmin.cs.lth.se/pgk/quickref.pdf
https://docs.scala-lang.org/overviews/collections-2.13/introduction.html
https://docs.scala-lang.org/overviews/collections-2.13/introduction.html

268 KAPITEL 7. SEKVENSER OCH ENUMERATIONER

• api-dokumentation:
https://www.scala-lang.org/api/current/scala/collection/

Uppgift 4. Kopiering av sekvenser. Klassen Mutant nedan kan användas för att skapa
förändringsbara instanser med heltal.1

class Mutant(var int: Int = 0)

Figur 7.1: En instans av klassen
Mutant där int kanske är 5.

Kör nedan i REPL efter studier av detta: https://youtu.be/dpdOUEe9mm4

1 scala> val fem = new Mutant(5)
2 scala> val xs = Vector(fem, fem, fem)
3 scala> val ys = xs.toArray // kopierar referenserna till ny Array
4 scala> val zs = xs.map(x => new Mutant(x.int)) // djupkopierar till ny Vector
5 scala> xs(0).int = (new Mutant).int

a) Fyll i tabellen nedan genom att till höger skriva värdet av varje uttryck till vänster.
Förklara vad som händer. Tips: Metoden eq jämför alltid referenser (ej innehåll).

xs(0)

ys(0).int

zs(0).int

xs(0) eq ys(0)

xs(0) eq zs(0)

(ys.toBuffer :+ new Mutant).apply(0).int

b) Implementera med hjälp av en while-sats funktionen deepCopy nedan som gör
djup kopiering, d.v.s skapar en ny array med nya, innehållskopierade mutanter.

def deepCopy(xs: Array[Mutant]): Array[Mutant] = ???

1Om den inbyggda grundtypen Int, i likhet med Mutant, knasigt nog kunnat användas för att skapa
förändringsbara instanser hade heltalsmatematiken i Scala omvandlats till ett skrämmande kaos.

https://www.scala-lang.org/api/current/scala/collection/
https://youtu.be/dpdOUEe9mm4

7.2. ÖVNING SEQUENCES 269

Använd denna algoritm:

Indata : En mutantarray xs
Utdata : En djup kopia av xs

1 result ← en ny mutantarray med plats för lika många element som i xs
2 i ← 0
3 while i mindre än antalet element do
4 skapa en kopia av elementet xs(i) och lägg kopian i result på platsen i
5 öka i med 1
6 end
7 result

c) Testa att din funktion och kolla så att inga läskiga muteringar genom delade
referenser går att göra, så som med xs och ys i första deluppgiften.
d) Är det vanligt att man, för säkerhets skull, gör djupkopiering av alla element i
oföränderliga samlingar som enbart innehåller oföränderliga element?

Tips inför fortsättningen: Ofta kan du lösa grundläggande delproblem med inbyggda
samlingsmetoder ur standardbiblioteket. Till exempel kan ju kopieringen i deepCopy
i föregående uppgift enkelt göras med hjälp av samlingsmetoden map.

Men det är mycket bra för din förståelse om du kan implementera grundläggande
sekvensalgoritmer själv även om det normalt är bättre att använda färdiga, vältes-
tade metoder. I kommande uppgifter ska du därför göra egna implementationer av
några sekvensalgoritmer som redan finns i standardbiblioteket.

Uppgift 5. Uppdatering av sekvenser. Deklarera dessa variabler i REPL:

val xs = (1 to 4).toVector
val buf = xs.toBuffer

a) Uttrycken till vänster evalueras uppifrån och ned. Para ihop med rätt resultat.

{ buf(0) = -1; buf(0) } 1 A error: value update is not a member

{ xs(0) = -1; xs(0) } 2 B Vector(5, 2, 3, 4)

buf.update(1, 5) 3 C ArrayBuffer(-1, 5, 3, 4, 5)

xs.updated(0, 5) 4 D -1

{ buf += 5; buf } 5 E Vector(1, -1, 5)

{ xs += 5; xs } 6 F (): Unit

xs.patch(1,Vector(-1,5),3) 7 G error: value += is not a member

xs 8 H Vector(1, 2, 3, 4)

Tips: Läs om metoderna i snabbreferensen och undersök i REPL. Exempel:

1 scala> Vector(1,2,3,4).patch(from = 1, other = Vector(0,0), replaced = 3)
2 val res0: Vector[Int] = Vector(1, 0, 0)

b) Implementera funktionen insert nedan med hjälp av sekvenssamlingsmetoden
patch. Tips: Ge argumentet 0 till parametern replaced.

/** Skapar kopia av xs men med elem insatt på plats pos. */
def insert(xs: Array[Int], elem: Int, pos: Int): Array[Int] = ???

270 KAPITEL 7. SEKVENSER OCH ENUMERATIONER

c) Skriv pseduokod för en algoritm som implementerar insert med hjälp av while.

d) Implementera insert enligt din pseudokod. Testa i REPL och se vad som händer
om pos är negativ? Vad händer om pos är precis ett steg bortom sista platsen i xs?
Vad händer om pos är flera steg bortom sista platsen?

Tips inför fortsättningen: Det är inte lätt att få rätt på alla specialfall även i små
algoritmer så som insert ovan. Det är därför viktigt att noga tänka igenom sin
sekvensalgoritm med avseende på olika specialfall. Använd denna checklista:

1. Vad händer om sekvensen är tom?
2. Fungerar det för exakt ett element?
3. Kan index bli negativt?
4. Kan index bli mer än längden minus ett?
5. Kan det bli en oändlig loop, t.ex. p.g.a. saknad loopvariabeluppräkning?

Ibland vill man att vettiga undantag ska kastas vid ogiltig indata eller andra
feltillstånd och då är require eller assert bra att använda. I andra fall vill man
att resultatet t.ex. ska bli en tom sekvenssamling om indata är ogiltigt. Sådana
beteenden behöver dokumenteras så att andra som använder dina algoritmer (eller
du själv efter att du glömt hur det var) förstår vad som händer i olika fall.

Uppgift 6. Jämföra strängar i Scala. I Scala kan strängar jämföras med operatorerna
==, !=, <, <=, >, >=, där likhet/olikhet avgörs av om alla tecken i strängen är lika eller
inte, medan större/mindre avgörs av sorteringsordningen i enlighet med varje teckens
Unicode-värde.2

a) Vad ger följande jämförelser för värde?

1 scala> 'a' < 'b'
2 scala> "aaa" < "aaaa"
3 scala> "aaa" < "bbb"
4 scala> "AAA" < "aaa"
5 scala> "ÄÄÄ" < "ÖÖÖ"
6 scala> "ÅÅÅ" < "ÄÄÄ"

Tyvärr så följer ordningen av ÄÅÖ inte svenska regler, men det ignorerar vi i fort-
sättningen för enkelhets skull; om du är intresserad av hur man kan fixa detta, gör
uppgift 20.

b) PVilken av strängarna s1 och s2 kommer först (d.v.s. är ”mindre”) om s1 utgör
början av s2 och s2 innehåller fler tecken än s1?

Uppgift 7. Linjärsökning enligt olika sökkriterier. Linjärsökning innebär att man letar
tills man hittar det man söker efter i en sekvens. Detta delproblem återkommer ofta!
Vanligen börjar linjärsökning från början och håller på tills man hittar något element
som uppfyller kriteriet. Beroende på vad som finns i sekvensen och hur kriteriet ser

2Överkurs: Alla tecken i en java.lang.String representeras enligt UTF-16-standarden
(https://en.wikipedia.org/wiki/UTF-16), vilket innebär att varje Unicode-kodpunkt (eng. code point)
lagras som antingen ett eller två 16-bitars heltal. Strängjämförelse i Scala och Java jämför egentligen
inte varje tecken, utan varje 16-bitars heltal. Denna skillnad har ingen betydelse när en sträng bara
innehåller tecken som tar upp ett 16-bitars heltal var, och praktiskt nog är nästan alla tecken som
används vardagligen av den typen. De flesta tecken som kräver två 16-bitars heltal är sällsynta kinesiska
tecken, sällsynta symboler, tecken från utdöda språk och emoji. Vi kommer att bortse från sådana tecken
i den här kursen.

https://en.wikipedia.org/wiki/UTF-16

7.2. ÖVNING SEQUENCES 271

ut kan det hända att man måste gå igenom alla element utan att hitta det som söks.

a) Linjärsökning med inbyggda sekvenssamlingsmetoder.

val xs = ((1 to 5).reverse ++ (0 to 5)).toVector

Deklarera ovan variabel i REPL och para ihop uttrycken nedan med rätt värden.
Förklara vad som händer.

xs.indexOf(0) 1 A Vector(1, 1)

xs.indexOf(6) 2 B -1

xs.indexWhere(_ < 2) 3 C true

xs.indexWhere(_ != 5) 4 D Some(1)

xs.find(_ == 1) 5 E Vector(1, 0, 1)

xs.find(_ == 6) 6 F 5

xs.contains(0) 7 G Vector(4, 6)

xs.filter(_ == 1) 8 H 4

xs.filterNot(_ > 1) 9 I 1

xs.zipWithIndex.filter(_._1 == 1).map(_._2) 10 J None

b) Implementera linjärsökning i strängvektor med strängpredikat.

/** Returns first index where p is true. Returns -1 if not found. */
def indexOf(xs: Vector[String], p: String => Boolean): Int = ???

Ett strängpredikat p: String => Boolean är en funktion som tar en sträng som
indata och ger ett booleskt värde som resultat. Implementera indexOf med hjälp av
en while-sats. Du kan t.ex. använda en lokal boolesk variabel found för att hålla reda
på om du har hittat det som eftersöks enligt predikatet.

När element som uppfyller predikatet saknas måste man bestämma vad som ska
hända. Kravet på din implementation i detta fall ges av dokumentationskommentaren
ovan.

Din funktion ska fungera enligt nedan:

1 scala> val xs = Vector("hej", "på", "dej")
2 val xs: Vector[String] = Vector(hej, på, dej)
3

4 scala> indexOf(xs, _.contains('p'))
5 val res0: Int = 1
6

7 scala> indexOf(xs, _.contains('q'))
8 val res1: Int = -1
9

10 scala> indexOf(Vector(), _.contains('q'))
11 val res2: Int = -1
12

13 scala> indexOf(Vector("q"), _.length == 1)
14 val res3: Int = 0

Uppgift 8. Labbförberedelse: Implementera heltalsregistrering i Array. Registrering
innebär att man räknar antalet förekomster av olika värden. Varje gång ett nytt värde

272 KAPITEL 7. SEKVENSER OCH ENUMERATIONER

förekommer behöver vi räkna upp en frekvensräknare. Det behövs en räknare för varje
värde som ska registreras. Vi ska fortsätta räkna ända tills alla värden är registrerade.

På veckans laboration ska du registrera förekomsten av olika kortkombinatio-
ner i kortspelet poker. I denna övning ska du som träning inför laborationen lösa
ett liknande registreringsproblem: frekvensanalys av många tärningskast. Vid tär-
ningsregistrering behövs sex olika räknare. Man kan med fördel då använda en
sekvenssamling med plats för sex heltal. Man kan t.ex. låta plats 0 håller reda på
antalet ettor, plats 1 hålla reda på antalet tvåor, etc.

a) Implementera nedan algoritm enligt pseudokoden:

def registreraTärningskast(xs: Seq[Int]): Vector[Int] =
val result = ??? /* Array med 6 nollor */
xs.foreach{ x =>

require(x >= 1 && x <= 6, "tärningskast ska vara mellan 1 & 6")
??? /* räkna förekomsten av x */

}
result.toVector

b) Använd funktionen kasta nedan när du testar din registreringsalgoritm med en
sekvenssamling innehållande minst 1000 tärningskast.

def kasta(n: Int) = Vector.fill(n)(util.Random.nextInt(6) + 1)

Uppgift 9. Inbyggda metoder för sortering. Det finns fler olika sätt att ordna sekvenser
efter olika kriterier. För grundtyperna Int, Double, String, etc., finns inbyggda ord-
ningar som gör att sekvenssamlingsmetoden sorted fungerar utan vidare argument
(om du är nöjd med den inbyggda ordningsdefinitionen). Det finns också metoderna
sortBy och sortWith om du vill ordna en sekvens med element av någon grundtyp
efter egna ordningsdefinitioner eller om du har egna klasser i din sekvens.

val xs = Vector(1, 2, 1, 3, -1)
val ys = Vector("abra", "ka", "dabra").map(_.reverse)
val zs = Vector('a', 'A', 'b', 'c').sorted

case class Person(förnamn: String, efternamn: String)

val ps = Vector(Person("Kim", "Ung"), Person("kamrat", "Clementin"))

Deklarera ovan i REPL och para ihop uttryck nedan med rätt resultat.
Tips: Stora bokstäver sorteras före små bokstäver i den inbyggda ordningen för grund-
typerna String och Char. Dessutom har svenska tecken knasig ordning.3

Läs om sorteringsmetoderna i snabbreferensen och prova i REPL.

3Ordningen kommer ursprungligen från föråldrade teckenkodningsstandarder: https://sv.
wikipedia.org/wiki/ASCII

https://sv.wikipedia.org/wiki/ASCII
https://sv.wikipedia.org/wiki/ASCII

7.2. ÖVNING SEQUENCES 273

'a' < 'A' 1 A "ka"

"AÄÖö" < "AÅÖö" 2 B 1

xs.sorted.head 3 C -1

xs.sorted.reverse.head 4 D error: ...

ys.sorted.head 5 E false

zs.indexOf('a') 6 F 0

ps.sorted.head.förnamn.take(2) 7 G 3

ps.sortBy(_.förnamn).apply(1).förnamn.take(2) 8 H true

xs.sortWith((x1,x2) => x1 > x2).indexOf(3) 9 I "ak"

Vi ska senare i kursen implementera egna sorteringsalgoritmer som träning, men i
normala fall använder man inbyggda sorteringar som är effektiva och vältestade. Dock
är det inte ovanligt att man vill definiera egna ordningar för egna klasser, vilket vi
ska undersöka senare i kursen.

Uppgift 10. Inbyggd metod för blandning. På veckans laboration ska du implementera
en egen blandningsalgoritm och använda den för att blanda en kortlek. Det finns redan
en inbygg metod shuffle i singelobjektet Random i paketet scala.util.

a) Sök upp dokumentationen för Random.shuffle och studera funktionshuvudet.
Det står en hel del invecklade saker om CanBuildFrom etc. Detta smarta krångel, som
vi inte går närmare in på i denna kurs, är till för att metoden ska kunna returnera
lämplig typ av samling. När du ser ett sådant funktionshuvud kan du anta att metoden
fungerar fint med flera olika typer av lämpliga samlingar i Scalas standardbibliotek.

Klicka på shuffle-dokumentationen så att du ser hela texten. Vad säger doku-
mentationen om resultatet? Är det blandning på plats eller blandning till ny samling?
b) Prova upprepade blandningar av olika typer av sekvenser med olika typer av
element i REPL.

Uppgift 11. Repeterade parametrar. Det går att deklarera en funktion som tar en
argumentsekvens av godtycklig längd, ä.k. varargs. Syntaxen består av en asterisk *
efter typen. Funktion sägs då ha repeterade parametrar (eng. repeated parameters). I
funktionskroppen får man tillgång till argumenten i en sekvenssamling. Argumenten
anges godtyckligt många med komma emellan. Exempel:

/** Ger en vektor med stränglängder för godtyckligt antal strängar. */
def stringSizes(xs: String*): Vector[Int] = xs.map(_.size).toVector

a) Deklarera och använd stringSizes i REPL. Vad händer om du anropar stringSizes
med en tom argumentlista?
b) Det händer ibland att man redan har en sekvenssamling, t.ex. xs, och vill skic-
ka med varje element som argument till en varargs-funktion. Syntaxen för detta är
xs: _* vilket gör att kompilatorn omvandlar sekvenssamlingen till en argumentse-
kvens av rätt typ.

Prova denna syntax genom att ge en xs av typen Vector[String] som argument
till stringSizes. Fungerar det även om xs är en sekvens av längden 0?

274 KAPITEL 7. SEKVENSER OCH ENUMERATIONER

7.2.2 Extrauppgifter; träna mer

Uppgift 12. Registrering av booleska värden. Singla slant.

a) Implementera en funktion som registrerar många slantsinglingar enligt nedan
funktionshuvud. Indata är en sekvens av booleska värden där krona kodas som true
och klave kodas som false. För registreringen ska du använda en lokal Array[Int]. I
resultatet ska antalet utfall av krona ligga på första platsen i 2-tupeln och på andra
platsen ska antalet utfall av klave ligga.

def registerCoinFlips(xs: Seq[Boolean]): (Int, Int) = ???

b) Skapa en funktion flips(n) som ger en boolesk Vector med n stycken slantsing-
lingar och använd den när du testar din slantsinglingsregistreringsalgoritm.

Uppgift 13. Kopiering och tillägg på slutet. Skapa funktionen copyAppend som im-
plementerar nedan algoritm, efter att du rättat de två buggarna nedan:

Indata :Heltalsarray xs och heltalet x
Utdata :En ny heltalsarray som som är en kopia av xs men med x tillagt på

slutet som extra element.
1 ys ← en ny array med plats för ett element mer än i xs
2 i ← 0
3 while i ≤ xs.length do
4 ys(i)← xs(i)
5 end
6 lägg x på sista platsen i ys
7 ys

Granska din kod enligt checklistan i tidigare tipsruta. Testa din funktion för de olika
fallen: tom sekvens, sekvens med exakt ett element, sekvens med många element.

Uppgift 14. Kopiera och reversera sekvens. Implementera seqReverseCopy enligt:

Indata :Heltalsarray xs
Utdata :En ny heltalsarray med elementen i xs i omvänd ordning.

1 n ← antalet element i xs
2 ys ← en ny heltalsarray med plats för n element
3 i ← 0
4 while i < n do
5 ys(n− i−1)← xs(i)
6 i ← i+1
7 end
8 ys

a) Använd en while-sats på samma sätt som i algoritmen. Prova din implementation
i REPL och kolla så att den fungerar i olika fall.
b) Gör en ny implementation som i stället använder en for-sats som börjar bakifrån.
Kör din implementation i REPL och kolla så att den fungerar i olika fall.

Uppgift 15. Kopiera alla utom ett. Implementera kopiering av en array utom ett
element på en viss angiven plats. Skriv först pseudokod innan du implementerar:

def removeCopy(xs: Array[Int], pos: Int): Array[Int]

7.2. ÖVNING SEQUENCES 275

Uppgift 16. Borttagning på plats i array. Ibland vill man ta bort ett element på en
viss position i en array utan att kopiera alla element till en ny samling. Ett sätt att
göra detta är att flytta alla efterföljande element ett steg mot lägre index och fylla ut
sista positionen med ett utfyllnadsvärde, t.ex. 0. Skriv först pseudokod för en sådan
algoritm. Implementera sedan algoritmen i en funktion med denna signatur:

def removeAndPad(xs: Array[Int], pos: Int, pad: Int = 0): Unit

Uppgift 17. Kopiering och insättning.

a) Implementera en funktion med detta huvud enligt efterföljande algoritm:

def insertCopy(xs: Array[Int], x: Int, pos: Int): Array[Int]

Indata :En sekvens xs av typen Array[Int] och heltalen x och pos
Utdata :En ny sekvens av typen Array[Int] som är en kopia av xs men där x

är infogat på plats pos
1 n ← antalet element xs
2 ys ← en ny Array[Int] med plats för n+1 element
3 for i ← 0 to pos−1 do
4 ys(i)← xs(i)
5 end
6 ys(pos)← x
7 for i ← pos to n−1 do
8 ys(i+1)← xs(i)
9 end

10 ys

b) Vad måste pos vara för att det ska fungera med en tom array som argument?
c) Vad händer om din funktion anropas med ett negativt argument för pos?
d) Vad händer om din funktion anropas med pos lika med xs.size?
e) Vad händer om din funktion anropas med pos större än xs.size?

Uppgift 18. Insättning på plats i array. Ett sätt att implementera insättning i en
array, utan att kopiera alla element till en ny array med en plats extra, är att alla
elementen efter pos flyttas fram ett steg till högre index, så att plats bereds för det
nya elementet. Med denna lösning får det sista elementet ”försvinna” genom brutal
överskrivning eftersom arrayer inte kan ändra storlek.

Skriv först en sådan algoritm i pseudokod och implementera den sedan i en
procedur med detta huvud:

def insertDropLast(xs: Array[Int], x: Int, pos: Int): Unit

Uppgift 19. Fler inbyggda metoder för linjärsökning.

a) Läs i snabbreferensen om metoderna lastIndexOf, indexOfSlice, segmentLength
och maxBy och beskriv vad var och en kan användas till.
b) Testa metoderna i REPL.

276 KAPITEL 7. SEKVENSER OCH ENUMERATIONER

7.2.3 Fördjupningsuppgifter; utmaningar

Uppgift 20. Fixa svensk sorteringsordning av ÄÅÖ. Svenska bokstäver kommer i, för
svenskar, konstig ordning om man inte vidtar speciella åtgärder. Med hjälp av klassen
java.text.Collator kan man få en Comparator för strängar som följer lokala regler
för en massa språk på planeten jorden.

a) Verifiera att sorteringsordningen blir rätt i REPL enligt nedan.

1 scala> val fel = Vector("ö","å","ä","z").sorted
2 scala> val svColl = java.text.Collator.getInstance(new java.util.Locale("sv"))
3 scala> val svOrd = Ordering.comparatorToOrdering(svColl)
4 scala> val rätt = Vector("ö","å","ä","z").sorted(svOrd)

b) Använd metoden ovan för att skriva ett program som skriver ut raderna i en textfil
i korrekt svensk sorteringsordning. Programmet ska kunna köras med kommandot:
scala sorted -sv textfil.txt

c) Läs mer här:
stackoverflow.com/questions/24860138/sort-list-of-string-with-localization-in-scala

Uppgift 21. Fibonacci-sekvens med ListBuffer. Samlingen ListBuffer är en föränd-
ringsbar sekvens som är snabb och minnessnål vid tillägg i början (eng. prepend).
Undersök vad som händer här:

1 scala> val xs = scala.collection.mutable.ListBuffer.empty[Int]
2 scala> xs.prependAll(Vector(1, 1))
3 scala> while xs.head < 100 do {xs.prepend(xs.take(2).sum); println(xs)}
4 scala> xs.reverse.toList

Talen i sekvensen som produceras på rad 4 ovan kallas Fibonacci-tal 4 och blir snabbt
mycket stora.

a) Definera och testa följande funktion. Den ska internt använda förändringsbara
ListBuffer men returnera en sekvens av oföränderliga List.

/** Ger en lista med tal ur Fibonacci-sekvensen 1, 1, 2, 3, 5, 8 ...

* där det största talet är mindre än max. */
def fib(max: Long): List[Long] = ???

b) Hur lång ska en Fibonacci-sekvens vara för att det sista elementet ska vara så
nära Int.MaxValue som möjligt?

c) Implementera fibBig som använder BigInt i stället för Long och låt din dator få
använda sitt stora minne medan planeten värms upp en aning.

Uppgift 22. Omvända sekvens på plats. Implementera nedan algoritm i funktionen

4sv.wikipedia.org/wiki/Fibonaccital

http://stackoverflow.com/questions/24860138/sort-list-of-string-with-localization-in-scala
https://sv.wikipedia.org/wiki/Fibonaccital

7.2. ÖVNING SEQUENCES 277

reverseChars och testa så att den fungerar för olika fall i REPL.

Indata :En array xs med tecken
Utdata : xs uppdaterat på plats, med tecknen i omvänd ordning

1 n ← antalet element i xs
2 for i ← 0 to n

2 −1 do
3 temp ← xs(i)
4 xs(i)← xs(n− i−1)
5 xs(n− i−1)← temp
6 end

Uppgift 23. Palindrompredikat. En palindrom5 är ett ord som förblir oförändrat om
man läser det baklänges. Exempel på palindromer: kajak, dallassallad.

Ett sätt att implementera ett palindrompredikat visas nedan:

def isPalindrome(s: String): Boolean = s == s.reverse

a) Implementationen ovan kan innebära att alla tecken i strängen gås igenom två
gånger och behöver minnesutrymme för dubbla antalet tecken. Varför?

b) Skapa ett palindromtest som går igenom elementen max en gång och som inte
behöver extra minnesutrymme för en kopia av strängen. Lösningsidé: Jämför parvis
första och sista, näst första och näst sista, etc.

Uppgift 24. Fler användbara sekvenssamlingsmetoder. Sök på webben och läs om
dessa metoder och testa dem i REPL:

• xs.tabulate(n)(f)
• xs.forall(p)
• xs.exists(p)
• xs.count(p)
• xs.zipWithIndex

Uppgift 25. Arrays don’t behave, but ArraySeqs do! Även om Array är primitiv så
finns smart krångel ”under huven” i Scalas samlingsbibliotek för att arrayer ska bete
sig nästan som ”riktiga” samlingar. Därmed behöver man inte ägna sig åt olika typer
av specialhantering, t.ex. s.k. boxning, wrapperklasser och typomvandlingar (eng. type
casting), vilket man ofta behöver kämpa med som Java-programmerare.

Dock finns fortfarande begränsningar och anomalier vad gäller till exempel lik-
hetstest. Om du vill att en array ska bete sig som andra samlingar kan du enkelt
”wrappa” den med metoden toSeq som vid anrop på arrayer ger en ArraySeq. Denna
beter sig som en helt vanlig oföränderlig sekvenssamling utan att offra snabbheten
hos en primitiv array.

val as = Array(1,2,3)
val xs = as.toSeq

a) Hur fungerar likhetstest mellan två ArraySeqs? Vad har xs ovan för typ? Går det
att uppdatera en wrappad array?

5https://sv.wikipedia.org/wiki/Palindrom

https://sv.wikipedia.org/wiki/Palindrom

278 KAPITEL 7. SEKVENSER OCH ENUMERATIONER

b) Vilken typ av argumentsekvens får du tillgång till i kroppen för en funktion med
repeterande parametrar?
c) ?Läs här: http://docs.scala-lang.org/overviews/collections/arrays.html
och ge ett exempel på vad mer man inte kan göra med en array, förutom innehållslik-
hetstest.

Uppgift 26. ?List eller Vector? Jämför tidskomplexitet mellan List och Vector vid
hantering i början och i slutet, baserat på efterföljande REPL-session i din egen
körmiljö. Körningen nedan gjordes på en AMD Ryzen 7 5800X (16) @ 3.800GHz under
Arch Linux 5.12.8-arch1-1 med Scala 3.0.1 och openjdk 11.0.11, men du ska använda
det du har på din dator.

Hur snabbt går nedan på din dator? När är List snabbast och när är Vector
snabbast? Hur stor är skillnaderna i prestanda? 6

> head -5 /proc/cpuinfo
processor : 0
vendor_id : AuthenticAMD
cpu family : 25
model : 33
model name : AMD Ryzen 7 5800X 8-Core Processor

scala> def time(n: Int)(block: => Unit): Double =
| def now = System.nanoTime
| var timestamp = now
| var sum = 0L
| var i = 0
| while i < n do
| block
| sum = sum + (now - timestamp)
| timestamp = now
| i = i + 1
| val average = sum.toDouble / n
| println("Average time: " + average + " ns")
| average

// Exiting paste mode, now interpreting.

time: (n: Int)(block: => Unit)Double

scala> val n = 100000
scala> val l = List.fill(n)(math.random())
scala> val v = Vector.fill(n)(math.random())

scala> (for i <- 1 to 20 yield time(n){l.take(10)}).min
average time: 97.66952 ns
average time: 91.90033 ns
average time: 79.88311 ns
average time: 69.5963 ns
average time: 69.69892 ns
average time: 69.8033 ns
average time: 69.7705 ns

6Denna typ av mätningar lär du dig mer om i LTH-kursen ”Utvärdering av programvarusystem”,
som ges i slutet av årskurs 1 för Datateknikstudenter.

http://docs.scala-lang.org/overviews/collections/arrays.html

7.2. ÖVNING SEQUENCES 279

average time: 69.68491 ns
average time: 69.54222 ns
average time: 69.66051 ns
average time: 69.73661 ns
average time: 69.54112 ns
average time: 69.69141 ns
average time: 69.46341 ns
average time: 69.4098 ns
average time: 61.34162 ns
average time: 41.1333 ns
average time: 40.97051 ns
average time: 40.9075 ns
average time: 41.12321 ns
val res0: Double = 40.9075

scala> (for i <- 1 to 20 yield time(n){v.take(10)}).min
average time: 84.56978 ns
average time: 75.20167 ns
average time: 57.16529 ns
average time: 34.84469 ns
average time: 34.38478 ns
average time: 34.77709 ns
average time: 34.77179 ns
average time: 35.0506 ns
average time: 34.7967 ns
average time: 35.04258 ns
average time: 34.82559 ns
average time: 36.3673 ns
average time: 34.91029 ns
average time: 34.87239 ns
average time: 34.51958 ns
average time: 34.83949 ns
average time: 34.56169 ns
average time: 34.80719 ns
average time: 34.84459 ns
average time: 34.89468 ns
val res1: Double = 34.38478

scala> (for i <- 1 to 20 yield time(1000){l.takeRight(10)}).min
average time: 131365.106 ns
average time: 118632.787 ns
average time: 118440.066 ns
average time: 118687.567 ns
average time: 118428.487 ns
average time: 118871.686 ns
average time: 118964.797 ns
average time: 119030.236 ns
average time: 119262.534 ns
average time: 119228.344 ns
average time: 119226.494 ns
average time: 119310.933 ns
average time: 119352.854 ns
average time: 119121.913 ns
average time: 119133.664 ns
average time: 119015.193 ns
average time: 119276.674 ns
average time: 119224.882 ns

280 KAPITEL 7. SEKVENSER OCH ENUMERATIONER

average time: 119301.771 ns
average time: 119444.401 ns
val res2: Double = 118428.487

scala> (for i <- 1 to 20 yield time(1000){v.takeRight(10)}).min
average time: 805.989 ns
average time: 365.219 ns
average time: 225.49 ns
average time: 125.92 ns
average time: 124.98 ns
average time: 130.689 ns
average time: 139.86 ns
average time: 128.29 ns
average time: 132.59 ns
average time: 125.729 ns
average time: 125.46 ns
average time: 130.59 ns
average time: 122.03 ns
average time: 121.9 ns
average time: 119.69 ns
average time: 120.48 ns
average time: 125.239 ns
average time: 126.09 ns
average time: 125.92 ns
average time: 125.91 ns
val res3: Double = 119.69

Varför går olika rundor i for-loopen olika snabbt även om varje runda gör samma sak?

Uppgift 27. ?Tidskomplexitet för olika samlingar i Scalas standardbibliotek.
Studera skillnader i tidskomplexitet mellan olika samlingar här:
docs.scala-lang.org/overviews/collections/performance-characteristics.html
Läs även kritiken av förenklingar i ovan beskrivning här:
www.lihaoyi.com/post/ScalaVectoroperationsarentEffectivelyConstanttime.html
Läs denna grundliga empirisk genomgång av prestanda i Scalas samlingsbibliotek:
www.lihaoyi.com/post/BenchmarkingScalaCollections.html
Du får lära dig mer om hur man resonerar kring komplexitet i kommande kurser.

http://docs.scala-lang.org/overviews/collections/performance-characteristics.html
http://www.lihaoyi.com/post/ScalaVectoroperationsarentEffectivelyConstanttime.html
http://www.lihaoyi.com/post/BenchmarkingScalaCollections.html

7.3. LABORATION: SHUFFLE 281

7.3 Laboration: shuffle

Mål

� Kunna skapa och använda sekvenssamlingar.
� Kunna implementera sekvensalgoritmen SHUFFLE som modifierar innehållet i

en array på plats.
� Kunna registrera antalet förekomster av olika värden i en sekvens.

Förberedelser

� Gör övning sequences i avsnitt 7.2
� Läs igenom hela laborationen och säkerställ att du förstår hur SHUFFLE-

algoritmen nedan fungerar.
� Hämta given kod via kursen github-plats.

7.3.1 Bakgrund

Denna uppgift handlar om kortblandning. Att blanda kort så att varje möjlig permu-
tation (ordning som korten ligger i) är lika sannolik är icke-trivialt; en osystematisk
blandning leder till en skev fördelning.

Givet en bra slumpgenerator går det att blanda en kortlek genom att lägga alla
kort i en hög och sedan ta ett slumpvist kort från högen och lägga det överst i leken,
tills alla kort ligger i leken. Fisher-Yates-algoritmen7 (även kallad Knuth-shuffle),
fungerar på det sättet. Här benämner vi denna algoritm SHUFFLE. Den återfinns i
pseudokod nedan. Notera speciellt att den övre gränsen för r inkluderar i.

Indata :Array xs med n st värden som ska blandas ”på plats”
Utdata : xs uppdaterad på plats med sina värden omflyttade i slumpmässig

ordning
1 for i ← (n−1) to 0 do
2 dra slumptal r så att 0<= r <= i
3 byt plats på xs(i) och xs(r)
4 end

En kortlek (eng. deck) har 52 kort, vart och ett med olika valör (eng. rank) och färg
(eng. suit, på svenska även svit). Kortspelet poker handlar om att dra kort och få upp
vissa kombinationer av kort, s.k. ”händer”8. Dessa är ordnade från bättre till sämre;
den spelare som får bäst hand vinner. Det är därför intressant att veta med vilken
sannolikhet en viss hand dyker upp vid dragning från en blandad kortlek.

De vanliga pokerhänderna är, i fallande värde, färgstege (straight flush), fyrtal
(four of a kind), kåk (full house), färg (flush), stege (straight), triss (three of a kind),
tvåpar (two pair) och par (pair). Dessa finns illustrerade i avsnitt 7.3.5. Det finns
ytterligare en hand, s.k. royal (straight) flush som betecknar en färgstege med ess som
högsta kort, men dess sannolikhet är för låg för att man vid simulering kan förväntas
påträffa den inom rimlig tid.

Under laborationen ska du börja med att göra klar den ofärdiga klassen Deck som
visas i avsnitt 7.3.2, och återfinns i workspace på GitHub.

Labbinstruktionerna i avsnitt 7.3.3 ger tips om hur du ska ersätta ??? i givna
kodskelett med dina lösningar. Med hjälp av klasserna Test och Test kan du testa så

7https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle#The_modern_algorithm
8https://sv.wikipedia.org/wiki/Pokerhand

https://github.com/lunduniversity/introprog/tree/master/workspace/
https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle#The_modern_algorithm
https://sv.wikipedia.org/wiki/Pokerhand

282 KAPITEL 7. SEKVENSER OCH ENUMERATIONER

1 package poker
2
3 case class Card(rank: Card.Rank, suit: Card.Suit):
4 lazy val show = s"${rank.toString.head}${Card.suitChars(suit.ordinal)}"
5
6 object Card:
7 enum Rank:
8 case Ace, `2`, `3`, `4`, `5`, `6`, `7`, `8`, `9`, Ten, Jack, Queen, King
9

10 enum Suit:
11 case Spades, Hearts, Clubs, Diamonds
12
13 val suitChars = "♠♥♣♦"
14 end Card

Figur 7.2: Den färdigimplementerade, oföränderliga case-klassen Card.

att dina implementationer fungerar.

7.3.2 Given kod

När dina implementationer av metoderna full och shuffle fungerar ska du använda
Deck i singelobjektet PokerProbability för att ta reda på sannolikheter för att olika
pokerhänder uppkommer när man delar ut 5 kort ur en bra blandad kortlek.

Till din hjälp har du nedan kodfiler, där några har ofärdig kod som du ska färdig-
ställa. All kod ligger i ett paket med namnet poker.9

• Card.scala i fig. 7.2 på sidan 282 innehåller den färdigimplementerade case-
klassen Card som representerar ett kort och har en koncis toString med valör
(eng. rank) och svit (färg) (eng. suit).

• Deck.scala i fig. 7.3 på sidan 283 innehåller den förändringsbara klassen Deck,
där du ska implementera kortblandning i metoden shuffle. Kompanjonsobjek-
tet har metoder för att skapa kortlekar. Du ska implementera metoden full
som skapar en fullständig kortlek med de 52 korten ordnade efter valör och färg.

• Hand.scala i fig. 7.4 på sidan 284 innehåller en case-klass Hand som repre-
senterar en pokerhand och har metoder för att avgöra vilken hand det är. I
kompanjonsobjektet finns fabriksmetoder som kan skapa en ny hand från en-
skilda kort eller genom att dra kort ur en kortlek. Du ska implementera tally
som registrerar antalet kort av en viss valör i en array indexerad med det
nollbaserade ordinal-heltalet för resp. korts rank.

• PokerProbability.scala i fig. 7.5 på sidan 285 har en main-metod som räknar
ut pokersannolikheter, samt hjälpmetoden register som du ska implementera.

• Singelobjektet Test.scala som också finns i veckans givna kod ska du använda
för att testa din implementation av shuffle med en kortlek som endast inne-
håller tre kort. Upprepade blandningar görs och förekomsten av varje möjlig
permutation registreras.

9Du kan bläddra bland klasserna här:
https://github.com/lunduniversity/introprog/tree/master/workspace/w07_shuffle/

https://github.com/lunduniversity/introprog/tree/master/workspace/w07_shuffle/

7.3. LABORATION: SHUFFLE 283

1 package poker
2
3 import scala.collection.immutable.ArraySeq
4
5 class Deck private (val initCards: ArraySeq[Card]):
6 private var cards: Array[Card] = initCards.toArray
7
8 def reset(): Unit = cards = initCards.toArray
9

10 def apply(i: Int): Card = cards(i)
11
12 def toSeq: ArraySeq[Card] = cards.to(ArraySeq)
13
14 def show: String = cards.map(_.show).mkString(" ")
15
16 def peek(n: Int): ArraySeq[Card] =
17 cards.take(n).to(ArraySeq)
18
19 def remove(n: Int): ArraySeq[Card] =
20 val init = peek(n)
21 cards = cards.drop(n)
22 init
23 end remove
24
25 def prepend(moreCards: Card*): Unit =
26 cards = (moreCards ++ cards).toArray
27
28 /** Swaps cards at position a and b. */
29 def swap(a: Int, b: Int): Unit = ???
30
31 /** Randomly reorders the cards in this deck. */
32 def shuffle(): Unit = ???
33
34 object Deck:
35 def apply(cards: Seq[Card]): Deck = new Deck(cards.to(ArraySeq))
36
37 /** Creates a new full Deck with 52 cards in rank and suit order. */
38 def full(): Deck = ???

Figur 7.3: Den ofärdiga klassen Deck med förändringsbar kortlek.

284 KAPITEL 7. SEKVENSER OCH ENUMERATIONER

1 package poker
2
3 import scala.collection.immutable.ArraySeq
4
5 case class Hand(cards: ArraySeq[Card]):
6 import Hand._

7
8 /**
9 * Yields a sequence of length 13, with positions 0-12 containing the

10 * number of cards of that card's rank's ordinal number (zero based).
11 */
12 lazy val tally: ArraySeq[Int] = ???
13
14 lazy val ranksSorted: ArraySeq[Int] = cards.map(_.rank.ordinal).sorted
15
16 lazy val isFlush: Boolean = cards.length > 0 && cards.forall(_.suit == cards(0).suit)
17
18 lazy val isStraight: Boolean =
19 def isInSeq(xs: ArraySeq[Int]): Boolean =
20 xs.length > 1 && (0 to xs.length - 2).forall(i => xs(i) == xs(i + 1) - 1)
21
22 isInSeq(ranksSorted) || // special case with ace interpreted as 13:
23 (ranksSorted(0) == 0) && isInSeq(ranksSorted.drop(1) :+ 13)
24
25 lazy val isStraightFlush: Boolean = isStraight && isFlush
26 lazy val isRoyalFlush: Boolean = ???
27 lazy val isFour: Boolean = tally.contains(4)
28 lazy val isFullHouse: Boolean = tally.contains(3) && tally.contains(2)
29 lazy val isThrees: Boolean = tally.contains(3)
30 lazy val isTwoPair: Boolean = tally.count(_ == 2) == 2
31 lazy val isOnePair: Boolean = tally.contains(2)
32
33 lazy val category: Category =
34 if /* isRoyalFlush then Category.RoyalFlush
35 else if */ isStraightFlush then Category.StraightFlush
36 else if isFour then Category.Fours
37 else if isFullHouse then Category.FullHouse
38 else if isFlush then Category.Flush
39 else if isStraight then Category.Straight
40 else if isThrees then Category.Threes
41 else if isTwoPair then Category.TwoPair
42 else if isOnePair then Category.OnePair
43 else Category.HighCard
44
45 object Hand:
46 def apply(cardSeq: Card*): Hand = new Hand(cardSeq.to(ArraySeq))
47 def from(deck: Deck): Hand = Hand(deck.peek(5))
48 def removeFrom(deck: Deck): Hand = Hand(deck.remove(5))
49
50 enum Category:
51 case
52 RoyalFlush, StraightFlush, Fours, FullHouse, Flush,
53 Straight, Threes, TwoPair, OnePair, HighCard
54 end Hand

Figur 7.4: Den ofärdiga, oföränderliga klassen Hand som representerar en pokerhand.

7.3. LABORATION: SHUFFLE 285

1 package poker
2
3 import scala.collection.immutable.ArraySeq
4
5 object PokerProbability:
6
7 /**
8 * For a given number of iterations, shuffles a deck, draws a hand and
9 * returns a sequence with the frequency of each hand category.

10 * Prints a dot every dotStep iteration
11 */
12 def register(n: Long, deck: Deck, dotStep: Long = 1e6.toLong): ArraySeq[Int] =
13 ???
14 end register
15
16 @main def simulate: Unit =
17 val defaultIter = 5
18 val in = scala.io.StdIn.readLine(s"number of million iterations ($defaultIter): ")
19 val n = (in.toIntOption.getOrElse(defaultIter) * 1e6).toLong
20 val deck = Deck.full()
21 val t0 = System.currentTimeMillis()
22 val frequencies = register(n, deck)
23 for c <- Hand.Category.values do
24 val name = c.toString
25 val percentages = frequencies(c.ordinal).toDouble / n * 100
26 println(f"$name%16s $percentages%10.6f%%")
27 end for
28 val secs = (System.currentTimeMillis() - t0)/1000.0
29 println:
30 f"\n*** Total execution time: $secs%3.2f seconds"

Figur 7.5: Det ofärdiga singelobjektet PokerProbability som tar reda på sannolik-
heter för olika pokerhänder.

286 KAPITEL 7. SEKVENSER OCH ENUMERATIONER

7.3.3 Obligatoriska uppgifter

Uppgift 1. Implementera algoritmen SHUFFLE.

a) Skapa din egen implementation av metoden shuffle i klassen Deck. Följ den
givna algoritmen i stycke 7.3.1 noga. Du kan använda cards.length för att få fram
längden på kortleken, men du kan gärna istället använda cards.indices.reverse.
Implementera och använd metoden swap.

b) Kör testShuffle i Test som kontrollerar att blandningen är jämnt fördelad
genom att blanda en kortlek med tre kort och räkna hur ofta varje möjlig permutation
dyker upp. Du bör få en utskrift med sex (3!) procentsatser som ska vara nästan lika.

Uppgift 2. Skapa en fullständig, ordnad kortlek.

a) Implementera metoden full som skapar en 52-korts standardlek ordnad efter
färg och valör. Använd Range-värdena i kompanjonsobjektet Card.

b) Kör testCreate i Test och kontrollera så att du får kort av alla fyra färger, samt
både ess och kungar.

Uppgift 3. Gör färdigt och testa Hand.

a) Implementera tally som ska ge en indexerbar sekvens med 13 platser där varje
index representerar antalet av respektive valör. Ess räknas som lägst.

b) Testa klassen Hand med hjälp av Test.

Uppgift 4. Ta fram sannolikheterna för olika pokerhänder.

a) Implementera metoden register i PokerProbability. Använd from och category
i Hand för att skapa och kategorisera en hand från en kortlek. Lagra frekvenserna i en
lokal array som du, när resultatet är färdigt, gör om till en sekvens med to(ArraySeq).

b) Kör huvudprogrammet i PokerProbability, förslagsvis med femtio miljoner ite-
rationer, beroende på ditt tålamod och din dators snabbhet. Du bör få ungefär dessa
sannolikheter10:

hand sannolikhet

Straight flush (exkl. Royal flush) 0.00139%

Fyrtal 0.02401%

Kåk 0.1441%

Färg (exkl. Royal och Straight flush) 0.1965%

Stege 0.3925%

Uppgift 5. Simulera även sannolikheten för Royal flush (en färgstege med ess som
högsta kort). Det krävs i storleksordningen 108 iterationer för en noggrannhet på 2
värdesiffror. Detta kan ta många minuter på en någorlunda snabb dator, så det kan

10https://en.wikipedia.org/wiki/Poker_probability

https://en.wikipedia.org/wiki/Poker_probability

7.3. LABORATION: SHUFFLE 287

vara läge före en paus under simuleringen...

Uppgift 6. Diskutera med handledare vid redovisningen vilka fördelarna med att
använda specifika uppräknade värden med enum i stället för allmänna heltal och
strängar.

Uppgift 7. Diskutera med handledare vid redovisningen fördelar och nackdelar med
att använda lazy val i stället för val eller def i en oföränderlig klass.

7.3.4 Frivilliga extrauppgifter

Uppgift 8. Implementera ett interaktivt kortspel, t.ex. någon enkel pokervariant.
Börja med något mycket enkelt, till exempel högst-kort-vinner, och bygg vidare med
sådant som du tycker verkar roligt.

Du kan t.ex. skapa en metod def compareTo(other: Hand): Comparison i case-
klassen Hand som ger Comparison.Worse om other är sämre, Comparison.Equal
om händerna är lika bra, och Comparison.Better om other är bättre. Du kan steg
för steg göra så att det går att jämföra fler och fler händer enligt de specialregler
som gäller för när olika händer anses bättre eller lika. Läs om reglerna här: https:
//en.wikipedia.org/wiki/List_of_poker_hands

7.3.5 Bilder med exempel på olika pokerhänder

Figurerna 7.6 – 7.14 visar bilder på olika korthänder i poker.

Figur 7.6: Par (eng. pair): två kort har sam-
ma valör.

Figur 7.7: Två par (eng. two pair): handen
har två olika par.

Figur 7.8: Triss (eng. three of a kind): tre
kort har samma valör.

Figur 7.9: Stege (eng. straight): kortens va-
lörer bildar en följd, ess kan vara antingen
1 eller 14.

Figur 7.10: Färg (eng. flush): alla kort har
samma färg.

https://en.wikipedia.org/wiki/List_of_poker_hands
https://en.wikipedia.org/wiki/List_of_poker_hands

288 KAPITEL 7. SEKVENSER OCH ENUMERATIONER

Figur 7.11: Kåk (eng. full house): både
triss och par.

Figur 7.12: Fyrtal (eng. four of a kind): fy-
ra kort har samma valör.

Figur 7.13: Färgstege (eng. straight flush):
både stege och färg. Specialfall: Om färgste-
gens högsta kort är ett ess kallas den royal
flush eller royal straight flush.

Figur 7.14: Högt kort (eng. high card): ing-
et mönster finns.

Del III

Lösningar

289

Kapitel L

Lösningar till övningarna

291

292 KAPITEL L. LÖSNINGAR TILL ÖVNINGARNA

L.1 Lösning expressions

L.1.1 Grunduppgifter; förberedelse inför laboration

Lösn. uppg. 1. Para ihop begrepp med beskrivning.

litteral 1 D anger ett specifikt datavärde
sträng 2 G en sekvens av tecken
sats 3 F en kodrad som gör något; kan särskiljas med semikolon
uttryck 4 H kombinerar värden och funktioner till ett nytt värde
funktion 5 K vid anrop beräknas ett returvärde
procedur 6 J vid anrop sker (sido)effekt; returvärdet är tomt
exekveringsfel 7 N kan inträffa medan programmet kör
kompileringsfel 8 M kan inträffa innan exekveringen startat
abstrahera 9 A att införa nya begrepp som förenklar kodningen
kompilera 10 C att översätta kod till exekverbar form
typ 11 I beskriver vad data kan användas till
for-sats 12 O bra då antalet repetitioner är bestämt i förväg
while-sats 13 P bra då antalet repetitioner ej är bestämt i förväg
tilldelning 14 L för att ändra en variabels värde
flyttal 15 E decimaltal med begränsad noggrannhet
boolesk 16 B antingen sann eller falsk

Lösn. uppg. 2. Utskrift i Scala REPL.

a) Till exempel:

scala> println("hejsan svejsan")

b) Om högerparentes fattas får man fortsätta skriva på nästa rad. Detta indikeras
med vertikalstreck i början av varje ny rad:

scala> println("hejsan svejsan"
| + "!"
|)

hejsan svejsan!

Lösn. uppg. 3. Konkatenering av strängar.

a)

scala> "gurk" + "burk"
res1: String = gurkburk

värde: "gurkburk", typ: String
b)

scala> res1 * 42
res2: String = gurkatomat

L.1. LÖSNING EXPRESSIONS 293

Lösn. uppg. 4. När upptäcks felet?

a) Typ: String, värde: "hejhejhej"
b) Körtidsfel:

scala> "hej" * Int.MaxValue
java.lang.OutOfMemoryError: Java heap space

c) Kompileringsfel: (indikeras av texten <console> ... error:)

scala> "hej" * true
<console>:12: error: type mismatch;
found : Boolean(true)
required: Int

"hej" * true

Ett typfel innebär att kompilatorn inte kan få typerna att överensstämma i t.ex. ett
funktionsanrop. I Scala får vi reda på typfel redan vid kompilering medan i andra
språk (t.ex. Javascript) upptäcks sådana fel under exekveringen, i värsta fall genom
svårhittade buggar som kanske först märks långt senare.

Lösn. uppg. 5. Litteraler och typer.

a)

1 1 E Int

1L 2 G Long

1.0 3 J Double

1D 4 F Double

1F 5 H Float

'1' 6 I Char

"1" 7 A String

true 8 C Boolean

false 9 B Boolean

() 10 D Unit

b) Värdet går över gränsen för vad som får plats i ett 32 bitars heltal och ”börjar om”
på det minsta möjliga heltalet Int.MinValue eftersom det är så binär aritmetik med
begränsat antal bitar fungerar i CPU:n.

1 scala> Int.MaxValue + 1
2 res3: Int = -2147483648
3

4 scala> Int.MinValue
5 res4: Int = -2147483648

c) Båda är heltal men Long kan representera större tal än Int.
d) Båda är flyttal men Double har dubbel precision och kan representera större tal
med fler decimaler.

Lösn. uppg. 6. Matematiska funktioner. Använda dokumentation.

a) Beräkning av 264 −1 med math.pow enligt nedan ger ungefär 1.8 ·1019

294 KAPITEL L. LÖSNINGAR TILL ÖVNINGARNA

1 scala> math.pow(2, 64) - 1
2 res0: Double = 1.8446744073709552E19

b) Ja, returtyp-annoteringen : Double kan utelämnas.

• Varför kan returtyp utelämnas?
Eftersom kompilatorns typhärledning kan härleda returtypen.

• Varför kan man vilja utelämna den?
Det blir kortare att skriva utan.

• Anledningar att ange returtyp:

– Med explicit returtyp får du hjälp av kompilatorn att redan under kompile-
ringen kontrollera att uttrycket till höger om likhetstecknet har den typ
som förväntas.

– Genom att du anger returtypen explicit får de som enbart läser metodhu-
vudet (och inte implementationen) tydligt se vad som returneras.

c) Ca 500 km.

1 scala> omkrets(12750 / 2) / 80
2 res0: Double = 500.6913291658733

Lösn. uppg. 7. Variabler och tilldelning. Förändringsbar och oföränderlig variabel.

a)

Efter rad 1: a: Int 13

Efter rad 2: a: Int 13 b: Int 14

Efter rad 3: a: Int 13 b: Int 14 c: Double 54.0

Efter rad 4: a: Int 13 b: Int 14 c: Double 54.0

Efter rad 5: a: Int 0 b: Int 14 c: Double 54.0

Efter rad 6: a: Int 0 b: Int 14 c: Double 55.0

L.1. LÖSNING EXPRESSIONS 295

b) Oföränderliga variabler deklareras med nyckelordet val. Det går inte att tilldela
en oföränderlig variabel ett nytt värde; vid försök blir det kompileringsfel som ly-
der error: reassignment to val. Kompileringsfel känns igen med hjälp av texten
error:, så som visas nedan:

scala> b = 0
<console>:12: error: reassignment to val

b = 0
^

Lösn. uppg. 8. Slumptal med math.random().

a) Ur dokumentationen:

/** Returns a Double value with a positive sign,

* greater than or equal to 0.0 and less than 1.0.

*/
def random(): Double

Dokumentationskommentarer, som börjar med /** och slutar med */, ger oss en
beskrivning av hur funktionen fungerar. Efter dokumentationskommentaren kommer
funktionshuvudet, som här berättar att funktionen heter random och alltid kommer
att returnera en Double. (Verktyget scaladoc kan med hjälp av dokumentationskom-
mentarerna automatiskt generera webbsajter med speciella dokumentationssidor och
sökfunktioner.)
b)

1 scala> def roll: Int = (math.random() * 6 + 1).toInt
2

3 scala> roll
4 res0: Int = 4
5

6 scala> roll
7 res1: Int = 1

Lösn. uppg. 9. Repetition med for, foreach och while.

a)

for i <- 1 to 100 do print(s"$roll, ")

b)

(1 to 100).foreach(i => print(s"$roll, "))

c)

var i = 1
while i <= 100 do { print(s"$roll, "); i = i + 1 }

var i = 1
while i <= 100 do

print(s"$roll, ")
i += 1

296 KAPITEL L. LÖSNINGAR TILL ÖVNINGARNA

Lösn. uppg. 10. Alternativ med if-sats och if-uttryck.

a)

for i <- 1 to 100 do
if roll == 6 then print("GRATTIS! ") else print(":(")

eller

for (i <- 1 to 100) if (roll == 6) print("GRATTIS! ") else print(":(")

b)

var i = 1
var n = 0
while i <= 100 do

if roll == 6 then n = n + 1
i = i + 1

println("Antalet sexor: " + n)

c)

def isAdult(age: Int) = age >= 18

Lösn. uppg. 11. Sekvens, sats och block.

a) Satserna skapar denna utskrift:

san!hej
san!hej
san!hej
san!hej

b)

scala> def p = { print("hej"); print("san"); println("!")}
scala> p;p;p;p

c)

• Klammerparenteser används för att gruppera flera satser. Klammerparenteser
behövs om man vill definiera en funktion som består av mer än en sats. Sedan
scala 3 kan man istället använda indentering för att definera en funktion med
flera rader och satser.

• Semikolon särskiljer flera satser. Semikolon behövs om man vill skriva många
satser på samma rad.

Lösn. uppg. 12. Heltalsdivision.

L.1. LÖSNING EXPRESSIONS 297

4 / 42 1 F 0: Int

42.0 / 2 2 C 21.0: Double

42 / 4 3 B 10: Int

42 % 4 4 G 2: Int

4 % 42 5 A 4: Int

40 % 4 == 0 6 D true : Boolean

42 % 4 == 0 7 E false: Boolean

Lösn. uppg. 13. Booleska värden.

a) true

b) false

c) true

d) true

e) false

f) true

g) true

h) true

i) Undantag kastas: java.lang.ArithmeticException: / by zero

j) false

Lösn. uppg. 14. Booleska variabler.

2: Ingenting skrivs ut.

4: akta dig!!!

Lösn. uppg. 15. Turtle graphics med Kojo.

a) Genom att börja din Kojo-program med sudda så startar du exekveringen i samma
utgångsläge: en tom rityta (eng. canvas) där paddan pekar uppåt, pennan är nere
och pennans färg är röd. Då blir det lättare att resonera om vad programmet gör
från början till slut, jämfört med om exekveringen beror på resultatet av tidigare
exekveringar.
b)

sudda

fram; vänster
fram; vänster
fram; vänster
fram; vänster

c)

sudda

fram; vänster
fram; höger

298 KAPITEL L. LÖSNINGAR TILL ÖVNINGARNA

fram; vänster
fram; höger

fram; vänster
fram; höger

fram; vänster

L.1. LÖSNING EXPRESSIONS 299

L.1.2 Extrauppgifter; träna mer

Lösn. uppg. 16. Typ och värde.

1.0 + 18 1 H 19.0: Double

(41 + 1).toDouble 2 K 42.0: Double

1.042e42 + 1 3 A 1.042E42: Double

12E6.toLong 4 I 12000000: Long

32.toChar.toString 5 E " ": String

'A'.toInt 6 B 65: Int

0.toInt 7 F 0: Int

'0'.toInt 8 D 48: Int

'9'.toInt 9 L 57: Int

'A' + '0' 10 C 113: Int

('A' + '0').toChar 11 J 'q': Char

"*!%#".charAt(0) 12 G '*': Char

Lösn. uppg. 17. Satser och uttryck.

a) Ett utryck kan evalueras och resulterar då i ett användbart värde. En sats gör
något (t.ex. skriver ut något), men resulterat inte i något användbart värde.
b) println()

c)
värdeSaknas innehåller Unit
Skriver ut Unit
Skriver ut "()"
Skriver ut "()"
Skriver först ut hej med det innersta anropet och sen () med det yttre anropet

d) Unit

e) Unit

Lösn. uppg. 18. Procedur med parameter.

a)

var highscore = 0

b)

def updateHighscore(points: Int): Unit =
if points > highscore then

highscore = points
println("REKORD!")

else println("GE INTE UPP!")

c)

def updateHighscore(points: Int): String =
if points > highscore then

300 KAPITEL L. LÖSNINGAR TILL ÖVNINGARNA

highscore = points
"REKORD!"

else "GE INTE UPP!"

Lösn. uppg. 19. Flyttalsaritmetik.

a)

1 scala> Double.MinPositiveValue
2 res0: Double = 4.9E-324

b)

1 scala> Double.MaxValue + Double.MinPositiveValue == Double.MaxValue
2 res2: Boolean = true

Lösn. uppg. 20. if-sats.

1. Utskrift: falskt

2. Utskrift: sant

3. Inget skrivs ut, funktionen deklareras men körs ej.

4. Utskrift: 1:krona 2:klave 3:krona 4:krona 5:klave eller liknande beroen-
de på vilka slumptal math.random() ger.

Lösn. uppg. 21. if-uttryck. Notera typen Any på de sista två uttrycken.

scala> if grönsak == "tomat" then "gott" else "inte gott"
res0: String = inte gott

scala> if frukt == "banan" then "gott" else "inte gott"
res1: String = gott

scala> if true then grönsak else 42
res2: Any = gurka

scala> if false then grönsak else 42
res3: Any = 42

Lösn. uppg. 22. Modulo-operatorn % och Booleska värden.

a)

1 scala> def isEven(n: Int): Boolean = n % 2 == 0
2

3 scala> isEven(42)
4 res0: Boolean = true
5

6 scala> isEven(43)
7 res1: Boolean = false

b)

L.1. LÖSNING EXPRESSIONS 301

1 scala> def isOdd(n: Int): Boolean = !isEven(n)
2

3 scala> isOdd(42)
4 res2: Boolean = false
5

6 scala> isOdd(43)
7 res3: Boolean = true

Lösn. uppg. 23. Skillnader mellan var, val, def.

a)

1 scala> var x = 30
2 x: Int = 30
3

4 scala> x + 1
5 res6: Int = 31
6

7 scala> x = x + 1
8 x: Int = 31
9

10 scala> x == x + 1
11 res7: Boolean = false
12

13 scala> val y = 20
14 y: Int = 20
15

16 scala> y = y + 1
17 <console>:12: error: reassignment to val
18 y = y + 1
19 ^
20

21 scala> var z = { println("hej z!"); math.random() }
22 hej z!
23 z: Double = 0.3381365875903367
24

25 scala> def w = { println("hej w!"); math.random() }
26 w: Double
27

28 scala> z
29 res8: Double = 0.3381365875903367
30

31 scala> z
32 res9: Double = 0.3381365875903367
33

34 scala> z = z + 1
35 z: Double = 1.3381365875903368
36

37 scala> w
38 hej w!
39 res10: Double = 0.06420209879434557
40

41 scala> w
42 hej w!
43 res11: Double = 0.5777951341051852
44

302 KAPITEL L. LÖSNINGAR TILL ÖVNINGARNA

45 scala> w = w + 1
46 <console>:12: error: value w_= is not a member of object
47 w = w + 1

b)

• var namn = uttryck används för att deklarera en förändringsbar variabel.
Namnet kan med hjälp av en tilldelningssats referera till nya värden.

• val namn = uttryck används för att deklarera en oföränderlig variabel som
efter initialisering inte kan förändras med tilldelningssatser. Vid försök ges
kompileringsfel.

• def namn = uttryck används för att deklarera en funktion vars uttryck evalue-
ras varje gång den anropas.

Lösn. uppg. 24. Skillnaden mellan if och while.

• Rad 3: Har du tur (50% chans) får du vinst en gång.

• Rad 4: Har du tur får du många vinster i rad. Sannolikheten för n vinster i rad
är (1

2)n.

L.1. LÖSNING EXPRESSIONS 303

L.1.3 Fördjupningsuppgifter; utmaningar

Lösn. uppg. 25. Logik och De Morgans Lagar.

a) poäng > 1000

b) poäng > 100

c) poäng <= highscore

d) poäng <= 0 || poäng >= highscore

e) poäng >= 0 && poäng <= highscore

f) klar

g) !klar

Lösn. uppg. 26. Stränginterpolatorn s.

a)

Namnet 'Kim Finkodare' har 12 bokstäver.

b)

println(s"$f har ${f.size} bokstäver.")
println(s"$e har ${e.size} bokstäver.")

Lösn. uppg. 27. Tilldelningsoperatorer.

Efter rad1: a: Int 40

Efter rad2: a: Int 40 b: Int 80

Efter rad3: a: Int 50 b: Int 80

Efter rad4: a: Int 50 b: Int 70

Efter rad5: a: Int 100 b: Int 70

Efter rad6: a: Int 100 b: Int 35

Lösn. uppg. 28. Stora tal.

a) BigInt kan användas i stället för Int vid mycket stora heltal. Det finns förståss
även Long som har dubbelt omfång jämfört med Int, medan BigInt kan ha godtyckligt
många siffror (ända tills minnet tar slut) och kan därmed representera ofantligt stora
tal. BigDecimal kan användas i stället för Double vid mycket stora decimaltal.

304 KAPITEL L. LÖSNINGAR TILL ÖVNINGARNA

b)

1 scala> BigInt(2).pow(64)
2 res0: scala.math.BigInt = 18446744073709551616

c) Beräkningar går mycket långsammare och de är lite krångligare att använda.

Lösn. uppg. 29. Precedensregler

a) 77: Int

b) 13: Int

c) -13: Int

Lösn. uppg. 30. Dokumentation av paket i Java och Scala.

a) Scala: Pi, Java: PI

b) Man kan söka och filtrera fram alla förekomster av en viss teckenkombination.

c) Räknar ut hypotenusan (Pythagoras sats) utan risk för avrundningsproblem i
mellanberäkningar.

Lösn. uppg. 31. Noggrannhet och undantag i aritmetiska uttryck.

a) -2147483648 vilket motsvarar Int.MinValue.

b) Ett undantag kastas: java.lang.ArithmeticException: / by zero

c) 1.0000000000000001E8 (som förväntat)

d) Avrundas till 1E9 (flyttalsaritmetik med noggrannhetsproblem: ett stort flyttal
plus ett (alltför) litet flyttal kan ge samma tal. Det lilla talet ”försvinner”).

e) 45.00000000000001 (flyttalsaritmetik med noggrannhetsproblem: enligt ”normal”
aritmetik ska det bli exakt 45.)

f) Infinity (som även ges av Double.PositiveInfinity och som representerar
den positiva oändligheten).

g) 2147483647 vilket motsvarar Int.MaxValue.

h) NaN vilket betyder ”Not a Number”.

i) NaN vilket betyder ”Not a Number”.

j) Ett undantag kastas: java.lang.Exception: PANG!!!

Lösn. uppg. 32. Modulo-räkning med negativa tal. I Scala har resultatet samma
tecken som dividenden.

1 scala> 1 % 2
2 res0: Int = 1
3

4 scala> -1 % 2
5 res1: Int = -1
6

7 scala> -1 % -2
8 res2: Int = -1
9

10 scala> 1 % -2
11 res3: Int = 1

L.1. LÖSNING EXPRESSIONS 305

Lösn. uppg. 33. Bokstavliga identifierare.

a) Variabeln får namnet ’bokstavlig val’, bakåt-apostrofer (eng. backticks) gör att
man kan namnge variabler till annars otillåtna namn, t.ex. med mellanrum eller
nyckelord i sig.
b) Backticks i Scala möjliggör alla möjliga tecken i namn. Exempel på användning: I
java finns en metod som heter java.lang.Thread.yield men i Scala är yield ett nyc-
kelord; för att komma runt det går det att i Scala skriva java.lang.Thread.`yield`

Lösn. uppg. 34. java.lang.Integer, hexadecimala litteraler, BigDecimal.

a)

1 scala> import Integer.{toBinaryString => toBin, toHexString => toHex}
2

3 scala> for i <- Seq(33, 42, 64) do println(s"$i \t ${toBin(i)} \t ${toHex(i)}")
4 33 100001 21
5 42 101010 2a
6 64 1000000 40

b) Det hexadecimala heltalet 10c kan anges med litteralen 0x10c i Scala, Java och
många andra språk: 1

1 scala> 0x10c
2 res0: Int = 268

c) 2

1 scala> val c = 299792458
2 c: Int = 299792458
3

4 scala> BigDecimal(0x10).pow(c)
5 res68: scala.math.BigDecimal = 2.124892963227906613060986110887672E+360986089

Lösn. uppg. 35. Strängformatering.

val str = f"Jättegurkan är $g%1.3f meter lång"

(Om du tycker att $g%1.3f ser kryptiskt ut, så kan du trösta dig med att du nu får
chansen att föra vidare ett anrikt arv från det urgamla språket C och den sägenom-
spunna funktionen printf till kommande generationer av invigda kodmagiker.)

Lösn. uppg. 36. Multiplikationsvarning.

a) Den andra multiplikationen flödar över (eng. overflow) gränsen för största möj-
liga värdet av en Int. I den tredje multiplikationen kastas i stället ett undantag
java.lang.ArithmeticException: integer overflow

scala> Math.multiplyExact(1, 2)
res70: Int = 2

scala> Int.MaxValue * 2
res71: Int = -2

1https://en.wikipedia.org/wiki/0x10c
2https://c418.bandcamp.com/album/0x10c

https://en.wikipedia.org/wiki/0x10c
https://c418.bandcamp.com/album/0x10c

306 KAPITEL L. LÖSNINGAR TILL ÖVNINGARNA

scala> Math.multiplyExact(Int.MaxValue, 2)
java.lang.ArithmeticException: integer overflow
at java.lang.Math.multiplyExact(Math.java:867)
... 42 elided

b) Används då man vill vara helt säker på att overflow-buggar ”smäller” direkt i
stället för att generera felaktiga resultat vars konsekvenser kanske manifesterar sig
långt senare. Dock är multiplyExact aningen långsammare än vanlig multiplikation.

Lösn. uppg. 37. Extra operatorer för exakt multiplikation.

a)

1 scala> Int.MaxValue *! 1
2 res0: Int = 2147483647
3

4 scala> Int.MaxValue *! 2
5 java.lang.ArithmeticException: integer overflow
6 at java.lang.Math.multiplyExact(Math.java:867)
7 at IntExtra.$times$bang(<console>:16)
8 ... 32 elided

b)

extension (i: Int)
def *!(j: Int) = Math.multiplyExact(i,j)
def +!(j: Int) = Math.addExact(i,j)
def -!(j: Int) = Math.subtractExact(i,j)

c) Det blir lätt väldigt kryptiskt med namn som består av flera specialtecken. Om du
verkligen vill ha sådana operatorer är det mycket lämpligt att också erbjuda varianter
i klartext:

extension (i: Int)
def mulExact(j: Int) = Math.multiplyExact(i,j)
def *!(j: Int) = i mulExact j

def addExact(j: Int) = Math.addExact(i,j)
def +!(j: Int) = i addExact j

def subExact(j: Int) = Math.subtractExact(i,j)
def -!(j: Int) = i subExact j

L.2. LÖSNING PROGRAMS 307

L.2 Lösning programs

L.2.1 Grunduppgifter

Lösn. uppg. 1. Para ihop begrepp med beskrivning.

kompilera 1 C maskinkod skapas ur en eller flera källkodsfiler
skript 2 G ensam kodfil, huvudprogram behövs ej
objekt 3 M samlar variabler och funktioner
@main 4 E där exekveringen av kompilerat program startar
programargument 5 L kan överföras via parametern args till main
datastruktur 6 J många olika element i en helhet; elementvis åtkomst
samling 7 K datastruktur med element av samma typ
sekvenssamling 8 F datastruktur med element i en viss ordning
Array 9 D en förändringsbar, indexerbar sekvenssamling
Vector 10 B en oföränderlig, indexerbar sekvenssamling
Range 11 N en samling som representerar ett intervall av heltal
yield 12 A används i for-uttryck för att skapa ny samling
algoritm 13 H stegvis beskrivning av en lösning på ett problem
implementation 14 I en specifik realisering av en algoritm

Lösn. uppg. 2. Använda terminalen.

a)

1 > mkdir hello
2 > cd hello
3 > pwd

b)

1 > cd ..
2 > ls

Lösn. uppg. 3. Skapa och köra ett Scala-skript.

a)

1 Summan av de 1000 första talen är: 500500

b) Kompileringsfelet blir: ')' expected, but eof found

c) Filen ska se ut så här:

val n = args(0).toInt
val summa = (1 to n).sum
println(s"Summan av de $n första talen är: $summa")

Utskriften blir så här:

1 Summan av de 5001 första talen är: 12507501

308 KAPITEL L. LÖSNINGAR TILL ÖVNINGARNA

d) Körtidsfelet blir:

java.lang.ArrayIndexOutOfBoundsException: Index 0 out of bounds for length 0

Eftersom arrayen args är tom om programargument saknas så finns ej platsen med
index 0.

Lösn. uppg. 4. Scala-applikation med @main.

a) Kompilatorn har skapat 5 filer i underkataloger till .scala-build som heter:

'hello$package.class' 'hello$package$.class' 'hello$package.tasty'
run.class run.tasty

b) Felmeddelandet får du om du tar bort den sista krullparentesen. eof i felmedde-
landet står för end-of-file. Detta felmeddelande är vanligt vid oparade parenteser, men
kompilatorn har ofta extra svårt att ge bra felmeddelande om en av parenteserna i ett
parentespar saknas och det kan hända att den pekar ut felaktig rad för positionen där
det som saknas borde stå.

c) Syntax Error: Expected a toplevel definition. Utan klammerparenteser
så är det indenteringarna som bestämmer vilka delar av koden som hör samman. Om
du tar bort indenteringen på den sista raden med utskrift-satsen så tolkar kompilatorn
detta som att denna ligger utanför main-funktionen och du får ett felmeddelande
eftersom det inte är tillåtet att ha ensamma satser på toppnivå. (Det går dock bra att
ha ensamma satser i ett skript med .sc i slutet av namnet på kodfilen.)

d) Annoteringen @main berättar för kompilatorn att funktionen är ett huvudprogram
kan utgöra en startpunkt för exekveringen.

Under huven skapar kompilatorn ett objekt med samma namn som ditt huvudpro-
gram. I det objektet genererar kompilatorn i sin tur en metod med namnet main som
tar en sträng-array som parameter och har returtypen Unit. Ett kompilerat program
måste ha minst ett objekt med exakt en sådan main-metod eftersom exekveringsmil-
jön JVM förutsätter detta och anropar en sådan main-metoden med en sträng-array
innehållande eventuella programargument när exekveringen startar.

Ett alternativ till @main är att definiera en s.k. primitiv main-metod i ett singel-
objekt. (Detta är nödvändigt i gamla Scala 2, innan den enklare @main.annoteringen
kom i Scala 3.)

object Hello:
def main(args: Array[String]): Unit =

val message = "Hello world!"
println(message)

Lösn. uppg. 5. Skapa och använda samlingar.

L.2. LÖSNING PROGRAMS 309

val xs = Vector(2) 1 I ny referens till sekvens av längd 1
val ys = Array.fill(9)(0) 2 C ny referens till förändringsbar sekvens
Vector.fill(9)(' ') 3 J ny oföränderlig sekvens med blanktecken
xs(0) 4 E förkortad skrivning av apply(0)

xs.apply(0) 5 F indexering, ger första elementet
xs :+ 0 6 A ny samling med en nolla tillagd på slutet
0 +: xs 7 H ny samling med en nolla tillagd i början
ys.mkString 8 K ny sträng med alla element intill varandra
ys.mkString(",") 9 G ny sträng med komma mellan elementen
xs.map(_.toString) 10 D ny samling, elementen omgjorda till strängar
xs.map(_.toInt) 11 B ny samling, elementen omgjorda till heltal

Lösn. uppg. 6. Jämför Array och Vector.

a)

Vector 1 B oföränderlig
Array 2 A förändringsbar

b)

Vector 1 B varianter med fler/andra element skapas snabbt ur befintlig
Array 2 A långsam vid ändring av storlek (kopiering av rubbet krävs)

c)

Vector 1 A xs == ys är true om alla element lika
Array 2 B olikt andra Scala-samlingar kollar == ej innehållslikhet

Lösn. uppg. 7. Räkna ut summa, min och max i args.

@main def sumMinMax(args: Int*): Unit =
println(s"${args.sum} ${args.min} ${args.max}")

> scala run sum-min-max.scala -- hej
Illegal command line: java.lang.NumberFormatException: For input string: "hej"

Lösn. uppg. 8. Algoritm: SWAP.

a) Pseudokoden kan se ut såhär:

Deklarera heltalsvariabel temp.
Kopiera värdet från x till temp.
Kopiera värdet från y till x.
Kopiera värdet från temp till y.

b)
Du behöver deklarera en temporär variabel där du kan spara undan ett av värdena,

så det inte skrivs över vid första tilldelningen.

310 KAPITEL L. LÖSNINGAR TILL ÖVNINGARNA

val temp = x
x = y
y = temp

Lösn. uppg. 9. Indexering och tilldelning i Array med SWAP.

@main def swapFirstLastArg(args: String*): Unit =
val xs = args.toArray
if xs.length > 1 then

val temp = xs(0)
xs(0) = xs(xs.length - 1)
xs(xs.length - 1) = temp

println(xs.mkString(" "))

Lösn. uppg. 10. for-uttryck och map-uttryck.

for x <- xs yield x * 2 1 A Vector(2, 4, 6)

for i <- xs.indices yield i 2 E Vector(0, 1, 2)

xs.map(x => x + 1) 3 D Vector(2, 3, 4)

for i <- 0 to 1 yield xs(i) 4 B Vector(1, 2)

(1 to 3).map(i => i) 5 C Vector(1, 2, 3)

(1 until 3).map(i => xs(i)) 6 F Vector(2, 3)

Lösn. uppg. 11. Algoritm: SUMBUG

a) Bugg: Eftersom i inte inkrementeras, fastnar programmet i en oändlig loop. Fix:
Lägg till en sats i slutet av while-blocket som ökar värdet på i med 1. Bugg: Eftersom
man bara ökar summan med 1 varje gång, kommer resultatet att bli summan av n
stycken 1or, inte de n första heltalen. Fix: Ändra så att summan ökar med i varje
gång, istället för 1. För -1, blir resultatet 0. Förklaring: i börjar på 1 och är alltså aldrig
mindre än n som ju är -1. while-blocket genomförs alltså noll gånger, och efter att sum
får sitt ursprungsvärde förändras den aldrig.
b) Summan blir 39502716.
Såhär kan en implementation se ut:

@main def sumn(n: Int): Unit =
var sum = 0
var i = 1
while i <= n do

sum = sum + i
i = i + 1

println(sum)

L.2. LÖSNING PROGRAMS 311

L.2.2 Extrauppgifter; träna mer

Lösn. uppg. 12. Algoritm: MAXBUG

a) Bugg: i inkrementeras aldrig. Programmet fastnar i en oändlig loop. Fix: Lägg
till en sats som ökar i med 1, i slutet av while-blocket.
b) Så här kan implementationen se ut:

@main def maxn(args: String*): Unit =
var max = Int.MinValue
val n = args.length
var i = 0
while i < n do

val x = args(i).toInt
if x > max then

max = x
i += 1

println(max)

c) Raden där max initieras ändras till var max = args(0).toInt

d) För att inte få java.lang.IndexOutOfBoundsException: 0 behövs en kontroll
som säkerställer att inget görs om samlingen args är tom:

@main def maxn(args: String*): Unit =
if args.size > 0 then

var max = args(0).toInt
val n = args.size
var i = 0
while i < n do

val x = args(i).toInt
if x > max then

max = x
i += 1

println(max)
else

println("Empty")

Lösn. uppg. 13. Algoritm MIN-INDEX.

a) En onödig jämförelse sker, men resultatet påverkas ej.
b)

def indexOfMin(xs: Array[Int]): Int =
var minPos = 0
var i = 1
while i < xs.size do

if xs(i) < xs(minPos) then
minPos = i

i += 1
if xs.size > 0 then minPos else -1

312 KAPITEL L. LÖSNINGAR TILL ÖVNINGARNA

Lösn. uppg. 14. Datastrukturen Range.

a) värde: Range(1,2,3,4,5,6,7,8,9)
typ: scala.collection.immutable.Range

b) värde: Range(1,2,3,4,5,6,7,8,9,10)
typ: scala.collection.immutable.Range

c) värde: Range(0,5,10,15,20,25,30,35,40,45)
typ: scala.collection.immutable.Range

d) värde: 10, typ: Int
e) värde: Range(0,5,10,15,20,25,30,35,40,45,50)

typ: scala.collection.immutable.Range
f) värde: 11, typ: Int
g) värde: Range(0,1,2,3,4,5,6,7,8,9)

typ: scala.collection.immutable.Range
h) värde: Range(0,1,2,3,4,5,6,7,8,9)

typ: scala.collection.immutable.Range
i) värde: Range(0,1,2,3,4,5,6,7,8,9)

typ: scala.collection.immutable.Range
j) värde: Range(0,1,2,3,4,5,6,7,8,9,10)

typ: scala.collection.immutable.Range.Inclusive
k) värde: Range(0,1,2,3,4,5,6,7,8,9,10)

typ: scala.collection.immutable.Range.Inclusive
l) värde: Range(0,5,10,15,20,25,30,35,40,45)

typ: scala.collection.immutable.Range
m) värde: Range(0,5,10,15,20,25,30,35,40,45,50)

typ: scala.collection.immutable.Range
n) värde: 11, typ: Int
o) värde: 500500, typ: Int

L.2. LÖSNING PROGRAMS 313

L.2.3 Fördjupningsuppgifter; utmaningar

Lösn. uppg. 15. Sten-Sax-Påse-spel. En (lättbegriplig?) lösning som provar alla
kombinationer:

def winner(user: Int, computer: Int): String =
if choices(user) == "Sten" && choices(computer) == "Påse" then "Datorn"
else if choices(user) == "Sten" && choices(computer) == "Sax" then "Du"
else if choices(user) == "Påse" && choices(computer) == "Sten" then "Du"
else if choices(user) == "Påse" && choices(computer) == "Sax" then "Datorn"
else if choices(user) == "Sax" && choices(computer) == "Sten" then "Datorn"
else if choices(user) == "Sax" && choices(computer) == "Påse" then "Du"
else "Ingen"

En klurigare lösning (och svårbegripligare?) med hjälp av modulo-räkning:

def winner(user: Int, computer: Int): String =
val result = (user - computer + 3) % 3
if user == computer then "Ingen"
else if result == 1 then "Du"
else "Datorn"

Moduloräkningen kräver att elementen i choices är i förlorar-över-ordning, alltså
Sten, Påse, Sax. Addition med 3 görs för att undvika negativa tal, som beter sig
annorlunda i moduloräkning.

Lösn. uppg. 16. Jämför exekveringstiden för storleksförändring mellan Array och
Vector.

a) Med en dator som har en i7-4790K CPU @ 4.00GHz blev det så här:

1 scala> def time(block: => Unit): Double =
2 | val t = System.nanoTime
3 | block
4 | (System.nanoTime - t)/1e6 // ger millisekunder
5 def time(block: => Unit): Double
6

7 scala> val as = Array.fill(1e6.toInt)(0)
8 val as: Array[Int] = Array(0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
9 large output truncated, print value to show all
10

11 scala> val vs = Vector.fill(1e6.toInt)(0)
12 val vs: Vector[Int] = Vector(0, 0, 0, 0, 0, ...
13 large output truncated, print value to show all
14

15 scala> val ast = (for i <- 1 to 10 yield time(as :+ 0)).sum / 10.0
16 val ast: Double = 1.8719819999999998
17

18 scala> val vst = (for i <- 1 to 10 yield time(vs :+ 0)).sum / 10.0
19 val vst: Double = 0.006485099999999999
20

21 scala> ast / vst
22 val res3: Double = 288.6589258453995

b) Vector är två tiopotenser snabbare i detta exempel. Anledningen är att varje
storleksförändring av en Array kräver allokering och elementvis kopiering av en helt

314 KAPITEL L. LÖSNINGAR TILL ÖVNINGARNA

ny Array medan den oföränderliga Vector kan återanvända hela datastrukturen med
redan allokerade element när nya element läggs till.

Lösn. uppg. 17. Minnesåtgång för Range.

a) Variabeln intervall refererar till objekt som tar upp 12 bytes.
b) Variabeln sekvens refererar till objekt som tar upp ca 4 miljarder bytes.

Lösn. uppg. 18. Undersök den genererade byte-koden.

a) Så här ser funktionen plusxy ut:

1 public int plusxy(int, int);
2 descriptor: (II)I
3 flags: (0x0001) ACC_PUBLIC
4 Code:
5 stack=2, locals=3, args_size=3
6 0: iload_1
7 1: iload_2
8 2: iadd
9 3: ireturn
10 LineNumberTable:
11 line 2: 0
12 LocalVariableTable:
13 Start Length Slot Name Signature
14 0 4 0 this Lplusxy$package$;
15 0 4 1 x I
16 0 4 2 y I

Det är instruktionen iadd som gör själva additionen.
b) Det har tillkommit en parameter till i byte-koden. Instruktionen iadd görs nu två
gånger. Instruktionen iadd adderar exakt två tal i taget.

1 public int plusxyz(int, int, int);
2 descriptor: (III)I
3 flags: (0x0001) ACC_PUBLIC
4 Code:
5 stack=2, locals=4, args_size=4
6 0: iload_1
7 1: iload_2
8 2: iadd
9 3: iload_3
10 4: iadd
11 5: ireturn
12 LineNumberTable:
13 line 2: 0
14 LocalVariableTable:
15 Start Length Slot Name Signature
16 0 6 0 this Lplusxyz$package$;
17 0 6 1 x I
18 0 6 2 y I
19 0 6 3 z I

c) Prefixet i i instruktionsnamnet iadd står för ”integer” och anger att heltalsdivi-
sion avses.

L.3. LÖSNING FUNCTIONS 315

L.3 Lösning functions

Lösn. uppg. 1. Para ihop begrepp med beskrivning.

funktionshuvud 1 C har parameterlista och eventuellt en returtyp
funktionskropp 2 N koden som exekveras vid funktionsanrop
parameterlista 3 A beskriver namn och typ på parametrar
block 4 O kan ha lokala namn; sista raden ger värdet
namngivna argument 5 H gör att argument kan ges i valfri ordning
defaultargument 6 L gör att argument kan utelämnas
värdeanrop 7 B argumentet evalueras innan anrop
namnanrop 8 D fördröjd evaluering av argument
map 9 F applicerar en funktion på varje element i en samling
äkta funktion 10 I ger alltid samma resultat om samma argument
predikat 11 G en funktion som ger ett booleskt värde
slumptalsfrö 12 M ger återupprepningsbar sekvens av pseudoslumptal
anonym funktion 13 E funktion utan namn; kallas även lambda
rekursiv funktion 14 K en funktion som anropar sig själv
stack trace 15 J lista anropskedja vid körtidsfel

Lösn. uppg. 2. Definiera och anropa funktioner.

a)

def öka(x: Int = 1): Int = x + 1

b) 5

c)

def minska(x: Int = 1): Int = x - 1

d) 1

e)

• Kort, förenklad förklaring: Parametern i funktionshuvudet är ett lokalt namn
på indata som kan användas i funktionskroppen, medan argumentet är själva
värdet på parametern som skickas med vid anrop.

• Längre, mer exakt förklaring: En parameter är en deklaration av en oförän-
derlig variabel i ett funktionshuvud vars namn finns tillgängligt lokalt i funk-
tionskroppen. Vid anrop binds parameternamnet till ett specifikt argument. Ett
argument är ett uttryck som appliceras på en funktion vid anrop. Normalt
evalueras argumentet innan anropet sker, men om parametertypen föregås av
=> fördröjs evalueringen av argumentet och sker i stället varje gång parameter-
namnet förekommer i funktionskroppen.

Lösn. uppg. 3. Implementera funktion på olika sätt.

a)

316 KAPITEL L. LÖSNINGAR TILL ÖVNINGARNA

def sumFirst(n: Int): Int = ???

b)

def sumFirst(n: Int): Int = (1 to n).sum

1 scala> sumFirst(-1)
2 val res0: Int = 0

c)

def sumFirst(n: Int): Int =
var result = 0
var i = 1
while i <= n do

result += i
i += 1

end while
result

end sumFirst

1 scala> sumFirst(-1)
2 val res1: Int = 0

Lösn. uppg. 4. Textspelet AliensOnEarth.

a) "penguin" är bästa alternativ med sannolikheten 1
2 + 1

2 · 1
3 = 2

3

b)

options.indices 1 B heltalssekvens med alla index i en sekvens
"1X2".toLowercase 2 A gör om en sträng till små bokstäver
Random.nextInt(n) 3 C slumptal i intervallet 0 until n

try { } catch { } 4 E fångar undantag för att förhindra krasch
""" ... """ 5 F sträng som kan sträcka sig över flera kodrader
s.stripMargin 6 D tar bort marginal till och med vertikalstreck
e.printStackTrace 7 G skriver ut information om ett undantag

Lösn. uppg. 5. Äkta funktioner.

• Funktionerna inc, addY och isPalindrome är äkta. Notera att y-variablen ini-
tialiseras till 0 och kan sedan inte ändras eftersom den är deklarerad med
nyckelordet val.

Lösn. uppg. 6. Applicera funktion på varje element i en samling. Funktion som
argument.

L.3. LÖSNING FUNCTIONS 317

for i <- 1 to 3 yield öka(i) 1 E Vector(2, 3, 4)

Vector(2, 3, 4).map(i => öka(i)) 2 A xs

xs.map(öka) 3 B Vector(4, 5, 6)

xs.map(öka).map(öka) 4 D Vector(5, 6, 7)

xs.foreach(öka) 5 C ()

Lösn. uppg. 7. Anonyma funktioner.

(0 to 2).map(i => i + 1) 1 B (2 to 4).map(i => i - 1)

(1 to 3).map(_ + 1) 2 D Vector(2, 3, 4)

(2 to 4).map(math.pow(2, _)) 3 E Vector(4.0, 8.0, 16.0)

(3 to 5).map(math.pow(_, 2)) 4 A Vector(9.0, 16.0, 25.0)

(4 to 6).map(_.toDouble).map(_ / 2) 5 C Vector(2.0, 2.5, 3.0)

Lösn. uppg. 8. Skapa din egen kontrollstruktur med hjälp av namnanrop.

a)

def upprepa(n: Int)(block: => Unit): Unit =
var i = 0
while i < n do

block
i += 1

end while

b)

upprepa(100):
val tärningskast = (math.random() * 6 + 1).toInt
print(s"\$tärningskast ")

c) Om parametern block inte vore deklarerad med namnanrop så hade argumentet
evaluerats en gång innan anropet och sedan hade det blivit samma resultat vid varje
iteration. Med namnanrop kan block innehålla kod som t.ex. uppdaterar en variabel
som vi vill ska ske vid varje iteration. Namn-anrop liknar att koden för argumentet
”klistras in” på varje plats i funktionskroppen där parameternamnet förekommer.

Lösn. uppg. 9. Lär dig läsa en stack trace.En stack trace innehåller följande informa-
tion:

1. ett felmeddelande

2. namn på alla funktioner som anropats vid tiden för körtidsfelet, enligt alla
aktiveringsposter som ligger på anropsstacken

3. aktuell namnrymnd för varje funktionen, alltså paket/singelobjekt

4. namnet på kodfilen för varje funktion

5. radnummer i varje funktion

6. den funktion som kommer först är den funktion där felet inträffade

318 KAPITEL L. LÖSNINGAR TILL ÖVNINGARNA

7. eventuellt kan felet inträffa i standardbibliotekets funktioner och då är din egen
funktion tidigare i anropskedjan

Exempel på en stack trace:

> cat fel.scala
@main def run =
println("Hej Scala!" + Vector().head)

> scala run fel.scala
Compiling project (Scala 3.3.0, JVM)
Compiled project (Scala 3.3.0, JVM)
Exception in thread "main" java.util.NoSuchElementException: empty.head
at scala.collection.immutable.Vector.head(Vector.scala:279)
at fel$package$.run(fel.scala:2)
at run.main(fel.scala:1)

>

L.3.1 Extrauppgifter; träna mer

Lösn. uppg. 10. Funktion med flera parametrar.

a)

def sum(x: Int, y: Int): Int = x + y

def diff(x: Int, y: Int): Int = x - y

b) Det blir -100 efter som 0 - 100 == -100

c) Det blir 15 eftersom det nästlade anropet motsvarar
diff(100, 42 + 43) == (100 - 85)

d) Det blir 185 eftersom det nästlade anropet motsvarar
sum(42 + 43, 100 - 0) == (85 + 100)

e) Det blir 256 eftersom Byte.MaxValue == 127 och codeByte.MinValue == -128
och sum(127 + 128, 1) == 256

Lösn. uppg. 11. Medelvärde.

def avg(x: Int, y: Int): Double = (x + y) / 2.0

Lösn. uppg. 12. Funktionsanrop med namngivna argument.

a)

1 Namn: Triangelsson, Stina
2 Namn: Oval, Viktor

b)

• Anroparen kan själv välja ordning.

• Koden blir lättare att begripa om parameternamnen är självbeskrivande.

• Hjälper till att förhindra buggar som beror på förväxlade parametrar.

L.3. LÖSNING FUNCTIONS 319

Lösn. uppg. 13. Funktion som äkta värde.

a)

fleraAnrop(1, hälsa) 1 D f2("Hej!")

fleraAnrop(3, hälsa) 2 B fleraAnrop(3, f1)

fleraAnrop(2, f1) 3 A f2("Hej!\nHej!")

fleraAnrop(1, f3) 4 C f3()

b) f1 och f3 är av typen () => Unit och f2 av typen String => Unit.
c) Nej. f1 och f2 är av två olika funktionstyper.
d) Ja, det går fint.
e) Nej. När funktionen inte har någon parameter behöver kompilatorn mer informa-
tion för att vara säker på att det är ett funktionsvärde du vill ha.
f) Ja! Nu med typinformationen på plats är kompilatorn säker på vad du vill göra.

Lösn. uppg. 14. Bortkastade resultatvärden och returtypen Unit.

a) Procedurer returnerar tomma värdet och println är en procedur. När tomma
värdet skrivs ut visas ().
b) Procedurer returnerar tomma värdet. Om du anger returtyp Unit explicit, har du
bättre chans att kompilatorn kan ge varning då uträkningar kommer att kastas bort.
En varning avbryter inte exekveringen, utan är ett sätt för kompilatorn att ge dig tips
om saker som kan behöva fixas till i din kod.
c) I Scala är variabeldeklaration, precis som en tilldelningssats, och inte ett uttryck
och saknar värde.
d) Koden blir lättare att läsa och kompilatorn får bättre möjlighet att hjälpa till med
varningar om resultatvärden riskerar att bli bortkastade.

Lösn. uppg. 15. Namnanrop.
Blocket är ett uttryck som har värdet (): Unit. Evalueringen av blocket sker där

namnet b förekommer i procedurkroppen, vilket är två gånger.

1 scala> görDettaTvåGånger { println("goddag") }
2 goddag
3 goddag

320 KAPITEL L. LÖSNINGAR TILL ÖVNINGARNA

L.3.2 Fördjupningsuppgifter; utmaningar

Lösn. uppg. 16. Föränderlighet av parametrar.

a) Nej, i Scala är parametern oföränderlig och det blir kompileringsfel om man
försöker tilldela den ett nytt värde i funktionskroppen.
b) c) Ja det går utmärkt i både Java och Python att ändra värdet på parametern i
funktionskroppen med tilldelning, men koden riskerar att bli förvirrande.
https://stackoverflow.com/questions/2970984

Lösn. uppg. 17. Värdeanrop och namnanrop.

a) Vid varje anrop av snark sker en utskrift och en fördröjnig innan 42 returneras.
42 + 42 == 84 vilket blir värdet av uttrycket.

1 scala> snark + snark
2 snark snark val res1: Int = 84

b) Uttrycket snark evalueras direkt vid anropet och parametern x binds till värdet
42 och i funktionskroppen beräknas 42+42. Utskriften sker bara en gång.

1 callByValue(snark)
2 snark val res2: Int = 84

c) Evalueringen av uttrycket snark fördröjs tills varje förekomst av parametern x i
funktionskroppen. Utskriften sker två gånger.

1 callByName(snark)
2 snark snark val res3: Int = 84

d) Evalueringen av uttrycket zzz fördröjs tills varje förekomst av parametern x i
funktionskroppen. Utskriften sker en gång eftersom val-variabler tilldelas sitt värde
en gång för alla vid den fördröjda initialiseringen.

1 callByName(zzz)
2 snark val res4: Int = 84

Lösn. uppg. 18. Skapa egen kontrollstruktur för iteration med loop-variabel.

a)

def repeat(n: Int)(p: Int => Unit): Unit =
var i = 0
while i < n do

p(i)
i += 1

end while
end repeat

b)

repeat(100){ i =>
print("i ")
println(math.random())

}

https://stackoverflow.com/questions/2970984

L.3. LÖSNING FUNCTIONS 321

Du kan använda färre klammerparenteser med hjälp av kolon:

repeat(100): i =>
print("i ")
println(math.random())

Lösn. uppg. 19. Uppdelad parameterlista och stegade funktioner.

a)

1 scala> def add2(a: Int)(b: Int) = a + b
2 def add2(a: Int)(b: Int): Int
3

4 scala> add2(1)(1)
5 val res0: Int = 2

b)

• Rad 3:

doremi doremi doremi

• Rad 5:

lalalalalalala

Lösn. uppg. 20. Rekursion.

a) countdown skriver ut x och gör ett rekursivt anrop med x - 1 som argument,
men bara om basvillkoret x > 0 är uppfyllt. Resultatet blir en ändlig repetition.
finalCountdown anropar sig själv rekursivt men saknar ett basvillkor som kan av-
bryta rekursionen, vilket genererar en oändlig repetition. Vid -128 blir det overflow
eftersom bitarna inte räcker till för större negativa tal och räkningen börjar om på
127. (Om minskar fördröjningen till Thread.sleep(1) blir det ganska snabbt stack
overflow)
b) Eftersom vi hade 1/x efter det rekursiva anropet i föregående deluppgift, så kom
vi aldrig till denna (potentiellt ödesdigra) beräkning, utan lade bara aktiveringsposter
på hög på stacken vid varje anrop. Om vi placerar 1/x före det rekursiva anropet, så
når vi detta uttryck direkt och det kastas ett undantag p.g.a. division med noll.
c) Den sista raden leder till många fler rekursiva anrop, så som basvillkoret och det
rekursiva anropet är konstruerade. Lägg gärna in en println-sats före det rekursiva
anropet och undersök i detalj vad som sker.

Lösn. uppg. 21. Undersök svansrekursion genom att kasta undantag. countdown är
svansrekursiv eftersom det rekursiva anropet står sist och kan då optimeras till en
while-loop av kompilatorn. Det går fint att köra ända till det exploderar, även med
10000 anrop, och i felmeddelandet finns det endast ett anrop till countdown.

countdown2 är inte svansrekursiv eftersom den har ett uttryck efter det rekur-
siva anropet. I felutskriften syns alla rekursiva anrop till countdown2 innan basvill-
koret inträffade. Vid countdown2(10000) uppfylls inte basvillkoret innan det blir
StackOverflowError.

322 KAPITEL L. LÖSNINGAR TILL ÖVNINGARNA

Lösn. uppg. 22. @tailrec-annotering. Första gången countNoTailrec(100000L) an-
ropas blir det StackOverflowError. Med annoteringen @tailrec får vi ett kompile-
ringsfel eftersom kompilatorn inte kan optimera en icke svansrekursiv funktion. Om
funktionen skrivs om kan kompilatorn optimera funktionen så att rekursionen byts ut
mot en while-loop och vi kan köra så länge vi orkar utan att stacken flödar över. Och
himla snabbt går det!!

L.4. LÖSNING OBJECTS 323

L.4 Lösning objects

L.4.1 Grunduppgifter; förberedelse inför laboration

Lösn. uppg. 1. Para ihop begrepp med beskrivning.

modul 1 C kodenhet med abstraktioner som kan återanvändas
singelobjekt 2 B modul som kan ha tillstånd; finns i en enda upplaga
paket 3 D modul som skapar namnrymd; maskinkod får egen katalog
import 4 F gör namn tillgängligt lokalt utan att hela sökvägen behövs
export 5 P gör namn synligt utåt som medlem i detta objekt
lat initialisering 6 G allokering sker först när namnet refereras
medlem 7 E tillhör ett objekt; nås med punktnotation om synlig
attribut 8 H variabel som utgör (del av) ett objekts tillstånd
metod 9 A funktion som är medlem av ett objekt
privat 10 K modifierar synligheten av en objektmedlem
överlagring 11 J metoder med samma namn men olika parametertyper
namnskuggning 12 L lokalt namn döljer samma namn i omgivande block
namnrymd 13 I omgivning där är alla namn är unika
enhetlig access 14 M ändring mellan def och val påverkar ej användning
punktnotation 15 O används för att komma åt icke-privata delar
typalias 16 N alternativt namn på typ som ofta ökar läsbarheten

Lösn. uppg. 2. Nästlade singelobjekt, import, synlighet och punktnotation.

a)

object Underjorden:
var x = 0
var y = 1

object Mullvaden:
var x = Underjorden.x + 10
var y = Underjorden.y + 9

object Masken:
private var x = Mullvaden.x
var y = Mullvaden.y + 190
def ärMullvadsmat: Boolean = x == Mullvaden.x && y == Mullvaden.y

b)

1 scala> :load Underjorden.scala
2 scala> import Underjorden.*
3 scala> Masken.ärMullvadsmat
4 val res0: Boolean = false
5 scala> Masken.y = Mullvaden.y
6 scala> Masken.ärMullvadsmat
7 val res1: Boolean = true

324 KAPITEL L. LÖSNINGAR TILL ÖVNINGARNA

c)

1 scala> import Mullvaden.*
2 scala> import Masken.*
3 scala> x = -1
4 scala> Mullvaden.x
5 val res2: Int = -1
6

7 scala> Masken.x
8 1 |Masken.x
9 |^^^^^^^^
10 |variable x cannot be accessed as a member of Underjorden.Masken.type from module class rs\$line\$9\$.
11

12 scala> Underjorden.x
13 val res3: Int = 0

Förklaring: När importen av Maskens alla synliga medlemmar sker kommer de som
ej är privata att överskugga andra medlemmar med samma namn. Det är Mullvadens
x-variabel som tilldelas -1 eftersom Maskens x är privat och ej syns utåt. Underjordens
medlemmar blir överskuggade av Maskens y och Mullvadens x men man kan komma
åt dem genom att använda punktnotation.

Lösn. uppg. 3. Export.

a) Likhet: Både import och export styr synlighet. Skillnad: import styr lokal syn-
lighet inuti ett objekt medan export styr synlighet utanför ett objekt.
b) Man kan med export på ett smidigt sätt plocka ihop medlemmar från andra
objekt och göra dem synliga från mitt eget objekt.

object MittObjekt:
export java.awt.Color.* // alla färger blir medlemmar i MittObjekt
export math.{atan2, Pi} // atan2 och Pi blir medlemmar i MittObjekt

scala> object MittObjekt:
| export java.awt.Color.*
| export math.{atan2, Pi}
|

scala> MittObjekt.RED
val res0: java.awt.Color = java.awt.Color[r=255,g=0,b=0]

scala> MittObjekt.atan2(3,3) / MittObjekt.Pi
val res1: Double = 0.25

Lösn. uppg. 4. Tupler.

a) djup har typen Double.
b) hemlis har typen (String, (Int, Int, Double)).
c)

object Underjorden3D:
private val hemlis = ("uppgången till överjorden", (3, 4, 0.0))

object Mullvaden:
var pos = (5, 3, math.random() * 10 + 1)

L.4. LÖSNING OBJECTS 325

def djup: Double = pos._3

object Masken:
private var pos = (0, 0, 10.0)

def ärMullvadsmat: Boolean = pos == Mullvaden.pos

def ärRaktUnderUppgången: Boolean =
pos._1 == hemlis._2._1 && pos._2 == hemlis._2._2

d) Noll-tupeln.

Lösn. uppg. 5. Lat initialisering.

a) "nu!" skrivs bara ut första gången z används.

1 scala> z
2 nu!
3 val res19: Array[Int] = Array(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)
4

5 scala> z
6 val res20: Array[Int] = Array(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

b) Allokeringen av arrayen sker första gången z används (och inte vid deklarationen).

1 scala> lazy val z = { println("nu!"); Array.fill(1e9.toInt)(0)}
2 val z: Array[Int] = <lazy>
3

4 scala> z
5 nu!
6 java.lang.OutOfMemoryError: Java heap space

c) Utskriften av "nu!" sker först när singelobjektet zzz används för första gången.
Vi borde lägga initialiseringen av b före a eller göra a till en lazy val.

d)

1 scala> import test.*
2 import test.*
3

4 scala> zzz.a // först när vi använder zzz skrivs "nu!"
5 nu! // detta skedde *inte* när vi importerade test
6 val res0: Int = 42
7

8 scala> buggig.a // a blir 0 eftersom b inte är initialiserad
9 val res1: Int = 0
10

11 scala> funkar.a // med lazy val unviker vi problemet
12 val res2: Int = 42
13

14

15 scala> zzz.a // andra gången är init redan gjort och ingen "nu!"
16 val res3: Int = 42

326 KAPITEL L. LÖSNINGAR TILL ÖVNINGARNA

e) lazy val a = uttryck innebär att initialiseringsuttrycket evalueras en gång,
men evalueringen skjuts på framtiden tills det eventuellt händer att namnet a används,
medan def b = uttryck innebär att funktionskroppens uttryck evalueras varje
gång namnet b (eventuellt) används.

Lösn. uppg. 6. Extensionsmetoder.

a)

scala> extension (i: Int) def inc = i + 1

b)

scala> extension (i: Int) def dec = i - 1

c)

extension (i: Int)
def inc = math.incrementExact(i)
def dec = math.decrementExact(i)

d) Med math.incrementExact och math.decrementExact ges exception om vi går
över gränsen:

scala> math.incrementExact(Int.MaxValue)
java.lang.ArithmeticException: integer overflow
at java.base/java.lang.Math.incrementExact(Math.java:1023)
at scala.math.incrementExact(package.scala:418)
... 34 elided

Lösn. uppg. 7. Extensionsmetoder.

a) Enligt dokumentationen har PixelWindow-klassen dessa parametrar:
• width : Int anger fönstrets bredd, defaultargument 800
• height: Int anger fönstrets höjd, defaultargument 640
• title : String anger fönstrets titel, defaultargument "PixelWindow"
• background: Color anger bakgrundsfärg, defaultargument java.awt.Color.black
• foreground: Color anger bakgrundsfärg, defaultargument java.awt.Color.green

Man kan skapa nya fönsterinstanser till exempel så här:

val w1 = new introprog.PixelWindow()
val w2 = new introprog.PixelWindow(100, 200, "Mitt fina nya fönster")

b) Du kan även ladda ner senaste introprog så här:

curl -o introprog_3-1.4.0.jar -sLO https://fileadmin.cs.lth.se/introprog.jar

c)

1 > scala repl --jar introprog_3-1.4.0.jar
2 scala> val w = new introprog.PixelWindow(400,300,"HEJ")
3 scala> w.line(100, 100, 200, 100)
4 scala> w.line(200, 100, 200, 200)
5 scala> w.line(200, 200, 100, 200)
6 scala> w.line(100, 200, 100, 100)

L.4. LÖSNING OBJECTS 327

d)

package hello

object Main:
val w = new introprog.PixelWindow(400, 300, "HEJ")

var color = java.awt.Color.red

def square(p: (Int, Int))(side: Int): Unit =
if side > 0 then

// side == 1 ger en kvadrat som är en enda pixel
val d = side - 1

w.line(p._1, p._2, p._1 + d, p._2, color)
w.line(p._1 + d, p._2, p._1 + d, p._2 + d, color)
w.line(p._1 + d, p._2 + d, p._1, p._2 + d, color)
w.line(p._1, p._2 + d, p._1, p._2, color)

def main(args: Array[String]): Unit =
println("Rita kvadrat:")
square(300,100)(50)

e)

> scala run hello-window.scala --jar introprog_3-1.4.0.jar --main-class hello.Main

f)

> scala run hello-window.scala --dep se.lth.cs::introprog:1.4.0 --main-class hello.Main

g)

//> using scala 3.3
//> using dep se.lth.cs::introprog:1.4.0

Lösn. uppg. 8. Färg.

a)

object Color:
import java.awt.{Color as JColor}

val mole = new JColor(51, 51, 0)
val soil = new JColor(153, 102, 51)
val tunnel = new JColor(204, 153, 102)

b)

package hello

object Color:
import java.awt.{Color as JColor}

328 KAPITEL L. LÖSNINGAR TILL ÖVNINGARNA

val mole = new JColor(51, 51, 0)
val soil = new JColor(153, 102, 51)
val tunnel = new JColor(204, 153, 102)

object Main:
val w = new introprog.PixelWindow(width = 400, height = 300, title = "HEJ")

type Pt = (Int, Int)

var color = java.awt.Color.red

def rak(p: Pt)(d: Int) = w.line(p._1, p._2, p._1 + d - 1, p._2, color)

def fyll(p: Pt)(s: Int) = for i <- 0 until s do rak((p._1, p._2 + i))(s)

def square(p: (Int, Int))(side: Int): Unit =
if (side > 0) then
val d = side - 1 // side == 1 ska ge en kvadrat som är en pixel stor
w.line(p._1, p._2, p._1 + d, p._2, color)
w.line(p._1 + d, p._2, p._1 + d, p._2 + d, color)
w.line(p._1 + d, p._2 + d, p._1, p._2 + d, color)
w.line(p._1, p._2 + d, p._1, p._2, color)

def main(args: Array[String]): Unit =
import Color.*
color = soil
fyll(100,100)(75)
color = tunnel
fyll(100,100)(50)
color = mole
fyll(150,150)(25)

c) Vid anropen av rak och fyll utnyttjas att man kan skippa tupelparenteserna om
ett tupelargument är ensamt i sin parameterlista.

Lösn. uppg. 9. Händelser.

a) Den oföränderliga heltalsvariabeln KeyPressed i introprog.PixelWindow.Event
har värdet 1.
b) Kodraden nedan tar hand om knappnedtryckningsfallet:

case PixelWindow.Event.KeyPressed => println(s"lastKey == \$w.lastKey")

c) När pil-upp-knappen på tangentbordet trycks ned får w.lastKey strängvärdet
"Up". Följande skrivs ut av testprogrammet när pil-upp-tangenten trycks ned och
släpps upp:

1 lastEventType: 1 => KeyPressed
2 lastKey == Up
3 lastEventType: 2 => KeyReleased
4 lastKey == Up

d) En loop som låter användaren rita linjer med musen:

L.4. LÖSNING OBJECTS 329

var start = (0,0)
while w.lastEventType != PixelWindow.Event.WindowClosed do

w.awaitEvent(10) // wait for next event for max 10 milliseconds
w.lastEventType match {

case PixelWindow.Event.MousePressed =>
start = w.lastMousePos

case PixelWindow.Event.MouseReleased =>
w.line(start._1, start._2, w.lastMousePos._1, w.lastMousePos._2)

case PixelWindow.Event.WindowClosed =>
println("Goodbye!");

case _ =>
}
PixelWindow.delay(100) // wait for 0.1 seconds

330 KAPITEL L. LÖSNINGAR TILL ÖVNINGARNA

L.4.2 Extrauppgifter; träna mer

Lösn. uppg. 10. Funktioner är objekt med en apply-metod.Ja det går bra att skriva:

1 scala> plus(42, 43)

Kompilatorn fyller i .apply åt dig.

Lösn. uppg. 11. Skapa moduler med hjälp av singelobjekt.

a)

scala> "päronisglass".split('i')
val res0: Array[String] = Array(päron, sglass)

b)

scala> Test()
--- FREKVENSANALYS AV:
Fem myror är fler än fyra elefanter. Ät gurka.
bokstäver: 36
ord : 9
meningar : 2

--- FREKVENSANALYS AV:
Galaxer i mina braxer. Tomat är gott. Päronsplitt.
bokstäver: 40
ord : 8
meningar : 3

--- FREKVENSANALYS AV:
Fem myror är fler än fyra elefanter. Ät gurka. Galaxer i mina braxer. Tomat
är gott. Päronsplitt.
bokstäver: 76
ord : 17
meningar : 5

c) Objektet statistics har ett förändringsbart tillstånd i variabeln history. Till-
ståndet ändras vid anrop av printFreq.
d)

object count:
extension (s: String)

def nbrOfLetters:Int = s.count(_.isLetter)
def nbrOfWords:Int = split.words(s).size
def nbrOfSentences: Int = split.sentences(s).size

Lösn. uppg. 12. Tupler som parametrar.

def distxy(x1: Int, y1: Int, x2: Int, y2: Int): Double =
hypot(x1 - x2, y1 - y2)

def distpt(p1: (Int, Int), p2: (Int, Int)): Double =
hypot(p1._1 - p2._1, p1._2 - p2._2)

L.4. LÖSNING OBJECTS 331

def distp(p1: (Int, Int))(p2: (Int, Int)): Double =
hypot(p1._1 - p2._1, p1._2 - p2._2)

Lösn. uppg. 13. Tupler som funktionsresultat.

def statistics(xs: Vector[Double]): (Int, Double, (Double, Double)) =
(xs.size, xs.sum / xs.size, (xs.min, xs.max))

1 scala> statistics(Vector(0, 2.5, 5))
2 val res10: (Int, Double, (Double, Double)) = (3,2.5,(0.0,5.0))

Lösn. uppg. 14. Skapa moduler med hjälp av paket.

a)

1 > code paket.scala
2 > scala paket.scala
3 > find . -type d # linuxkommando som listar alla subkataloger
4 ./.scala-build/project_103be31561-3d0d386400/classes
5 ./.scala-build/project_103be31561-3d0d386400/classes/main
6 ./.scala-build/project_103be31561-3d0d386400/classes/main/gurka
7 ./.scala-build/project_103be31561-3d0d386400/classes/main/gurka/tomat
8 ./.scala-build/project_103be31561-3d0d386400/classes/main/gurka/tomat/banan
9 ./.scala-build/project_103be31561-3d0d386400/classes/main/gurka/tomat/banan/p2
10 ./.scala-build/project_103be31561-3d0d386400/classes/main/gurka/tomat/banan/p2/p21
11 ./.scala-build/project_103be31561-3d0d386400/classes/main/gurka/tomat/banan/p1
12 ./.scala-build/project_103be31561-3d0d386400/classes/main/gurka/tomat/banan/p1/p12
13 ./.scala-build/project_103be31561-3d0d386400/classes/main/gurka/tomat/banan/p1/p11

b)

1 > scala run paket.scala --main-class gurka.tomat.banan.Main
2 Hej paket p1.p11!
3 Hej paket p1.p12!
4 Hej paket p2.p21!

c) Ja, i Scala 3 får paket ha variabler och funktioner på toppnivå.
https://stackoverflow.com/a/56566166

L.4.3 Fördjupningsuppgifter; utmaningar

Lösn. uppg. 15. Hur klara sig utan do while i Scala 3?

a) Det blir kompileringsfel:

> scala repl --scala 3
Welcome to Scala 3.1.3 (17.0.3, Java OpenJDK 64-Bit Server VM).
Type in expressions for evaluation. Or try :help.

scala> var i = 0
var i: Int = 0

scala> do i += 1 while (i < 10)
-- [E103] Syntax Error: --

https://stackoverflow.com/a/56566166

332 KAPITEL L. LÖSNINGAR TILL ÖVNINGARNA

1 |do i += 1 while (i < 10)
|^^
|Illegal start of statement

b)

> scala repl --scala 3
Welcome to Scala 3.1.3 (17.0.3, Java OpenJDK 64-Bit Server VM).
Type in expressions for evaluation. Or try :help.

scala> var i = 0
var i: Int = 0

scala> while
| i += 1
| i < 10
| do ()

scala> i
val res0: Int = 10

Lösn. uppg. 16. Postfixa operatorer för inkrementering och dekrementering.

extension (i: Int)
def ++ = i + 1
def -- = i - 1

Lösn. uppg. 17. Använda färdigt paket: Färgväljare.

a) Den valda färgen returneras efter att användaren tryckt OK

1 scala> introprog.Dialog.selectColor()
2 val res1: java.awt.Color = java.awt.Color[r=0,g=204,b=0]

b) Default-färgen röd returneras efter att användaren tryckt Cancel
c) Färgväljaren återgår till default-färgen.

Lösn. uppg. 18. Använda färdigt paket: användardialoger.

a)

1 scala> introprog.Dialog.show("Game over!")

b) Funktionen input returnerar en sträng som blir tomma strängen "" om använda-
ren klickar Cancel

1 scala> val name = introprog.Dialog.input("Vad heter du?")
2 name: String = Oddput Superkodare

c) Funktionen select returnerar en sträng med texten på knappen som användaren
tryckte på.

1 scala> introprog.Dialog.select("Vad väljer du?",Vector("Sten","Sax","Påse"))
2 val res4: String = Påse

L.4. LÖSNING OBJECTS 333

Lösn. uppg. 19. Skapa din egen jar-fil.

a)
jar -create -verbose -file <namn på skapad jar-fil> <namn på det som ska

packas>

b)

package hello

object Main:
def main(args: Array[String]): Unit = println("Hello package!")

scala compile hello.scala --destination .

c)

1 > jar -c -v -f my.jar hello
2 > ls
3 > scala repl --jar my.jar
4 scala> hello.Main.main(Array())
5 Hello package!

d)

1 > scala run --jar my.jar --main-class hello.Main

Lösn. uppg. 20. Hur stor är JDK8? Med JDK8-plattformen kommer 4240 färdiga
klasser, som är organiserade i 217 olika paket. Se Stackoverflow:
http://stackoverflow.com/questions/3112882

http://stackoverflow.com/questions/3112882

334 KAPITEL L. LÖSNINGAR TILL ÖVNINGARNA

L.5 Lösning classes

L.5.1 Grunduppgifter; förberedelse inför laboration

Lösn. uppg. 1. Para ihop begrepp med beskrivning.

klass 1 H en mall för att skapa flera instanser av samma typ
instans 2 I upplaga av ett objekt med eget tillståndsminne
konstruktor 3 M skapar instans, allokerar plats för tillståndsminne
klassparameter 4 K binds till argument som ges vid konstruktion
referenslikhet 5 B instanser anses olika även om tillstånden är lika
innehållslikhet 6 J instanser anses lika om de har samma tillstånd
case-klass 7 F slipper skriva new; automatisk innehållslikhet
getter 8 L indirekt åtkomst av attributvärde
setter 9 A indirekt tilldelning av attributvärde
kompanjonsobjekt 10 D ser privata medlemmar i klass med samma namn
fabriksmetod 11 E hjälpfunktion för indirekt konstruktion
null 12 G ett värde som ej refererar till någon instans
new 13 C nyckelord vid direkt instansiering av klass

Lösn. uppg. 2. Klass och instans.

a)

Singelpunkt.x 1 B 1

Punkt.x 2 G value is not a member of object

val p = new Singelpunkt 3 C Not found: type

val p1 = new Punkt 4 D p1: Punkt = Punkt@27a1a53c

val p2 = Punkt() 5 F p2: Punkt = Punkt@51ab04bd

{ p1.x = 1; p2.x } 6 E 3

(new Punkt).y 7 H 2

{ val p: Punkt = null; p.x } 8 A java.lang.NullPointerException

b)

L.5. LÖSNING CLASSES 335

fel typ förklaring

value is not a member of object kompileringsfel det finns ingen instans med
namnet Punkt.
Felmeddelandet syftar på att
det i klassens autogenererade
konstruktor-ombud saknas en
variabel med namnet x.

Not found: type kompileringsfel det finns ingen klass som heter
Singelpunkt

NullPointerException körtidsfel det går inte att referera attri-
but i en instans som inte finns

Lösn. uppg. 3. Klassparametrar.

a)

val p1 = Point(1, 2) 1 C p1: Point = Point@30ef773e

val p2 = Point() 2 A missing argument for parameter

val p2 = Point(3, 4) 3 E p2: Point = Point@218cf600

p2.x - p1.x 4 B 2

Point(0, 1).y 5 F 1

Point(0, 1, 2) 6 D too many arguments for constructor

b)

fel typ förklaring

missing argument for parameter kompileringsfel du måste ge argument vid kon-
struktion av klassen Point

too many arguments for constructor kompileringsfel antalet argument stämmer ej
överens med antalet klasspara-
metrar

Lösn. uppg. 4. Oföränderlig klass med defaultargument.

a)

336 KAPITEL L. LÖSNINGAR TILL ÖVNINGARNA

val p1 = Point3D() 1 C p1: Point3D = Point3D@2eb37eee

val p2 = Point3D(y = 1) 2 F p2: Point3D = Point3D@65a9e8d7

Point3D(z = 2).z 3 E value cannot be accessed

p2.y = 0 4 B Reassignment to val

p2.y == 0 5 A false

p1.x == Point3D().x 6 D true

b) Problemet är att så som klassen Point3D är deklarerad går det inte att avläsa
z-koordinaten efter att en instans konstruerats. Det vore bättre om även z-attributet
är val.

Lösn. uppg. 5. Case-klass, this, likhet, toString och kompanjonsobjekt.

a)

val p1 = Pt(1, 2) 1 E Pt(1,2)

val p2 = Pt(y = 3) 2 C Pt(0,3)

val p3 = MutablePt(5, 6) 3 A MPt(5,6)

val p4 = Mutable() 4 D Not found

p2.moved(dx = 1) == Pt(1, 3) 5 F true

p3.move(dy = 1) == MutablePt(5, 7) 6 B false

b) Kompilatorn härleder MutablePt eftersom det är typen på självreferensen this.

1 scala> :type new MutablePt().move()
2 MutablePt

c) Instansiering med universella apply-metoder (eng. universal apply methods) är
godis som gör koden enklare att läsa och skriva. Detta är möjligt tack vare att det vid
kompilering automatiskt skapas ett konstruktor-ombud (eng. constructor proxy) som
instansierar objektet med nyckelordet new. Ett konstruktor-ombud är ett kompanjons-
objekt med tillhörande apply-metod.

Ett fall då new uttryckligen måste användas är vid implementering av egen apply-
metod i ett kompanjonsobjekt. Om new inte används inuti apply-metoden, kommer
samma metod att anropas rekursivt istället för att en ny instans skapas. Se följande
exempel:

class Point3D(val x: Int, val y: Int, val z: Int)

object Point3D:
var secretNumber = 42
def apply(x: Int, y: Int, z: Int): Point3D =

if secretNumber == 42 then
Point3D(x, y, z) // Koden kommer fastna i en evig loop.

else new Point3D(x, y, z) // Funkar eftersom 'new' används.

d) En metod som avläser (delar av) ett objekts (privata) tillstånd utan att ändra det
kallas för en getter.

L.5. LÖSNING CLASSES 337

Lösn. uppg. 6. Implementera delar av klasserna Pos, KeyControl, Mole och BlockWindow
som behövs under laborationen blockbattle1.Denna uppgift är laborationsförberedel-
se. Utvärdera dina lösningar genom egna tester i REPL.

a) Det går inte att anropa Pos.moved(0,1). Anledningen till detta är att moved
inte existerar i kompanjonsobjektet Pos, därav felmeddelandet ”value moved is not a
member of object Pos”. För att anropa en metod definierad inuti en klass måste man
göra anropet via en (referens till en) instans av klassen.

L.5.2 Extrauppgifter; träna mer

Lösn. uppg. 7. Instansiering med new och värdet null.

a) Rad 3 och 7 ger båda felmeddelandet java.lang.NullPointerException, på
grund av försök att referera medlemmar med hjälp av en null-referens, som alltså
inte pekar på något objekt.

b)

Lösn. uppg. 8. Skapa en punktklass som kan hantera polära koordinater och en klass
som representerar en polygon m.h.a. dessa punkter.

a)

package graphics

case class Point(x: Double, y: Double):
val r: Double = math.hypot(x, y)
val theta: Double = math.atan2(y, x)
def +(p: Point): Point = Point(x + p.x, y + p.y)

object Point:
def polar(r: Double, theta: Double): Point =

Point(r * math.cos(theta), r * math.sin(theta))

b)

package graphics

case class Polygon(points: Vector[Point]):
val nbrOfCorners: Int = points.length

object Polygon:
def regular(nbrOfCorners: Int, radius: Double, midPoint: Point): Polygon =

val points = new Array[Point](nbrOfCorners)
for i <- 0 until nbrOfCorners do

338 KAPITEL L. LÖSNINGAR TILL ÖVNINGARNA

val theta = i * (2 * math.Pi) / nbrOfCorners
points(i) = Point.polar(radius, theta) + midPoint

end for
Polygon(points.toVector)

c) En perfekt cirkel går inte att skapa, men det går att komma tillräckligt nära för
att göra det omöjligt att se hörnen. Testa till exempel med 50 hörn likt nedan.

1 scala> import graphics.*
2 scala> val circle = Polygon.regular(50,70,Point(-25,-25))
3 scala> val window = PolygonWindow()
4 scala> window.draw(circle)

Även en oregelbunden polygon går att skapa. Använd då konstruktorn till Polygon
direkt. Till exempel likt nedan.

1 scala> val irregular =
2 Polygon(Vector(Point(1,8), Point(33,14), Point(99,87), Point(42,56)))
3 scala> window.draw(irregular)

Lösn. uppg. 9. Klasser, instanser och skräp.

a) Vi skapar två rymdvarelser, alien och predator, med vardera två ben och två
armar, samt vardera två huvuden (där det ena är skalligt och det andra har hår). Efter
det är varken alien eller predator skallig eftersom båda har ett huvud med hår. Sen
låter man referensen till predators huvud med hår referera till aliens huvud utan
hår. Nu är predator helt skallig och delar huvud med alien.

b) Eftersom det inte längre finns någon referens som pekar på det objektet kommer
skräpsamlaren att ta hand om det och det kommer förr eller senare skrivas över av

L.5. LÖSNING CLASSES 339

något annat när platsen i minnet behövs. Objekt som inte har någon referens till sig
går inte att komma åt.

Lösn. uppg. 10. Case-klass. Oföränderlig kvadrat.

a)

case class Square(val x: Int = 0, val y: Int = 0, val side: Int = 1):
val area: Int = side * side

def moved(dx: Int, dy: Int): Square = Square(x + dx, y + dy, side)

def isEqualSizeAs(that: Square): Boolean = this.side == that.side

def scale(factor: Double): Square =
Square(x, y, (side * factor).round.toInt)

object Square:
val unit: Square = Square()

b)

1 scala> val (s1, s2) = (Square(), Square(1, 10, 1))
2 val s1: Square = Square(0,0,1)
3 val s2: Square = Square(1,10,1)
4

5 scala> val s3 = s1 moved (1,-5)
6 val s3: Square = Square(1,-5,1)
7

8 scala> s1 isEqualSizeAs s3 // lika storlek
9 val res0: Boolean = true
10

11 scala> s2 isEqualSizeAs s1 // lika storlek
12 val res1: Boolean = true
13

14 scala> s1 isEqualSizeAs Square.unit // s1 har sidan 1
15 val res2: Boolean = true
16

17 scala> s2.scale(math.Pi) isEqualSizeAs s2 // olika storlek
18 val res3: Boolean = false
19

20 scala> s2.scale(math.Pi) == s2.scale(math.Pi) // lika innehåll
21 val res4: Boolean = true
22

23 scala> s2.scale(math.Pi) eq s2.scale(math.Pi) // olika objekt
24 val res5: Boolean = false
25

26 scala> Square.unit eq Square.unit // samma objekt
27 val res6: Boolean = true

340 KAPITEL L. LÖSNINGAR TILL ÖVNINGARNA

L.5.3 Fördjupningsuppgifter; utmaningar

Lösn. uppg. 11. Innehållslikhet mellan olika typer.

1 scala> 42 == "Fyrtiotvå"
2 1 |42 == "Fyrtiotvå"
3 |^^^^^^^^^^^^^^^^^
4 |Values of types Int and String cannot be compared with == or !=
5

6 scala> Gurka(50) == Bil("Sedan")
7 val res0: Boolean = false

Det andra uttrycket är problematiskt eftersom det alltid kommer resultera i false,
då klasserna Gurka och Bil är två ojämförbara typer som inte bör jämföras med
avseende på innehållslikhet. Detta försämrar typsäkerheten vilket ökar risken för
svårupptäckta buggar där fel typer jämförs.

Likhetsjämförelser som sker mellan primitiva typer typkollas av kompilatorn och
kan därför ge kompileringsfel om två olika typer, såsom Int och String, jämförs med
varandra. Detta gäller dock i regel inte egendefinierade typer, vilket alltså innebär att
en likhetsjämförelse mellan olika egendefinierade typer alltid resulterar i false.

Det är emellertid möjligt att få samma typkoll för egendefinierade typer som för
primitiva typer genom att importera scala.language.strictEquality.

import scala.language.strictEquality
class Gurka(val vikt: Int)

class Bil(val typ: String)

1 scala> Gurka(50) == Bil("Sedan")
2 1 |Gurka(50) == Bil("Sedan")
3 |^^^^^^^^^^^^^^^^^^^^^^^^^
4 |Values of types Gurka and Bil cannot be compared with == or !=

Lösn. uppg. 12. Attributrepresentation. Privat konstruktor. Fabriksmetod.

a) Det blir kompileringsfel eftersom konstruktorn är privat.

1 scala> class Point private (val x: Int, val y: Int)
2 | object Point:
3 | def apply(x: Int = 0, y: Int = 0): Point = new Point(x, y)
4 | val origo = apply()
5 |
6 // defined class Point
7 // defined object Point
8

9 scala> new Point(0, 0)
10 1 |new Point(0, 0)
11 | ^^^^^
12 |constructor Point cannot be accessed as a member of Point from module class

b)

• Genom att ha en privat konstruktor och bara göra indirekt instansiering via
fabriksmetod är lätt ändra attributrepresentation i framtiden utan att befintlig
kod behöver ändras.

L.5. LÖSNING CLASSES 341

• Accessreglerna för kompanjonsobjekt är sådana att kompanjoner ser varandras
privata delar.

c)

class Point private (private val p: (Int, Int)):
def x: Int = p._1
def y: Int = p._2

object Point:
def apply(x: Int = 0, y: Int = 0): Point = new Point(x, y)
val origo = apply()

Lösn. uppg. 13. Synlighet av klassparametrar och konstruktor, private[this].

a) Gurka5 är trasig. Eftersom vikten i Gurka5 är privat för instansen och inte klassen,
kan en instans inte accessa en annan instans vikt.

1 11 | def kompisVikt = kompis.vikt
2 | ^^^^^^^^^^^
3 |value vikt cannot be accessed as a member of (Gurka5.this.kompis : Gurka5) from class Gurka5.

b)

1 scala> new Gurka1(42).vikt
2 1 |new Gurka1(42).vikt
3 |^^^^^^^^^^^^^^^^^^^
4 |value vikt cannot be accessed as a member of Gurka1 from module class
5

6 scala> new Gurka2(42).vikt
7 val res0: Int = 42
8

9 scala> new Gurka3(42).vikt
10 1 |new Gurka3(42).vikt
11 |^^^^^^^^^^^^^^^^^^^
12 |value vikt cannot be accessed as a member of Gurka3 from module class
13

14 scala> val ingenGurka: Gurka4 = null
15 val ingenGurka: Gurka4 = null
16

17 scala> new Gurka4(42, ingenGurka).kompisVikt
18 java.lang.NullPointerException: Cannot invoke "rs$line$1$Gurka4.vikt()" bec...
19 at rs$line$1$Gurka4.kompisVikt(rs$line$1:8)
20 ... 38 elided
21

22 scala> new Gurka4(42, new Gurka4(84, null)).kompisVikt
23 val res2: Int = 84
24

25 scala> new Gurka6(42)
26 1 |new Gurka6(42)
27 | ^^^^^^
28 |constructor Gurka6 cannot be accessed as a member of Gurka6 from module...
29

30 scala> new Gurka7(-42)
31 1 |new Gurka7(-42)
32 | ^^^^^^

342 KAPITEL L. LÖSNINGAR TILL ÖVNINGARNA

33 |constructor Gurka7 cannot be accessed as a member of Gurka7 from module...
34

35 scala> Gurka7(-42)
36 java.lang.IllegalArgumentException: requirement failed: negativ vikt: -42
37

38 scala> val g = Gurka7(42)
39 val g: Gurka7 = Gurka7@51fd1c7c
40

41 scala> g.vikt
42 val res4: Int = 42
43

44 scala> g.vikt = -1
45

46 scala> g.vikt
47 val res5: Int = -1

Lösn. uppg. 14. Egendefinierad setter kombinerat med privat konstruktor.

a)
Rad 1:

1 java.lang.IllegalArgumentException: requirement failed: negativ vikt: -42

Gurka8.apply kräver att vikt >= 0 annars kastar require ett undantag.
Rad 5:

1 java.lang.IllegalArgumentException: requirement failed: negativ vikt: -1

Settern vikt_= kräver att vikt >= 0 annars kastar require ett undantag.
Rad 7:

1 java.lang.IllegalArgumentException: requirement failed: negativ vikt: -958

Eftersom 42 - 1000 är mindre än noll kastar require ett undantag.
b) Man kan sätta egna mer specifika krav på vad som får göras med värdena så man
har större koll på att inget oväntat händer.

Lösn. uppg. 15. Objekt med föränderligt tillstånd (eng. mutable state).

a)

class Frog private (initX: Int = 0, initY: Int = 0):
private var _x: Int = initX
private var _y: Int = initY
private var _distanceJumped: Double = 0

def x: Int = _x
def y: Int = _y

def jump(dx: Int, dy: Int): Unit =
_x += dx
_y += dy
_distanceJumped += math.hypot(dx, dy)

L.5. LÖSNING CLASSES 343

def randomJump: Unit =
def rnd = util.Random.nextInt(10) + 1
jump(rnd, rnd)

def distanceToStart: Double = math.hypot(x,y)
def distanceJumped: Double = _distanceJumped
def distanceTo(f: Frog): Double = math.hypot(x - f.x, y - f.y)

object Frog:
def spawn(): Frog = Frog()

b) Exempel på testprogram:

object FrogTest:
def test(): Unit =

val f1 = Frog.spawn()
assert(f1.x == 0 && f1.y == 0, "Test of spawn, reqt 1 & 4 failed.")

f1.jump(4, 3)
assert(f1.x == 4 && f1.y == 3, "Test of jump, reqt 1 & 4 failed.")

f1.jump(4, 3)
assert(f1.distanceJumped == 10, "Test of jump, reqt 2 failed.")

f1.jump(-4, -3)
assert(f1.distanceToStart == 5, "Test of jump, reqt 3 failed.")

for x <- 1 to 10000 do
val f2 = Frog.spawn()
f2.randomJump
assert(f2.x > 0 && f2.x <= 10 && f2.y > 0 && f2.y <= 10,

"Test of randomJump, reqt 5 failed.")

println("Test Ok!")

c) En metod som är en indirekt avläsning av attributvärden kallas getter.
d)

class Frog private (initX: Int = 0, initY: Int = 0):
private var _x: Int = initX
private var _y: Int = initY
private var _distanceJumped: Double = 0

def jump(dx: Int, dy: Int): Unit =
_x += dx
_y += dy
_distanceJumped += math.hypot(dx, dy)

def x: Int = _x
def x_=(newX: Int): Unit = // Setter för x

_distanceJumped += math.abs(x - newX)

344 KAPITEL L. LÖSNINGAR TILL ÖVNINGARNA

_x = newX

def y: Int = _y
def y_=(newY: Int): Unit = // Setter för y

_distanceJumped += math.abs(y - newY)
_y = newY

def randomJump: Unit =
def rnd = util.Random.nextInt(10) + 1
jump(rnd, rnd)

def distanceToStart: Double = math.hypot(x,y)
def distanceJumped: Double = _distanceJumped
def distanceTo(f: Frog): Double = math.hypot(x - f.x, y - f.y)

object Frog:
def spawn(): Frog = Frog()

e)

object FrogSimulation:
def isAnyCollision(frogs: Vector[Frog]): Boolean =

var found = false
frogs.indices.foreach(i => // generate all pairs (i,j)

for j <- i + 1 until frogs.size do
if !found then

found = frogs(i).distanceTo(frogs(j)) <= 0.5
)
found

def jumpUntilCrash(n: Int = 100, initDist: Int = 8): (Int, Double) =
val frogs = Vector.fill(n)(Frog.spawn())
(0 until n).foreach(i => frogs(i).x = i * initDist)
var count = 0
while !isAnyCollision(frogs) do

frogs(util.Random.nextInt(n)).randomJump
count += 1

(count, frogs.map(_.distanceJumped).sum)

def run(nbrOfCrashTests: Int = 10) =
for i <- 1 to nbrOfCrashTests do

val (n, dist) = jumpUntilCrash()
println(s"\nAntalet looprundor innan grodkrock: $n")
println(s"Totalt avstånd hoppat av alla grodor: $dist")

Lösn. uppg. 16. Objekt med föränderligt tillstånd (eng. mutable state).

class Square private (val initX: Int, val initY: Int, val initSide: Int):
private var nMoves = 0

L.5. LÖSNING CLASSES 345

private var sumCost = 0.0

private var _x = initX
private var _y = initY

private var _side = initSide

private def addCost(): Unit =
sumCost += math.hypot(x - initX, y - initY) * side

def x: Int = _x
def y: Int = _y

def side = _side

def scale(factor: Double): Unit = _side = (_side * factor).round.toInt

def move(dx: Int, dy: Int): Unit =
_x += dx; _y += dy
nMoves += 1
addCost()

def moveTo(x: Int, y: Int): Unit =
_x = x; _y = y
nMoves += 1
addCost()

def cost: Double = sumCost

def pay: Double = {val temp = sumCost; sumCost = 0; temp}

override def toString: String =
s"Square[($x, $y), side: $side, #moves: $nMoves times, cost: $sumCost]"

object Square:
private var created = Vector[Square]()

def apply(x: Int, y: Int, side: Int): Square =
require(side >= 0, s"side must be positive: $side")
val sq = (new Square(x, y, side))
created :+= sq
sq

def apply(): Square = apply(0, 0, 1)

def totalNumberOfMoves: Int = created.map(_.nMoves).sum

def totalCost: Double = created.map(_.cost).sum

346 KAPITEL L. LÖSNINGAR TILL ÖVNINGARNA

L.6 Lösning patterns

L.6.1 Grunduppgifter; förberedelse inför laboration

Lösn. uppg. 1. Matcha på konstanta värden.

a) Scalas match-uttryck jämför stegvis värdet med varje case för att sedan returnera
ett värde tillhörande motsvarande case.
b)

1 scala.MatchError

Exekveringsfel, uppstår av en viss input under körningen.

Lösn. uppg. 2. Gard i case-grenar.
Garden som införts vid case 'g' slumpar fram ett tal mellan 0 och 1 och om talet

inte är större än 0.5 så blir det ingen matchning med case 'g' och programmet testar
vidare tills default-caset.
Gardens krav måste uppfyllas för att det ska matcha som vanligt.

Lösn. uppg. 3. Mönstermatcha på attributen i case-klasser.
G100true. Vid byte av plats: Gtrue100.
match testar om kompanjonsobjektet Gurka är av typen Gurka med två parameter-
värden. De angivna parametrarna tilldelas namn, vikt får namnet v och ärRutten
namnet rutten och skrivs sedan ut. Byts namnen dessa ges skrivs de ut i den omvända
ordningen.

Lösn. uppg. 4. Matcha på case-objekt och nyttan med sealed.

a)

1 Cannot extend sealed trait Färg in a different source file

Felmeddelandet fås av att REPL:en behandlar varje inmatning individuellt och tillåter
därför inte att subtypen Spader ärver från (eng. extends) supertypen Färg eftersom
denna var förseglad (eng. sealed). Mer om detta senare i kursen...
b) -
c) Förusatt att import Kortlek._ har skrivits...

def parafärg(f: Färg): Färg = f match
case Spader => Klöver
case Hjärter => Ruter
case Ruter => Hjärter
case Klöver => Spader

d)

1 <console>:17: warning: match may not be exhaustive.
2 It would fail on the following input: Ruter

Varningen kommer redan vid kompilering.
e)

1 scala.MatchError: Ruter (of class Ruter)
2 at .parafärg(<console>:17)

L.6. LÖSNING PATTERNS 347

Detta är ett körtidsfel.
f) Om en klass är sealed innebär det att om ett element ska matchas och är en
subtyp av denna klass så ger Scala varning redan vid kompilering om det finns en risk
för ett MatchError, alltså om match-uttrycket inte är uttömmande och det finns fall
som inte täcks av ett case.
En förseglad supertyp innebär att programmeraren redan vid kompileringstid får en
varning om ett fall inte täcks och i sånt fall vilket av undertyperna, liksom annan
hjälp av kompilatorn. Detta kräver dock att alla subtyperna delar samma fil som den
förseglade klassen.

Lösn. uppg. 5. Mönstermatcha enumeration.a)

def parafärg(f: Färg): Färg = f match
case Färg.Spader => Färg.Klöver
case Färg.Hjärter => Färg.Ruter
case Färg.Ruter => Färg.Hjärter
case Färg.Klöver => Färg.Spader

Likt uppgift 4c så kan även här en import-sats skrivas för att nå medlemmarna i Färg
utan punktnotation. Det är dock inte alltid fördelaktigt att importera medlemmar
till den globala namnrymden, då det kan förekomma namnkrockar. Anta ett exempel
där vi jobbar på ett program med grafiskt användargränssnitt där vi har en färg Red
definerad. Anta också att vi nu till vårt program vill importera ytterligare en röd färg
för kulörerna hjärter och ruter, denna också namngiven Red. I detta scenario hade det
uppstått en namnkrock då Red redan är definerad så importeringen hade ej kunnat
ske.
b) Vid mönstermatchning så fungerar sealed trait ihop med case-objekt i prakti-
ken likadant som att använda sig av enum. Vi såg att i deluppgift 4d så varnade REPL
redan vid kompilering att denna matchning inte var uttömmande (eng. exhaustive).
Detta gäller även vid användning av enum.

Lösn. uppg. 6. Betydelsen av små och stora begynnelsebokstäver vid matchning.

a) Både str och vadsomhelst matchar med inputen, oavsett vad denna är på grund
av att de har en liten begynnelsebokstav.
str har dock en gard att strängen måste börja med g vilket gör så endast val g = "gurka"
matchar med denna. val x = "urka" plockas dock upp av vadsomhelst som är utan
gard.
b)

1 <console>:16: warning: patterns after a variable pattern cannot match (SLS 8.1
2 .1)

och

1 <console>:17: warning: unreachable code due to variable patter 'tomat' on line
2 16

Trots att en klass tomat existerar så tolkar Scalas match den som en case-gren som
fångar allt på grund av en liten begynnelsebokstav. Detta gör så alla objekt som inte
är av typen Gurka kommer ge utskriften tomat och att sista caset inte kan nås.
c)

348 KAPITEL L. LÖSNINGAR TILL ÖVNINGARNA

case `tomat` => println("tomat")

Lösn. uppg. 7. Matcha på innehåll i en Vector.

1 jeh
2 jed
3 42

För varje element i xss görs en matching som resulterar i en sträng. Vad som händer i
varje gren förklaras nedan.

1. Första match-grenen aktiveras aldrig eftersom xss ej innehåller någon tom
vektor.

2. Andra grenen passar med Vector("hej") och variablen a binds till "hej".

3. Tredje grenen matchar Vector("på", "dej") där första värdet binds inte till
någon variabel eftersom understreck finns på motsvarande plats, medan andra
värdet binds till b.

4. Fjärde grenen matchar en sekvens med tre värden där mittenvärdet är "x".
Den sista grenen aktiveras inte i detta exempel men hade matchat allt som inte
fångas av tidigare grenar.

Lösn. uppg. 8. Använda Option och matcha på värden som kanske saknas.

a)

1. var kanske blir en Option som håller Int men är utan något värde, kallas då
None.

2. Eftersom var kanske är utan värde är storleken av den 0.

3. var kanske tilldelas värdet 42 som förvaras i en Some som visar att värde finns.

4. Eftersom var kanske nu innehåller ett värde är storleken 1.

5. Eftersom var kanske innehåller ett värde är den inte tom.

6. Eftersom var kanske innehåller ett värde är den definierad.

7. def ökaOmFinns matchar en Option[Int] med dess olika fall.
Finns ett värde, alltså opt: Option[Int] är en Some, så returneras en Some
med ursprungliga värdet plus 1.
Finns inget värde, alltså opt: Option[Int] är en None, så returneras en None.

8. -

9. -

10. -

11. def ökaOmFinns appliceras på kanske och returnerar en Some med värdet hos
kanske plus 1, alltså 43.

12. def öka tar emot värdet av en Int och returnerar värdet av denna plus 1.

L.6. LÖSNING PATTERNS 349

13. map applicerar def öka till det enda elementen i kanske, 42. Denna funktion
returnerar en Some med värdet 43 som tilldelas merKanske.

b)

1. val meningen blir en Some med värdet 42.

2. val ejMeningen blir en Option[Int] utan något värde, en None.

3. map(_ + 1) appliceras på meningen och ökar det existerande värdet med 1 till
43.

4. map(_ + 1) appliceras på ejMening men eftersom inget värde existerar fortsät-
ter denna vara None.

5. map(_ + 1) appliceras ännu en gång på ejMening men denna gång inkluderas
metoden orElse. Om ett värde inte existerar hos en Option, alltså är av typen
None, så utförs koden i orElse-metoden som i detta fall skriver ut saknas för
värdet som saknas.

6. Samma anrop från föregående rad utförs denna gång på meningen och eftersom
ett värde finns utförs endast första biten som ökar detta värde med 1.

Denna metod kan användas i stället för match-versionen i föregående exempel i och
med dennas simplare form. En Option innehåller ju antingen ett värde eller inte så
ett längre match-uttryck är inte nödvändigt.
c)

1. En vektor xs skapas med var femte tal från 42 till 82.

2. En tom Int-vektor e skapas.

3. headOption tar ut första värdet av vektorn xs och returnerar den sparad i en
Option, Some(42).

4. Första värdet i vektorn xs sparas i en Option och hämtas sedan av get-metoden,
42.

5. Som i föregående rad men denna gång används getOrElse som om den Option
som returneras saknar ett värde, alltså är av typen None, returnerar 0 istället.
Eftersom xs har minst ett värde så är den Option som returneras inte None och
ger samma värde som i föregående, 42.

6. Som föregående rad fast istället för att returnera 0 om värde saknas så returne-
ras en Option[Int] med 0 som värde.

7. headOption försöker ta ut första värdet av vektorn e men eftersom denna saknar
värden returneras en None.

8.
1 java.util.NoSuchElementException: None.get

Liksom föregående rad returnerar headOption på den tomma vektorn e en None.
När get-metoden försöker hämta ett värde från en None som saknar värde ger
detta upphov till ett körtidsfel.

350 KAPITEL L. LÖSNINGAR TILL ÖVNINGARNA

9. Liksom i föregående returneras None av headOption men eftersom getOrElse-
metoden används på denna None returneras 0 istället.

10. Liksom föregående används getOrElse-metoden på den None som returneras.
Denna gång returneras dock en Option[Int] som håller värdet 0.

11. En vektor innehållandes elementen xs-vektorn och 3 e-vektorer skapas.

12. map använder metoden lastOption på varje delvektor från vektorn på föregå-
ende rad. Detta sammanställer de sista elementen från varje delvektor i en ny
vektor. Eftersom vektor e är tom returneras None som element från denna.

13. Samma sker som i föregående rad men flatten-metoden appliceras på slutgilti-
ga vektorn som rensar vektorn på None och lämnar endast faktiska värden.

14. lift-metoden hämtar det eventuella värdet på plats 0 i xs och returnerar den i
en Option som blir Some(42).

15. lift-metoden försöker hämta elementet på plats 1000 i xs, eftersom detta inte
existerar returneras None.

16. Samma sker som i föregående fast applicerat på vektorn e. Sedan appliceras
getOrElse(0) som, eftersom lift-metoden returnerar None, i sin tur returnerar
0.

17. find-metoden anropas på xs-vektorn. Den letar upp första talet över 50 och
returnerar detta värde i en Option[Int], alltså Some(52).

18. find-metoden anropas på xs-vektorn. Den letar upp första värdet under 42 men
eftersom inget värde existerar under 42 i xs returneras None istället.

19. find-metoden anropas på e-vektorn och skriver ut HITTAT! om ett element
under 42 hittas. Eftersom e-vektorn är tom returneras None vilket foreach inte
räknar som element och därav inte utförs på.

d) Användning av -1 som returvärde vid fel eller avsaknad på värde kan ge upphov
till körtidsfel som är svåra att upptäcka. null kan i sin tur orsaka kraschar om det
skulle bli fel under körningen. Option har inte samma problem som dessa, används
ett getOrElse-uttryck eller dylikt så kraschar inte heller programmet.
Dessutom behöver inte en funktion som returnerar en Option samma dokumentation
av returvärdena. Istället för att skriva kommentarer till koden på vilka värden som
kan returneras och vad dessa betyder så syns det direkt i koden.
Slutgiltligen är Option mer typsäkert än null. När du returnerar en Option så
specificeras typen av det värde som den kommer innehålla, om den innehåller något,
vilket underlättar att förstå och begränsar vad den kan returnera.

Lösn. uppg. 9. Kasta undantag.

a)

1. Ett Exception kastas med felmeddelandet PANG!.

2. Flera olika typer av Exception visas.

3. En typ av Exception, IllegalArgumentException, kastas med felmeddelandet
fel fel fel.

L.6. LÖSNING PATTERNS 351

4. Ett undantag med felmeddelandet stormvind! kastas och fångas av catch-
uttrycket. Ett match-uttryck undersöker undantaget och skriver ut meddelandet,
samt returnerar -1.

b) Exempelvis:
OutOfMemoryError, om programmet får slut på minne.
IndexOutOfBoundsException, om en vektorposition som är större än vad som finns
hos vektorn försöker nås.
NullPointerException, om en metod eller dylikt försöker användas hos ett objekt
som inte finns och därav är en nullreferens.
c) om både try-grenen och catch-grenen har samma typ, här Int, så härleder kom-
pilatorn samma typ för hela uttrycket. Skulle catch-grenen returnera ett värde av
en helt annan typ istället, t.ex. String, så blir den mest precisa typen som kompila-
torn kan härleda för hela uttrycket Matchable, som är en direkt subtyp till den mest
generella typen Any.

Lösn. uppg. 10. Fånga undantag med scala.util.Try.

a)

1. def pang skapas som kastar ett Exception med felmeddelandet PANG!.

2. Scalas verktyg Try, Success och Failure importeras.

3. def pang anropas i Try som fångar undantaget och kapslar in den i en Failure.

4. Metoden recover matchar undantaget i Failure från föregående rad med ett
case och gör om föredetta Failure till Success vid matchning, liknande catch.

5. Strängen tyst körs i föregående test men eftersom inget undantag kastas blir
den inkapslad i en Success och recover behöver inte göra något. Den tar endast
hand om undantag.

6. def kanskePang skapas som har lika stor chans att returnera strängen tyst
såsom anropa def pang.

7. def kanskeOk skapas som testar def kanskePang med Try.

8. En vektor xs fylls med resultaten, Success och Failure, från 100 körningar av
kanskeOk.

9. Elementet på plats 13 i vektor xs matchas med något av 2 case. Om det är en
Success skrivs :) ut, om en Failure skrivs :(plus felmeddelandet ut.

10. -

11. -

12. Metoden isSuccess testar om elementet på plats 13 i xs är en Success och
returnerar true om så är fallet.

13. Metoden isFailure testar om elementet på plats 13 i xs är en Failure och
returnerar true om så är fallet.

14. Metoden count räknar med hjälp av isFailure hur många av elementen i xs
som är Failure och returnerar detta tal.

352 KAPITEL L. LÖSNINGAR TILL ÖVNINGARNA

15. Metoden find letar upp med hjälp av isFailure ett element i xs som är Failure
och returnerar denna i en Option.

16. badOpt tilldelas den första Failure som hittas i xs.

17. goodOpt tilldelas den första Success som hittas i xs.

18. Resultatet badOpt skrivs ut, Option[scala.util.Try[String]] =
Some(Failure(java.lang.Exception: PANG!))

19. Metoden get hämtar från badOpt den Failure som förvaras i en Option.

20. Metoden get anropas ännu en gång på resultatet från föregående rad, alltså en
Failure, som hämtar undantaget från denna och som då i sin tur kastas.

21. Metoden getOrElse anropas på den Failure som finns i badOpt. Eftersom detta
är en Exception utförs orElse-biten istället för att undantaget försöker hämtas.
Då returneras strängen bomben desarmerad!.

22. Metoden getOrElse anropas på den Success som finns i goodOpt. Eftersom
detta är en Success med en normal sträng sparad i sig returneras denna sträng,
tyst.

23. Metoden från föregående används denna gång på alla element i xs där resultatet
skrivs ut för varje.

24. Metoden toOption appliceras på alla Success och Failure i xs. De med ett
exception, alltså Failure, blir en None medan de med värden i Success ger en
Some med strängen tyst i sig.

25. Metoden flatten appliceras på vektorn fylld med Option från föregående rad
för att ta bort alla None-element.

26. Metoden size används på slutgiltiga listan från föregående rad för att räkna
ut hur många Some som resultatet innehåller. Den har alltså beräknat antalet
element i xs som var av typen Success med hjälp av Option-typen.

b) pang har returtypen Nothing, en specialtyp inom Scala som inte är kopplad till
Any, och som inte går att returnera.
c) Typen Nothing är en subtyp av varenda typ i Scalas hierarki. Detta innebär
att den även är en subtyp av String vilket implicerar att String inkluderar både
strängar och Nothing och därav blir returtypen.

L.6.2 Fördjupningsuppgifter; utmaningar

Lösn. uppg. 11. Använda matchning eller dynamisk bindning?

a)

package vegopoly

trait Grönsak:
def vikt: Int
def ärRutten: Boolean
def ärÄtbar: Boolean

L.6. LÖSNING PATTERNS 353

case class Gurka(vikt: Int, ärRutten: Boolean) extends Grönsak:
val ärÄtbar: Boolean = (!ärRutten && vikt > 100)

case class Tomat(vikt: Int, ärRutten: Boolean) extends Grönsak:
val ärÄtbar: Boolean = (!ärRutten && vikt > 50)

object Main:
def slumpvikt: Int = (math.random()*500 + 100).toInt

def slumprutten: Boolean = math.random() > 0.8

def slumpgurka: Gurka = Gurka(slumpvikt, slumprutten)

def slumptomat: Tomat = Tomat(slumpvikt, slumprutten)

def slumpgrönsak: Grönsak =
if math.random() > 0.2 then slumpgurka else slumptomat

def main(args: Array[String]): Unit =
val skörd = Vector.fill(args(0).toInt)(slumpgrönsak)
val ätvärda = skörd.filter(_.ärÄtbar)
println("Antal skördade grönsaker: " + skörd.size)
println("Antal ätvärda grönsaker: " + ätvärda.size)

b) Följande case class läggs till:

case class Broccoli(vikt: Int, ärRutten: Boolean) extends Grönsak:
val ärÄtbar: Boolean = (!ärRutten && vikt > 80)

Därefter läggs följande till i object Main innan def slumpgrönsak:

def slumpbroccoli: Broccoli = Broccoli(slumpvikt, slumprutten)

Slutligen ändras def slumpgrönsak till följande:

def slumpgrönsak: Grönsak = // välj t.ex. denna fördelning:
val rnd = math.random()
if rnd > 0.5 then slumpgurka // 50% sannolikhet för gurka
else if rnd > 0.2 then slumptomat // 30% sannolikhet för tomat
else slumpbroccoli // 20% sannolikhet för broccoli

c) Fördelarna med match-versionen, och mönstermatchning i sig, är att det är väldigt
lätt att göra ändringar på hur matchningen sker. Detta innebär att det skulle vara
väldigt lätt att ändra definitionen för ätbarheten. Skulle dock dessa inte ändras ofta
utan snarare grönsaksutbudet så kan det polyformistiska alternativet vara att föredra.
Detta eftersom det skulle implementeras och ändras lättare än mönstermatchningen
vid byte av grönsaker.

354 KAPITEL L. LÖSNINGAR TILL ÖVNINGARNA

Lösn. uppg. 12. Metoden equals.

a)

1. En klass Gurka skapas med parametrarna vikt av typen Int och ärÄtbar av
typen Boolean.

2. g1 tilldelas en instans av Gurka-klassen med vikt = 42 och ärÄtbar = true.

3. g2 tilldelas samma Gurka-objekt som g1.

4. g3 tilldelas en ny instans av Gurka-klassen med motsvarande parametrar som
g1.

5. ==(equals)-metoden jämför g1 med g2 och returnerar true.

6. ==(equals)-metoden jämför g1 med g3 och returnerar false.

7. def equals(x\$1: Any): Boolean

Som kan ses ovan är elementet som jämförs i equals av typen Any. Eftersom program-
met inte känner till klassen så används Any.equals vid jämförelsen. Till skillnad från
de primitiva datatyperna som vid jämförelse med equals jämför innehållslikhet, så
jämförs referenslikheten hos klasser om inget annat är specificerat. g1 och g2 refererar
till samma objekt medan g3 pekar på ett eget sådant vilket innebär att g1 och g3 inte
har referenslikhet.

b)

g1

Gurka

vikt 42 ärÄtvärd true

g2

Gurka

vikt 42 ärÄtvärd true

g3

c) -

d) I de första 3 raderna sker samma som i deluppgift a. När nu dessa jämförelser görs
mellan Gurka-objekten så överskuggas Any.equals av den equals som är specificerad
för just Gurka. Eftersom båda objekten g1 jämförs med också är av typen Gurka så
matchar den med case that: Gurka. Denna i sin tur jämför vikterna hos de båda
gurkorna och returnerar en Boolean huruvida de är lika eller inte, vilket de i båda
fallen är.

e) I deluppgift a gav g1 == g3 false trots innehållslikhet. Efter skuggningen ger
dock detta uttryck true vilket påvisar jämförelse av innehållslikhet.

L.6. LÖSNING PATTERNS 355

Lösn. uppg. 13. Polynom.

a) TODO!!!

b) TODO!!!

Lösn. uppg. 14. Option som en samling.
Exempel på metoder som finns både för Vector och Option: foreach, filter, fold

etc.
Metoden contains returnerar en Boolean som visar om den har ett värde eller ej.

Lösn. uppg. 15. Fånga undantag med catch i Java och Scala. TODO!!!

Lösn. uppg. 16. Polynom, fortsättning: reducering.

Lösn. uppg. 17. Typsäker innehållstest med metoden ===.

Lösn. uppg. 18. Överskugga equals med innehållslikhet även för icke-finala klasser.

Lösn. uppg. 19. Överskugga equals vid arv.

Lösn. uppg. 20. Speciella matchningar. TODO!!!

Lösn. uppg. 21. Extraktorer. TODO!!!

Lösn. uppg. 22. Polynom, fortsättning: polynomdivision. TODO!!!

356 KAPITEL L. LÖSNINGAR TILL ÖVNINGARNA

L.7 Lösning sequences

L.7.1 Grunduppgifter; förberedelse inför laboration

Lösn. uppg. 1. Para ihop begrepp med beskrivning.

element 1 G objekt i en datastruktur
samling 2 B datastruktur med element av samma typ
samlingsbibliotek 3 J många färdiga samlingar med olika egenskaper
sekvens(samling) 4 L noll el. flera element av samma typ i viss ordning
sekvensalgoritm 5 I lösning på problem som drar nytta av sekvenssamling
ordning 6 A definierar hur element av en viss typ ska ordnas
sortering 7 C algoritm som ordnar element i en viss ordning
sökning 8 D algoritm som letar upp element enligt sökkriterium
linjärsökning 9 F sökalgoritm som letar i sekvens tills element hittas
registrering 10 H algoritm som räknar element med vissa egenskaper
tidskomplexitet 11 E hur exekveringstiden växer med problemstorleken
minneskomplexitet 12 K hur minnesåtgången växer med problemstorleken

Lösn. uppg. 2. Olika sekvenssamlingar.

Vector 1 B oföränderlig, ger snabbt godtyckligt ändrad samling
List 2 C oföränderlig, ger snabbt ny samling ändrad i början
Array 3 D primitiv, förändringsbar, snabb indexering, fix storlek
ArrayBuffer 4 A förändringsbar, snabb indexering, kan ändra storlek
ListBuffer 5 E förändringsbar, snabb att ändra i början

Lösn. uppg. 3. Använda sekvenssamlingar.

a)

L.7. LÖSNING SEQUENCES 357

x +: xs 1 G Vector(0, 1, 2, 3)

xs +: x 2 L error: value +: is not a member of Int

xs :+ x 3 J Vector(1, 2, 3, 0)

xs ++ xs 4 M Vector(1, 2, 3, 1, 2, 3)

xs.indices 5 E (0 until 3)

xs apply 0 6 C 1

xs(3) 7 I java.lang.IndexOutOfBoundsException

xs.length 8 O 3

xs.take(4) 9 F Vector(1, 2, 3)

xs.drop(2) 10 K Vector(3)

xs.updated(0, 2) 11 B Vector(2, 2, 3)

xs.tail.head 12 N 2

xs.head.tail 13 D error: value tail is not a member of Int

xs.isEmpty 14 H false

xs.nonEmpty 15 A true

b)

fel typ förklaring
value +: is not
a member of Int

kompileringsfel Operatorer som slutar med kolon
är högerassociativa. Metodanropet
xs +: x motsvarar med punktnota-
tion x.+:(xs) och det finns ingen me-
tod med namnet +: på heltal.

IndexOutOfBoundsException körtidsfel Det finns bara 3 element och index
räknas från 0 i sekvenssamlingar.

value tail is not
a member of Int

kompileringsfel Metoden head ger första elementet
och heltal saknar sekvenssamlings-
metoden tail.

Lösn. uppg. 4. Kopiering av sekvenser.

a)

xs(0) rs$line5$Mutant@66d766b9 nya instanser får
nya hexkoder

ys(0).int 0 eftersom ys innehåller samma instans som xs

zs(0).int 5 eftersom !(xs(0) eq zs(0))

xs(0) eq ys(0) true eftersom samma instans

xs(0) eq zs(0) false eftersom olika instanser

(ys.toBuffer :+
new Mutant).apply(0).int

0 eftersom den ej djupkopierade kopian av typen
ArrayBuffer refererar samma instans på första
platsen som både ys och xs och x(0).int blev noll
i en tilldelning på rad 5 i REPL-körningen

358 KAPITEL L. LÖSNINGAR TILL ÖVNINGARNA

Observera alltså att kopiering med toArray, toVector, toBuffer, etc. inte är djup,
d.v.s. det är bara instansreferenserna som kopieras och inte själva instanserna.

b)

def deepCopy(xs: Array[Mutant]): Array[Mutant] =
val result = Array.ofDim[Mutant](xs.length) //fylld med null-referenser
var i = 0
while i < xs.length do

result(i) = new Mutant(xs(i).int) //kopia med samma innehåll på samma plats
i += 1

result

Det går också bra att skapa resultatarrayen med new Array[Mutant](xs.length).
Du kan också använda size i stället för length.

c)

1 scala> class Mutant(var int: Int = 0)
2 // defined class Mutant
3

4 scala> def deepCopy(xs: Array[Mutant]): Array[Mutant] =
5 | val result = Array.ofDim[Mutant](xs.length)
6 | var i = 0
7 | while i < xs.length do
8 | result(i) = new Mutant(xs(i).int)
9 | i += 1
10 | result
11

12 scala> val xs = Array.fill(3)(new Mutant)
13 xs: Array[Mutant] = Array(rs$line$2$Mutant@46a123e4, rs$line2Mutant@44bc2449,
14 rs$line2$Mutant@3c28e5b6)
15

16 scala> val ys = deepCopy(xs)
17 ys: Array[Mutant] = Array(rs$line$2$Mutant@14b8a751, rs$line2$Mutant@7345f97d,
18 rs$line$2$Mutant@554566a8)
19

20 scala> xs(0).int = 5
21

22 scala> ys(0).int
23 val res0: Int = 0

d) Nej, eftersom elementen inte kan förändras kan man utan problem dela referen-
ser mellan samlingar. Det finns inte någon möjlighet att det kan ske förändringar
som påverkar flera samlingar samtidigt. Dock gör man vanligen (ofta tidsödande)
djupkopieringar av samlingar med förändringsbara element för att kunna vara säker
på att den ursprungliga samlingen inte förändras.

Lösn. uppg. 5. Uppdatering av sekvenser.

a)

L.7. LÖSNING SEQUENCES 359

{ buf(0) = -1; buf(0) } 1 D -1

{ xs(0) = -1; xs(0) } 2 A error: value update is not a member

buf.update(1, 5) 3 F (): Unit

xs.updated(0, 5) 4 B Vector(5, 2, 3, 4)

{ buf += 5; buf } 5 C ArrayBuffer(-1, 5, 3, 4, 5)

{ xs += 5; xs } 6 G error: value += is not a member

xs.patch(1,Vector(-1,5),3) 7 E Vector(1, -1, 5)

xs 8 H Vector(1, 2, 3, 4)

b)

def insert(xs: Array[Int], elem: Int, pos: Int): Array[Int] =
xs.patch(from = pos, other = Array(elem), replaced = 0)

c) Pseudokoden nedan är skriven så att den kompilerar fast den är ofärdig.

def insert(xs: Array[Int], elem: Int, pos: Int): Array[Int] =
val result = ??? /* ny array med plats för ett element mer än i xs */
var i = 0
while(???){/* kopiera elementen före plats pos och öka i */}
if i < result.length then /* lägg elem i result på plats i */
while(???){/* kopiera över resten */}
result

d)

def insert(xs: Array[Int], elem: Int, pos: Int): Array[Int] =
val result = new Array[Int](xs.length + 1)
var i = 0
while i < pos && i < xs.length do { result(i) = xs(i); i += 1}
if i < result.length then { result(i) = elem; i += 1 }
while i < result.length do { result(i) = xs(i - 1); i += 1}
result

1 scala> insert(Array(1, 2), 0, pos = -1)
2 val res2: Array[Int] = Array(0, 1, 2)
3

4 scala> insert(Array(1, 2), 0, pos = 0)
5 val res3: Array[Int] = Array(0, 1, 2)
6

7 scala> insert(Array(1, 2), 0, pos = 1)
8 val res4: Array[Int] = Array(1, 0, 2)
9

10 scala> insert(Array(1, 2), 0, pos = 2)
11 val res5: Array[Int] = Array(1, 2, 0)
12

13 scala> insert(Array(1, 2), 0, pos = 42)
14 val res7: Array[Int] = Array(1, 2, 0)

Lösn. uppg. 6. Jämföra strängar i Scala.

360 KAPITEL L. LÖSNINGAR TILL ÖVNINGARNA

a)

1 true
2 true
3 true
4 true
5 true
6 false

b) s1 kommer först.

Lösn. uppg. 7. Linjärsökning enligt olika sökkriterier.

a)

xs.indexOf(0) 1 F 5

xs.indexOf(6) 2 B -1

xs.indexWhere(_ < 2) 3 H 4

xs.indexWhere(_ != 5) 4 I 1

xs.find(_ == 1) 5 D Some(1)

xs.find(_ == 6) 6 J None

xs.contains(0) 7 C true

xs.filter(_ == 1) 8 A Vector(1, 1)

xs.filterNot(_ > 1) 9 E Vector(1, 0, 1)

xs.zipWithIndex.filter(_._1 == 1).map(_._2) 10 G Vector(4, 6)

b) Med en boolesk variabel found:

def indexOf(xs: Vector[String], p: String => Boolean): Int =
var found = false
var i = 0
while i < xs.length && !found do

found = p(xs(i))
i += 1

if found then i - 1 else -1

Eller utan found:

def indexOf(xs: Vector[String], p: String => Boolean): Int =
var i = 0
while i < xs.length && !p(xs(i)) do i += 1
if i == xs.length then -1 else i

Eller så kanske man vill börja bakifrån; lösningen nedan är nog enklare att fatta
(?) och definitivt mer koncis, men uppfyller inte kravet att returnera index för första
förekomsten som det står i uppgiften. Men om sammanhanget tillåter att vi returnerar
något index för vilket predikatet gäller, eller om man faktiskt har kravet att leta
bakifrån, så funkar detta:

def indexOf(xs: Vector[String], p: String => Boolean): Int =
var i = xs.length - 1
while i >= 0 && !p(xs(i)) do i -= 1

L.7. LÖSNING SEQUENCES 361

i

Eller så kan man göra på flera andra sätt. När du ska implementera algoritmer, både
på programmeringstentan och i yrkeslivet som systemutvecklare, finns det ofta många
olika sätt att lösa uppgiften på som har olika egenskaper, fördelar och nackdelar. Det
viktiga är att lösningen fungerar så gott det går enligt kraven, att koden är begriplig
för människor och att implementationen inte är så ineffektiv att användarna tröttnar
i sin väntan på resultatet...

Lösn. uppg. 8. Labbförberedelse: Implementera heltalsregistrering i Array.

a)

def registreraTärningskast(xs: Seq[Int]): Vector[Int] =
val result = Array.fill(6)(0)
xs.foreach{ x =>

require(x >= 1 && x <= 6, "tärningskast ska vara mellan 1 & 6")
result(x - 1) += 1

}
result.toVector

b)

1 scala> registreraTärningskast(kasta(1000))
2 val res0: Vector[Int] = Vector(171, 163, 166, 152, 184, 164)
3

4 scala> registreraTärningskast(kasta(1000))
5 val res1: Vector[Int] = Vector(163, 161, 158, 174, 161, 183)

Lösn. uppg. 9. Inbyggda metoder för sortering.

'a' < 'A' 1 E false

"AÄÖö" < "AÅÖö" 2 H true

xs.sorted.head 3 C -1

xs.sorted.reverse.head 4 G 3

ys.sorted.head 5 I "ak"

zs.indexOf('a') 6 B 1

ps.sorted.head.förnamn.take(2) 7 D error: ...

ps.sortBy(_.förnamn).apply(1).förnamn.take(2) 8 A "ka"

xs.sortWith((x1,x2) => x1 > x2).indexOf(3) 9 F 0

Det blir fel i uttrycket ovan som försöker sortera en sekvens med instanser av Person
direkt med metoden sorted:

1 scala> ps.sorted
2 No implicit Ordering defined for Person.

Det blir fel eftersom kompilatorn inte hittar någon ordningsdefinition för dina egna
klasser. Senare i kursen ska vi se hur vi kan skapa egna ordningar om man vill få
sorted att fungera på sekvenser med instanser av egna klasser, men ofta räcker det
fint med sortBy och sortWith.

362 KAPITEL L. LÖSNINGAR TILL ÖVNINGARNA

Lösn. uppg. 10. Inbyggd metod för blandning.

a) Random.shuffle returnerar en ny blandad sekvenssamling av samma typ. Ord-
ningen i den ursprungliga samlingen påverkas inte.
b) Exempel på användning av random.shuffle:

1 scala> import scala.util.Random
2

3 scala> val xs = Vector("Sten", "Sax", "Påse")
4 val xs: Vector[String] = Vector(Sten, Sax, Påse)
5

6 scala> (1 to 10).foreach(_ => println(Random.shuffle(xs).mkString(" ")))
7 Sax Påse Sten
8 Sten Påse Sax
9 Sten Sax Påse
10 Sten Sax Påse
11 Sten Påse Sax
12 Sten Påse Sax
13 Sax Sten Påse
14 Sten Påse Sax
15 Sax Påse Sten
16 Sax Påse Sten
17

18 scala> (1 to 5).map(_ => Random.shuffle(1 to 6))
19 val res1: IndexedSeq[IndexedSeq[Int]] =
20 Vector(Vector(5, 2, 1, 4, 3, 6), Vector(6, 5, 4, 2, 1, 3),
21 Vector(3, 1, 4, 6, 5, 2), Vector(3, 2, 6, 5, 1, 4),
22 Vector(5, 3, 4, 6, 1, 2))
23

24 scala> (1 to 1000).map(_ => Random.shuffle(1 to 6).head).count(_ == 6)
25 val res2: Int = 168

Lösn. uppg. 11. Repeterade parametrar.

a)

1 scala> def stringSizes(xs: String*): Vector[Int] = xs.map(_.size).toVector
2 def stringSizes(xs: String*): Vector[Int]
3

4 scala> stringSizes("hej")
5 val res0: Vector[Int] = Vector(3)
6

7 scala> stringSizes("hej", "på", "dej", "")
8 val res1: Vector[Int] = Vector(3, 2, 3, 0)
9

10 scala> stringSizes()
11 val res2: Vector[Int] = Vector()

Anrop med tom argumentlista ger en tom heltalssekvens.
b)

1 scala> val xs = Vector("hej","på","dej", "")
2 val xs: Vector[String] = Vector(hej, på, dej, "")
3

4 scala> stringSizes(xs: _*)
5 val res0: Vector[Int] = Vector(3, 2, 3, 0)
6

L.7. LÖSNING SEQUENCES 363

7 scala> stringSizes(Vector(): _*)
8 val res1: Vector[Int] = Vector()

Ja, det funkar fint med tom sekvens.

364 KAPITEL L. LÖSNINGAR TILL ÖVNINGARNA

L.7.2 Extrauppgifter; träna mer

Lösn. uppg. 12. Registrering av booleska värden. Singla slant.

a)

def registerCoinFlips(xs: Seq[Boolean]): (Int, Int) =
val result = Array.fill(2)(0)
xs.foreach(x => if (x) result(0) += 1 else result(1) += 1)
(result(0), result(1))

b)

Lösn. uppg. 13. Kopiering och tillägg på slutet.

def copyAppend(xs: Array[Int], x: Int): Array[Int] =
val ys = new Array[Int](xs.length + 1)
var i = 0
while i < xs.length do

ys(i) = xs(i)
i += 1

ys(xs.length) = x
ys

De två buggarna i algoritmen finns (1) i villkoret som ska vara strikt mindre än och
(2) inne i loopen där uppräkningen av loppvariabeln saknas.

Lösn. uppg. 14. Kopiera och reversera sekvens.

a)

def seqReverseCopy(xs: Array[Int]): Array[Int] =
val n = xs.length
val ys = new Array[Int](n)
var i = 0
while i < n do

ys(n - i - 1) = xs(i)
i += 1

ys

b)

def seqReverseCopy(xs: Array[Int]): Array[Int] =
val n = xs.length
val ys = new Array[Int](n)
for i <- (n - 1) to 0 by -1 do

ys(n - i - 1) = xs(i)
ys

L.7. LÖSNING SEQUENCES 365

Lösn. uppg. 15. Kopiera alla utom ett.

Indata :En sekvens xs av typen Array[Int] och pos
Utdata :En ny sekvens av typen Array[Int] som är en kopia av xs fast med

elementet på plats pos borttaget
1 n ← antalet element xs
2 ys ← en ny Array[Int] med plats för n−1 element
3 for i ← 0 to pos−1 do
4 ys(i)← xs(i)
5 end
6 ys(pos)← x
7 for i ← pos+1 to n−1 do
8 ys(i−1)← xs(i)
9 end

10 ys

def removeCopy(xs: Array[Int], pos: Int): Array[Int] =
val n = xs.size
val ys = Array.fill(n - 1)(0)
for i <- 0 until pos do

ys(i) = xs(i)
for i <- (pos + 1) until n do

ys(i - 1) = xs(i)
ys

Lösn. uppg. 16. Borttagning på plats i array.

Indata :En sekvens xs av typen Array[Int], en position pos och ett
utfyllnadsvärde pad

Utdata :En uppdaterad sekvens av xs där elementet på plats pos tagits bort
och efterföljande element flyttas ett steg mot lägre index med ett sista
elementet som tilldelats värdet av pad

1 n ← antalet element xs
2 for i ← pos+1 to n−1 do
3 xs(i−1)← xs(i)
4 end
5 xs(n−1)← pad

def remove(xs: Array[Int], pos: Int, pad: Int = 0): Unit =
val n = xs.size
for i <- (pos + 1) until n do

xs(i - 1) = xs(i)
xs(n - 1) = pad

Lösn. uppg. 17. Kopiering och insättning.

a)

def insertCopy(xs: Array[Int], x: Int, pos: Int): Array[Int] =
val n = xs.size
val ys = Array.ofDim[Int](n + 1)
for i <- 0 until pos do

366 KAPITEL L. LÖSNINGAR TILL ÖVNINGARNA

ys(i) = xs(i)
ys(pos) = x
for i <- pos until n do

ys(i + 1) = xs(i)
ys

b) pos måste vara 0.
c)

1 java.lang.ArrayIndexOutOfBoundsException: -1

d) Elementet x läggs till på slutet av arrayen, alltså kommer den returnerande
arrayen vara större än den som skickades in.
e)

1 java.lang.ArrayIndexOutOfBoundsException: 5

Man får ArrayIndexOutOfBoundsException då indexeringen är utanför storleken hos
arrayen.

Lösn. uppg. 18. Insättning på plats i array.

Indata :En sekvens xs av typen Array[Int] och heltalen x och pos
Utdata : xs uppdaterat på plats, där elementet x har satts in på platsen pos och

efterföljande element flyttas ett steg där sista elementet försvinner
1 n ← antalet element i xs
2 ys ← en klon av xs
3 xs(pos)← x
4 for i ← pos+1 to n−1 do
5 xs(i)← ys(i−1)
6 end

def insertDropLast(xs: Array[Int], x: Int, pos: Int): Unit =
val n = xs.size
val ys = xs.clone
xs(pos) = x
for i <- pos + 1 until n do

xs(i) = ys(i - 1)

Lösn. uppg. 19. Fler inbyggda metoder för linjärsökning.

a)

• lastIndexOf är bra om man vill leta bakifrån i stället för framifrån; utan denna
hade man annars då behövt använda xs.reverse.indexOf(e)

• indexOfSlice(ys) letar efter index där en hel sekvens ys börjar, till skillnad
från indexOf(e) som bara letar efter ett enstaka element.

• segmentLength(p, i) ger längden på den längsta sammanhängande sekvens
där alla element uppfyller predikatet p och sökningen efter en sådan sekvens
börjar på plats i

• xs.maxBy(f) kör först funktionen f på alla element i xs och letar sedan upp det
största värdet; motsvarande minBy(f) ger minimum av f(e) över alla element
e i xs

L.7. LÖSNING SEQUENCES 367

b) –

368 KAPITEL L. LÖSNINGAR TILL ÖVNINGARNA

L.7.3 Fördjupningsuppgifter; utmaningar

Lösn. uppg. 20. Fixa svensk sorteringsordning av ÄÅÖ. TODO!!!

Lösn. uppg. 21. Fibonacci-sekvens med ListBuffer.

a)

def fib(max: Long): List[Long] =
val xs = scala.collection.mutable.ListBuffer.empty[Long]
xs.prependAll(Vector(1, 1))
while xs.head < max do xs.prepend(xs.take(2).sum)
xs.reverse.drop(1).toList

b)

1 scala> fib(Int.MaxValue).size
2 val res0: Int = 46

c)

def fibBig(max: BigInt): List[BigInt] =
val xs = scala.collection.mutable.ListBuffer.empty[BigInt]
xs.prependAll(Vector(BigInt(1), BigInt(1)))
while xs.head < max do xs.prepend(xs.take(2).sum)
xs.reverse.drop(1).toList

1 scala> fibBig(Long.MaxValue).size
2 val res0: Int = 92
3

4 scala> fibBig(BigInt(Long.MaxValue).pow(64)).size
5 val res1: Int = 5809
6

7 scala> fibBig(BigInt(Long.MaxValue).pow(128)).last
8 val res2: BigInt = 466572805528355449194553611102863153950720005186045547177525242118545194247268198196024304108711020686545660707513547993668927474420737702772726410095432646683782038269206733583562623144723659044965174192994997081915291671203135284448809948278794870130243195729759407652514927641622448506112336858244040087748168546825439555497978038066584506772917257705338472345660520902622305735366348690501583267086607109594118454398543160294999638070938386822164561738531661786873174424857409631803971069795886028284195109247953151499404937810249349132907101567724032186422592145774126660328936577771749713614176045435526886758975994177511201005911748503347657112775964769397750819976041389533451539207673441658345632507479241970993525868183091563469584756527454807108...
9

10 scala> fibBig(BigInt(Long.MaxValue).pow(128)).last.toString.size
11 val res3: Int = 2428
12

13 scala> fibBig(BigInt(Long.MaxValue).pow(256)).last.toString.size
14 val res4: Int = 4856
15

16 scala> fibBig(BigInt(Long.MaxValue).pow(1024)).last.toString.size
17 java.lang.OutOfMemoryError: Java heap space

Lösn. uppg. 22. Omvända sekvens på plats.

def reverseChars(xs: Array[Char]): Unit =
val n = xs.length
for i <- 0 to (n/2 - 1) do

val temp = xs(i)
xs(i) = xs(n - i - 1)
xs(n - i - 1) = temp

L.7. LÖSNING SEQUENCES 369

Lösn. uppg. 23. Palindrompredikat.

a) Omvändning med reverse kan kräva genomgång av hela strängen en gång samt
minnesutrymme för kopian. Innehållstestet kräver ytterligare en genomgång. (Detta
är i och för sig inget stort problem eftersom världens längsta palindrom inte är längre
än 19 bokstäver och är ett obskyrt finskt ord som inte ofta yttras i dagligt tal. Vilket?)
b)

def isPalindrome(s: String): Boolean =
val n = s.length
var foundDiff = false
var i = 0
while i < n/2 && !foundDiff do

foundDiff = s(i) != s(n - i - 1)
i += 1

!foundDiff

Lösn. uppg. 24. Fler användbara sekvenssamlingsmetoder.

1 scala> val xs = Vector.tabulate(10)(i => math.pow(2, i).toInt)
2 xs: Vector[Int] = Vector(1, 2, 4, 8, 16, 32, 64, 128, 256, 512)
3

4 scala> xs.forall(_ < 1024)
5 val res0: Boolean = true
6

7 scala> xs.exists(_ == 3)
8 val res1: Boolean = false
9

10 scala> xs.count(_ > 64)
11 val res2: Int = 3
12

13 scala> xs.zipWithIndex.take(5)
14 val res3: Vector[(Int, Int)] = Vector((1,0), (2,1), (4,2), (8,3), (16,4))

Lösn. uppg. 25. Arrays don’t behave, but ArraySeqs do!

a) xs erbjuder innehållslikhet och har typen Seq[Int] med den underliggande typen
ArraySeq[Int]. Det går inte att göra tilldelning av element i en ArraySeq eftersom
metoden update saknas, och den är oföränderlig. Den uppdateras därför inte när den
urspringliga arrayen uppdateras.

1 scala> val as1 = Array(1,2,3)
2 val as1: Array[Int] = Array(1, 2, 3)
3

4 scala> val as2 = Array(1,2,3)
5 val as2: Array[Int] = Array(1, 2, 3)
6

7

8 scala> val (xs1, xs2) = (as1.toSeq, as2.toSeq)
9 val xs1: Seq[Int] = ArraySeq(1, 2, 3)
10 val xs2: Seq[Int] = ArraySeq(1, 2, 3)
11

12 scala> as1 == as2
13 val res0: Boolean = false
14

370 KAPITEL L. LÖSNINGAR TILL ÖVNINGARNA

15 scala> xs1 == xs2
16 val res1: Boolean = true
17

18 scala> as1(0) = 42
19

20 scala> xs1
21 val res2: Seq[Int] = ArraySeq(1, 2, 3)
22

23 scala> xs1(0) = 42
24 value update is not a member of Seq[Int]

b) Vid repeterade parametrar får man en ArraySeq.

1 scala> def f(xs: Int*) = xs
2 def f(xs: Int*): Seq[Int]
3

4 scala> println(f(1,2,3))
5 ArraySeq(1, 2, 3)

c) Det går inte att ha en generisk array som funktionsresultat utan att bifoga
kontextgränsen ClassTag i typparametern för att kompilatorn ska kunna generera
kod för den typkonvertering som krävs under runtime av JVM. Se exempel här:
http://docs.scala-lang.org/overviews/collections/arrays.html

Lösn. uppg. 26. Sekvenssamlingen List är nästan dubbelt så snabb vid bearbetning
i början men ungefär 1000 gånger långsammare vid bearbetning i slutet av en sekvens
med 100000 element.

Olika körningar går olika snabbt på JVM bl.a. p.g.a optimeringar som sker när
JVM-en ”värms upp” och den så kallade Just-In-Time-kompileringen gör sitt mäktiga
jobb. Det går ibland plötsligt väsentligt långsammare när skräpsamlaren tvingas göra
tidsödande storstädning av minnet.

Lösn. uppg. 27. –

http://docs.scala-lang.org/overviews/collections/arrays.html

	Framstegsprotokoll
	Förord
	I Om kursen
	Kursens arkitektur
	Veckoöversikt
	Om ditt lärande
	Vad lär du dig?
	Progression
	Hur lär du dig?
	Kursmoment — varför?
	En typisk kursvecka

	Anvisningar
	Samarbetsgrupper
	Samarbetskontrakt
	Grupplaboration

	Föreläsningar
	Övningar
	Resurstider
	Laborationer
	Projektuppgift
	Muntligt prov
	Valfri tentamen

	Hur bidra till kursmaterialet?
	Bidrag är varmt välkomna!
	Instruktioner
	Vad behövs för att kunna bidra?
	Svenska eller engelska?

	Exempel

	II Moduler
	Introduktion
	Teori
	Hur fungerar en dator?
	Vad är programmering?
	Vad är en kompilator?
	Virtuell maskin (VM) == abstrakt hårdvara
	Vad består ett program av?
	Exempel på programmeringsspråk
	Olika programmeringsparadigm
	Hello world
	Utvecklingscykeln
	Utvecklingsverktyg
	Installera verktyg på din egen dator
	Scala Command Line Interface (CLI)
	Tips och trix med scala i terminalen
	Litteraler
	Exempel på inbyggda datatyper i Scala
	Grundtyper i Scala
	Grundtypernas omfång
	Uttryck
	Variabler
	Regler för identifierare
	Att bygga strängar: konkatenering och interpolering
	Heltalsaritmetik
	Flyttalsaritmetik
	Definiera namn på uttryck
	Funktion, argument, parameter
	Färdiga matte-funktioner i paketet scala.math
	Logiska uttryck
	De Morgans lagar
	Alternativ med if-uttryck
	Uttryck eller sats?
	Variabeldeklaration och tilldelningssats
	Tilldelningssatser är inte matematisk likhet
	Förkortade tilldelningssatser
	Exempel på förkortade tilldelningssatser
	Variabler som ändrar värden kan vara knepiga
	Kontrollstrukturer: alternativ och repetition
	Scala-2-syntax för kontrollstrukturer fungerar i Scala 3
	Repetera många satser
	Procedurer
	Problemlösning: nedbrytning i abstraktioner som sen kombineras
	Övning expressions och labb kojo
	Köa med Sigrid
	Sigrid in action

	Övning expressions
	Grunduppgifter; förberedelse inför laboration
	Extrauppgifter; träna mer
	Fördjupningsuppgifter; utmaningar

	Laboration: kojo
	Obligatoriska uppgifter
	Kontrollfrågor
	Frivilliga extrauppgifter

	Program och kontrollstrukturer
	Teori
	Vad är en datastruktur?
	Några samlingar i scala.collection
	Olika strukturer för att hantera data
	Vad är en vektor?
	En konceptuell bild av en vektor
	En samling strängar
	Vad är en kontrollstruktur?
	Loopa genom elementen i en vektor
	Bygg ny samling från befintlig med for-yield-uttryck
	Samlingen [basicstyle=]Range håller reda på intervall
	Loopa med Range
	Loopa med Range skapad med to
	Loopa genom en samling med en while-sats
	Vad är en [basicstyle=]Array?
	Några likheter & skillnader mellan Vector och Array
	Ett minimalt fristående program i Scala
	Typsäkra argument till ett program med @main
	Vad är en algoritm?
	Algoritmexempel: N-FAKULTET
	Algoritmexempel: MIN
	Mall för funktionsdefinitioner
	Bättre många små abstraktioner som gör en sak var
	Vad är ett block?
	Namn i block blir lokala
	Parameter och argument
	Procedurer
	''Ingenting'' är faktiskt någonting i Scala
	Problemlösning: nedbrytning i abstraktioner som sen kombineras
	Exempel på funktionell nedbrytning
	Varför abstraktion?
	Från källkod till maskinkod med JVM
	Paket
	Import
	Jar-filer

	Övning programs
	Grunduppgifter
	Extrauppgifter; träna mer
	Fördjupningsuppgifter; utmaningar

	Funktioner och abstraktion
	Teori
	Vad är abstraktion?
	Exempel på abstraktionsmekanismer inom datavetenskapen
	Funktion: deklaration och anrop
	Deklarera funktioner, överlagring
	Funktioner med defaultargument
	Funktioner med namngivna argument
	Enhetlig access
	Anropsstacken och objektheapen
	Anropsstacken och aktiveringsposter
	Vad är en stack trace?
	Hur läsa en stack trace?
	Lokala funktioner
	Funktioner är äkta värden i Scala
	Funktionsvärden kan vara argument
	Applicera funktioner på element i samlingar med map
	Applicera funktioner på element i samlingar med map
	Äkta funktioner
	Exempel på oäkta funktioner: slumptal
	Slumptalsfrö: få samma slumptal varje gång
	Anonyma funktioner
	Applicera anonyma funktioner på element i samlingar
	Platshållarsyntax för anonyma funktioner
	Exempel på platshållarsyntax med reduceLeft
	Predikat, med och utan namn
	Funktionsvärde vid tom parameterlista: använd ''thunk''
	Hur fungerar egentligen [basicstyle=]upprepa i Kojo?
	Multipla parameterlistor
	Värdeanrop och namnanrop
	Klammerparenteser vid ensam parameter
	Skapa din egen kontrollstruktur
	Kolon vid ensam parameter
	Stegade funktioner, ''Curry-funktioner''
	Funktion med fångad variabelrymd: closure
	Rekursiva funktioner
	Loopa med rekursion
	Rekursiva datastrukturer
	Kompilera om det som ändrats vid varje sparning

	Övning functions
	Grunduppgifter; förberedelse inför laboration
	Extrauppgifter; träna mer
	Fördjupningsuppgifter; utmaningar

	Laboration: irritext
	Krav
	Tips för att komma igång
	Inspiration

	Objekt och inkapsling
	Teori
	Vad rymmer sköldpaddan i Kojo i sitt tillstånd?
	Vad är ett objekt?
	Deklarera, allokera, referera
	Olika sätt att allokera objekt
	Vad är ett singelobjekt?
	Allokering: minne reserveras med plats för data
	Punktnotation, tillståndsförändring med tilldelning
	Punktnotation och operatornotation
	Namnrymd och skuggning
	Inkapsling: att dölja interna delar
	Idiom: Privata variabler med understreck vid ''krock''
	Principen om enhetlig access
	Exempel: singelobjektet med förändringsbart tillstånd
	Exempel: tillstånd, attribut
	Tillståndsändring
	Modul
	Deklarera paket
	Kompilera paket
	Paket i REPL
	Vad är en tupel?
	Tupler som parametrar och returvärde.
	Ett smidigt sätt att skapa 2-tupler med metoden ->
	Typalias för att abstrahera typnamn
	Lata variabler med fördröjd initialisering
	Singelobjekt är lata
	Vad är skillnaden mellan val, var, def, lazy val?
	Fallgrop: initialiseringsordning och defaultvärden
	Programmeringsparadigm
	Funktioner är äkta objekt i Scala
	Fördjupning: Äkta funktionsobjekt är av funktionstyp
	Vad är en klass?
	Vad är en klass?
	Använda klassen [basicstyle=]Color
	Lägg till metoder i efterhand med extension
	Kollektiva extensionsmetoder
	Import av alla namn i en viss modul
	Namnbyte vid import
	Exkludera (gömma) namn vid import
	Lokal import-deklaration
	Export
	Använda dokumentation för färdiga klasser.
	Vad är en jar-fil?
	Öppen källkod på Maven Central
	Vad är classpath?
	Färdiga grafikmetoder i klassen PixelWindow
	Automatiska beroenden med Scala CLI i REPL:
	Köra program + kodbiblitek med Scala CLI
	Kompilera om vid varje ändring

	Övning objects
	Grunduppgifter; förberedelse inför laboration
	Extrauppgifter; träna mer
	Fördjupningsuppgifter; utmaningar

	Laboration: blockmole
	Bakgrund
	Obligatoriska uppgifter
	Kontrollfrågor
	Frivilliga extrauppgifter

	Klasser och datamodellering
	Teori
	En metafor för klass: Stämpel
	Vad är en klass?
	Datamodellering
	Singelobjekt jämfört med klass
	Förändring av objektets tillstånd
	Bättre att initialisera med hjälp av klassparametrar
	Klassdeklarationer och instansiering
	Övning: en klass som representerar en person
	Lösning: klassen Person
	Skapa egen najs toString
	Instansprivata klassparametrar
	Case-klasser är som vanliga klasser med extra godis
	Fördjupning: Styra synlighet med private[X]
	Styra användningen av infixa alfanumeriska operatorer
	Övning: Klassen Complex
	Exempel: Klassen Complex
	Exempel: Principen om enhetlig access
	Instansiering med direkt användning av new
	Indirekt instansiering med fabriksmetoder
	Hur förhindra direkt instansiering?
	Kompanjonsobjekt med indirekt instansiering
	Användning av kompanjonsobjekt med fabriksmetoder
	Alternativa direktinstansieringar med default-argument
	Alternativa sätt att instansiera med fabriksmetod
	Medlemmar som bara behövs i en enda upplaga
	Medlemmar i singelobjekt är statiskt allokerade
	Attribut i kompanjonsobjekt användas för sådant som är gemensamt för alla instanser
	Övning: en läskig mutant
	Case-klasser
	Exempel: oföränderliga case-klassen [basicstyle=]Point
	Vad är en konstruktor?
	Fördjupning: Hjälpkonstruktorer i Scala (ovanliga)
	Fördjupning: Användning av hjälpkonstruktor
	Referens saknas: null
	Exempel: null
	Defaultvärden under pågående konstruktion
	Problem med initialisering av attribut vid konstruktion
	Vilka värden har attribut medan konstruktion pågår?
	Hur undvika initialiseringsproblem vid konstruktion?
	Be kompilatorn att varna vid initialiseringsproblem
	Be kompilatorn ge fler bra varningar
	Referensen this
	Getters och setters
	Java-exempel: Klassen JPerson
	Motsvarande JPerson i Scala
	Förhindra felaktiga attributvärden med setters
	Getters och setters i Scala
	Referenslikhet eller innehållslikhet?
	Exempel: referenslikhet och innehållslikhet
	Referenslikhet och egna klasser
	Case-klasser ger innehållslikhet
	Likhet och case-klasser
	Sammanfattning case-klass-godis
	Implementation saknas: ???
	Exempel: ofärdig kod

	Övning classes
	Grunduppgifter; förberedelse inför laboration
	Extrauppgifter; träna mer
	Fördjupningsuppgifter; utmaningar

	Laboration: blockbattle0

	Mönster och felhantering
	Teori
	Bastypen för alla typer: Any
	Alla typer är subtyper till Any
	Dina egna referenstyper är subtyper till AnyRef
	Vad är matchning?
	Plocka isär ett objekt i sina beståndsdelar med mönster
	Kolla om det passar med nästlade if-uttryck
	Kolla om det passar med match-uttryck
	Syntax för match-uttryck
	Matchning med gard
	Matchning med variabelmönster
	Matchning med eller-mönster
	Matchning med typade mönster
	Fördjupning: Unionstyper och typen Matchable
	Konstruktormönster med case-klasser
	Plocka isär samlingar med djupa mönster
	Matchning på tupler
	Mönstermatchning och uppräkning med case-objekt
	Mönstermatchning och förseglade typer
	Mönstermatcha enumeration
	Stora/små begynnelsebokstäver vid matchning
	Stora/små begynnelsebokstäver vid matchning
	Mönster på andra ställen än i match
	Mönsterdelar och variabelt antal argument
	Partiella funktioner och metoden collect
	Fördjupning: metoden unapply
	Hur hantera saknade värden?
	En gemensam bastyp för ett värde som kanske saknas
	Option för hantering av ev. saknade värden
	Några smidiga metoder på [basicstyle=]Option
	Några samlingsmetoder som ger en [basicstyle=]Option, övning
	Några samlingsmetoder som ger en [basicstyle=]Option, svar
	Vad är ett undantag (eng. exception)?
	Orsaka undantag indirekt med require och assert
	Kasta undantag direkt med primitiva throw
	En gemensam bastyp för något som kan misslyckas
	Hantera undantag som ett värde med Try
	Primitiva try-catch-uttryck
	Undvik undantag om det går
	Fördjupning: Kontrollerade undantag
	Fördjupning: Implementera equals med match
	Fördjupning: equals som fungerar för finala klasser
	Fördjupning: Recept i 8 steg för arvssäker [basicstyle=]equals
	Fördjupning: Säkrare likhetstest i Scala 3

	Övning patterns
	Grunduppgifter; förberedelse inför laboration
	Fördjupningsuppgifter; utmaningar

	Laboration: blockbattle1
	Bakgrund
	Obligatoriska krav
	Valbara krav – välj minst ett
	Förberedelser inför redovisningen
	Tips och förslag

	Sekvenser och enumerationer
	Teori
	Vad är en sekvens?
	Exempel: En sträng är en sekvens av tecken
	Iterera över element i en sekvens
	Lägg till i början och i slutet av en sekvens
	Egenskaper hos några sekvenssamlingar i Scala
	Vilken sekvenssamling ska jag välja?
	Några konstigheter med Array
	Oföränderlig eller förändringsbar?
	Vad är en sekvensalgoritm?
	Använda färdiga sekvenssamlingsmetoder
	Några användbara samlingsmetoder vid implementation av sekvensalgoritmer
	Uppdaterad sekvens med kraftfulla metoden patch
	Använda for-uttryck för filtrering med hjälp av gard
	Använda samlingsmetoden filter för filtrering
	Vanliga sekvensproblem som funktionshuvuden
	Implementation av sekvensproblem med for-uttryck eller färdiga samlingsmetoder
	Implementation av sekvensproblem med map, filter
	Hierarki av samlingstyper i scala.collection v2.13
	Lämna det öppet: använd Seq
	Implementation med generiska funktioner
	Fördjupning: Använda Java-samlingar i Scala med CollectionConverters
	Fördjupning: Skapa generisk Array
	Repeterade parametrar blir sekvens
	Sekvenssamling som argument till repeterade parametrar
	Enumerationer har en ordning
	Enumerationer kan ha parametrar och medlemmar
	Enum kan motsvara fullfjädrade case-klasser
	Enum och mönster-matchning
	Fördelar med enum jämfört med uppräkning med heltal
	Registrering
	Registrering av tärningskast i [basicstyle=]Array
	Registrering av tärningskast i [basicstyle=]Array
	Skapa lösningar på sekvensproblem från grunden
	Skapa ny sekvenssamling eller ändra på plats?
	Algoritm: SEQ-COPY
	Implementation av SEQ-COPY med while
	Typ-alias för att abstrahera typnamn
	Exempel: SEQ-INSERT/REMOVE-COPY
	Pseudo-kod för SEQ-INSERT-COPY
	Insättning/borttagning i kopia av primitiv Array
	Exempel: PolygonWindow
	Implementera Polygon
	Exempel: PolygonArray, ändring på plats
	Exempel: PolygonVector, variabel referens till oföränderlig datastruktur
	Exempel: Polygon som oföränderlig case class
	Att sortera och jämföra strängar lexikografiskt
	Jämföra strängar: likhet
	Algoritmexempel: stränglikhet, pseudokod
	Algoritmexempel: stränglikhet, implementation
	Jämföra strängar: ''mindre än''
	Jämföra strängar: ''mindre än''
	Jämföra strängar: ''mindre än''
	Sökning
	Linjärsökning: hitta index för elementet x
	Sortering
	Algoritmisk komplexitet
	Det finns många olika sorteringsalgoritmer
	Bogo sort
	Sortera till ny vektor med insättningssortering: pseudo-kod
	Sortera till ny vektor med insättningssortering: implementation
	Sortera till ny samling med godtyckligt ordningspredikat
	Insättningssortering på plats – pseudo-kod
	Insättningssortering på plats – implementation

	Övning sequences
	Grunduppgifter; förberedelse inför laboration
	Extrauppgifter; träna mer
	Fördjupningsuppgifter; utmaningar

	Laboration: shuffle
	Bakgrund
	Given kod
	Obligatoriska uppgifter
	Frivilliga extrauppgifter
	Bilder med exempel på olika pokerhänder

	III Lösningar
	Lösningar till övningarna
	Lösning expressions
	Grunduppgifter; förberedelse inför laboration
	Extrauppgifter; träna mer
	Fördjupningsuppgifter; utmaningar

	Lösning programs
	Grunduppgifter
	Extrauppgifter; träna mer
	Fördjupningsuppgifter; utmaningar

	Lösning functions
	Extrauppgifter; träna mer
	Fördjupningsuppgifter; utmaningar

	Lösning objects
	Grunduppgifter; förberedelse inför laboration
	Extrauppgifter; träna mer
	Fördjupningsuppgifter; utmaningar

	Lösning classes
	Grunduppgifter; förberedelse inför laboration
	Extrauppgifter; träna mer
	Fördjupningsuppgifter; utmaningar

	Lösning patterns
	Grunduppgifter; förberedelse inför laboration
	Fördjupningsuppgifter; utmaningar

	Lösning sequences
	Grunduppgifter; förberedelse inför laboration
	Extrauppgifter; träna mer
	Fördjupningsuppgifter; utmaningar

