Infroduktion till programmering
med Scala

Kompendium 1
Forsta lGsperioden: Modul 1 -7

Bjorn Regnell

EDABO5, Lp1-2, HT 2025
Datavetenskap, LTH
Lunds universitet

Kompileringsdatum: 10 januari 2026
https://lunduniversity.github.io/pgk

https://lunduniversity.github.io/pgk

Editor: Bjorn Regnell

Contributors in alphabetical order: Anders Buhl, André Philipsson Eriksson, Anna
Axelsson, Anna Palmqvist Sj6vall, Annie Predel, Anton Andersson, Benjamin Lind-
berg, Bjérn Regnell, Casper Schreiter, Cecilia Lindskog, Dag Hemberg, Elias Aradsson,
Elliot Briack, Elsa Cervetti Ogestad, Emelie Engstrom, Emil Wihlander, Erik Bjare-
holt, Erik Grampp, Evelyn Beck, Felix Ohrgren, Fredrik Danebjer, Fritjof Bengtsson,
Gustav Cedersjo, Henrik Olsson, Hjalmar Rutberg, Hussein Taher, Jakob Hok, Jakob
Sinclair, Johan Ravnborg, Johannes Nydahl, Jonas Danebjer, Jos Rosenqvist, Lovisa
Lofgren, Maj Stenmark, Maria Kulesh, Melker Widén, Mans Magnusson, Nicholas
Boyd Isacsson, Niklas Sandén, Oliver Levay, Oliver Persson, Oscar Sigurdsson, Oskar
Berg, Oskar Widmark, Patrik Persson, Per Holm, Philip Sadrian, Sandra Nilsson,
Sebastian Hegardt, Simon Persson, Stefan Jonsson, Theodor Lundqvist, Tim Borg-
lund, Tom Postema, Valthor Halldorsson, Viktor Claesson, Wilhelm Wanecek, William
Karlsson.

Home: https://lunduniversity.github.io/pgk

Repo: https://github.com/lunduniversity/introprog

This compendium is on-going work.
Contributions are welcome!
Contact: bjorn.regnell@cs.lth.se

Versions:
Scala 3.7.2
JDK 21

introprog-scalalib 1.4.0

You can use this work if you respect this LICENSE: CC BY-SA 4.0
http://creativecommons.org/licenses/by-sa/4.0/
Do not distribute solutions to lab assignments and projects.

Copyright © 2015-2025.
Bjorn Regnell, Dept. of Computer Science, LTH, Lund University.

https://lunduniversity.github.io/pgk
https://github.com/lunduniversity/introprog
bjorn.regnell@cs.lth.se
https://github.com/lunduniversity/introprog-scalalib/
http://creativecommons.org/licenses/by-sa/4.0/

Framstegsprotokoli

Genomforda ovningar

Till varje laboration hor en 6vning med uppgifter som utgor forberedelse infor labben.
Du behover minst behirska grunduppgifterna for att klara labben inom rimlig tid.
Om du kdnner att du behover 6va mer pa grunderna, gor da dven extrauppgifterna.
Om du vill fordjupa dig, gor fordjupningsuppgifterna som 4r pa mer avancerad niva.
Kryssa for nedan vilka 6vningar du har gjort, s& blir det lédttare for din handledare att
anpassa dialogen till de kunskaper du forvirvat hittills.

Ovning Grund Extra Fordjupning
expressions]] []
programs]] []
functions]] []
objects]] []
classes]]]
patterns]] []
sequences]] []
matrices]] []
lookup]] []
inheritance]]]
context]] []
extra]] []
examprep]] []

iii

Godkdnda obligatoriska moment

For att bli godkédnd pa laborationsuppgifterna och projektuppgiften maste du lésa
deluppgifterna och diskutera dina l6sningar med en handledare. Denna diskussion ar
din mojlighet att fa feedback pa dina l6sningar. Ta vara pa den! Se till att handledaren
noterar nedan néar du har blivit godkénd pa respektive obligatoriska moment. Spara
detta blad tills du fatt slutbetyg i kursen.

NamntecKning: e

Lab kompl+datum,gk+datum Handl. underskr. + namnfériyd.
KOJ O e e
IrritexXt e
blockmole e e
blockbattle® o e
blockbattlel o e
ShuTTle
L =
WOAS it e
SNAKEOD e e

SNAKE L e e

Projektuppgift e

L] bpank Om egendef., ge kort beskrivning hadr:
music

photo

OO0

egendefinerad

Muntligt prov

L godKANA ot

Forord

Programmering &r inte bara ett sitt att ta makten 6ver de ménniskoskapade system
som ar forutsattningen for vart moderna samhélle och dess fortsatta digitalisering.
Programmering ar ocksa ett kraftfullt verktyg for tanken. Med kunskap i program-
meringens grunder kan du paboérja den livslanga ldranderesa som det innebir att
vara systemutvecklare och abstraktionskonstnér. Programmeringsspréak och utveck-
lingsverktyg kommer och gir, men de grundliggande koncepten bakom all mjukvara
bestar: sekvens, alternativ, repetition och abstraktion.

Detta kompendium utgér kursmaterial for en grundkurs i programmering, som
syftar till att ge en solid bas for ingenjérsstudenter och andra som vill utveckla system
med mjukvara. Materialet omfattar en termins studier pa kvartsfart och forutsatter
kunskaper motsvarande gymnasieniva i svenska, matematik och engelska.

Kompendiet distribueras som oppen killkod. Det far anvindas fritt sa lidnge
erkdnnande ges och eventuella dndringar publiceras under samma licens som ur-
sprungsmaterialet.

I kursrepot github.com/lunduniversity/introprog finns instruktioner om hur du
kan bidra till kursmaterialet.

Laromaterialet fokuserar pa larande genom praktiskt programmeringsarbete och
innehaller 6vningar och laborationer som &r organiserade i moduler. Varje modul har
ett tema och en teoridel som bearbetas pa foreldsningar.

I kursen anvinder vi programmeringsspraket Scala, som har enkel syntax och
mojliggor flera principiellt olika sétt att programmera p4, i ett och samma sprak. Vi
anvinder Scala for att illustrera grunderna i imperativ och objektorienterad program-
mering, tillsammans med elementéar funktionsprogrammering.

Den kanske viktigaste framgangsfaktorn vid studier i programmering ar att du
bejakar din egen upptédckarglddje och experimentlusta. Det fantastiska med program-
mering dr att dina egna intellektuella konstruktioner faktiskt gor nagot som just
du har bestamt! Ta vara pa det och prova dig fram genom att koda egna idéer — det
ar kul nir det funkar, men minst lika larorikt dr felsokning, buggréittande och alla
misslyckade forsok som, ibland efter hart arbete véands till lyckade 16sningar och
bestaende lardomar.

Vilkommen till datavetenskapens fascinerande vérld och hjartligt lycka till med
dina studier!

Lund, 10 januari 2026, Bjorn Regnell

http://github.com/lunduniversity/introprog

vi

Innehdill

Framstegsprotokoll

Forord

Om kursen

Kursens arkitektur

-2.0.1 Veckooversikt.
-2.1 Omdittlarande
-2.1.1 Vadlardudig?
-2.1.2 Progression
-2.1.3 Hurlardudig?...........
-2.1.4 Kursmoment — varfor?
-2.1.5 En typisk kursvecka

-1 Anvisningar

II

-1.1 Samarbetsgrupper.

-1.1.1 Samarbetskontrakt

-1.1.2 Grupplaboration
-1.2 Forelasningar
-1.3 Ovningar
-1.4 Resurstider
-1.5 Laborationer
-1.6 Projektuppgift
-1.7 Muntligtprov
-1.8 Valfri tentamen

Hur bidra till kursmaterialet?

0.1 Bidrag ar varmt valkomna!

0.2 Instruktioner
0.2.1 Vad behovs for att kunna bidra?
0.2.2 Svenska eller engelska?

03 Exempel.....................

Moduler

Introduktion

1.1 Teori
1.1.1 Hur fungerar en dator?

vii

iii

-0 O OO WwW e

-]

10
10
11
11
13
14
15
16
17

19
19
19
19
19
20

23

viii

INNEHALL

1.1.2 Vad ar programmering? 26
1.1.3 Vad dr en kompilator? 26
1.1.4 Virtuell maskin (VM) == abstrakt hardvara 27
1.1.5 Vad bestar ett programav? 27
1.1.6 Exempel pa programmeringssprak 27
1.1.7 Olika programmeringsparadigm 28
1.1.8 Helloworld 28
1.1.9 Utvecklingseykeln 29
1.1.10 Utvecklingsverktyg 29
1.1.11 Installera verktyg padinegendator 29
1.1.12 Scala Command Line Interface (CLI) 30
1.1.13 Tips och trix med scalaiterminalen 30
1.1.14 Litteraler e 30
1.1.15 Exempel pa inbyggda datatyperiScala 31
1.1.16 GrundtyperiScala 31
1.1.17 Grundtypernasomfang 32
1.1.18 Uttryck e e 32
1.1.19 Variabler 32
1.1.20 Regler for identifierare 33
1.1.21 Att bygga strangar: konkatenering och interpolering 33
1.1.22 Heltalsaritmetik, 34
1.1.23 Flyttalsaritmetik 34
1.1.24 Definieranamnpauttryck 34
1.1.25 Funktion, argument, parameter 35
1.1.26 Fardiga matte-funktioner i paketet scala.math 35
1.1.27 Logiskauttryck, 36
1.1.28 DeMorganslagar 36
1.1.29 Alternativmed if-uttryck. 36
1.1.30 Uttryckellersats? 37
1.1.31 Variabeldeklaration och tilldelningssats 37
1.1.32 Tilldelningssatser ar inte matematisk likhet 38
1.1.33 Forkortade tilldelningssatser 38
1.1.34 Exempel pa forkortade tilldelningssatser 38
1.1.35 Variabler som &ndrar viarden kan vara knepiga 39
1.1.36 Kontrollstrukturer: alternativ och repetition 39
1.1.37 Scala-2-syntax for kontrollstrukturer fungerari Scala3 . .. 39
1.1.38 Repeteramangasatser 40
1.1.39 Procedurer 40
1.1.40 Problemlésning: nedbrytning i abstraktioner som sen kombi-
o Tc) = T 41
1.1.41 Ovning expressions ochlabb kojo 41
1.142 Koamed Sigrid. e 41
1.1.43 Sigridinaction. 42
1.2 Ovning expressions 43
1.2.1 Grunduppgifter; forberedelse infor laboration 43
1.2.2 Extrauppgifter;trdnamer 50
1.2.3 Fordjupningsuppgifter; utmaningar 53
1.3 Laboration: kojo. e 56
1.3.1 Obligatoriska uppgifter. 56
1.3.2 Kontrollfragor 59

INNEHALL

1.3.3

Frivilliga extrauppgifter

2 Program och kontrollstrukturer

2.1 Teori . .

2.1.1
2.1.2
2.1.3
2.14
2.1.5
2.1.6
2.1.7
2.1.8
2.1.9
2.1.10
2.1.11
2.1.12
2.1.13
2.1.14
2.1.15
2.1.16
2.1.17
2.1.18
2.1.19
2.1.20
2.1.21
2.1.22
2.1.23
2.1.24
2.1.25
2.1.26
2.1.27
2.1.28

2.1.29
2.1.30
2.1.31
2.1.32
2.1.33
2.1.34

Vad ar en datastruktur?
Nagra samlingari scala.collection.
Olika strukturer for att hanteradata
Vad arenvektor?,
En konceptuell bild avenvektor
En samling stréangar
Vad ar en kontrollstruktur?
Loopa genom elementenienvektor
Bygg ny samling fran befintlig med for-yield-uttryck
Samlingen Range haller reda pa intervall
LoopamedRange
Loopa med Range skapadmed to
Loopa genom en samling med en while-sats

Nagra likheter & skillnader mellan Vector och Array
Ett minimalt fristdende programiScala
Typsdkra argument till ett program med @main
Vad ar en algoritm?
Algoritmexempel: N-FAKULTET
Algoritmexempel: MIN
Mall for funktionsdefinitioner

Parameter och argument
Procedurer
"Ingenting” dr faktiskt nagontingiScala
Problemlosning: nedbrytning i abstraktioner som sen kombi-

Exempel pa funktionell nedbrytning
Varfor abstraktion?
Fran kallkod till maskinkod med JVM
Paket
Import e
dJarfiler

2.2 Ovning programs

221
2.2.2
2.2.3

Grunduppgifter
Extrauppgifter; tranamer
Fordjupningsuppgifter; utmaningar

3 Funktioner och abstraktion

3.1 Teori . .

3.1.1
3.1.2
3.1.3
3.14
3.1.5

Vad ar abstraktion?
Exempel pa abstraktionsmekanismer inom datavetenskapen
Funktion: deklarationochanrop
Deklarera funktioner, 6verlagring
Funktioner med defaultargument

ix

79
79
79
80
80
80
81
82
82
87
89

3.1.6
3.1.7
3.1.8
3.1.9
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.1
3.1.2
3.1.2
3.1.2
3.1.2
3.1.2
3.1.2
3.1.2
3.1.2

INNEHALL

Funktioner med namngivna argument

Enhetligaccess.

Anropsstacken och objektheapen

Anropsstacken och aktiveringsposter
0 Vadarenstacktrace?
1 Hurladsaenstacktrace?
2 Lokala funktioner
3 Funktioner ar dkta virdeniScala
4 Funktionsvirden kan vara argument
5 Applicera funktioner pa element i samlingar med map
6 Applicera funktioner pa element i samlingar med map
7 Aktafunktioner
8 Exempel pa odkta funktioner: slumptal
9 Slumptalsfro: fa samma slumptal varjegang
0 Anonyma funktioner
1 Applicera anonyma funktioner pa element i samlingar
2 Platshallarsyntax for anonyma funktioner
3 Exempel pa platshallarsyntax med reduceLeft
4 Predikat, med ochutannamn
5 Funktionsvéarde vid tom parameterlista: anviand "thunk” . .
6 Hur fungerar egentligen upprepaiKojo?
7 Multipla parameterlistor

3.1.28 Viardeanrop ochnamnanrop
3.1.29 Klammerparenteser vid ensam parameter
3.1.30 Skapa din egen kontrollstruktur
3.1.31 Kolon vid ensam parameter
3.1.32 Stegade funktioner, "Curry-funktioner”
3.1.33 Funktion med fangad variabelrymd: closure
3.1.34 Rekursiva funktioner
3.1.35 Loopamedrekursion
3.1.36 Rekursiva datastrukturer
3.1.37 Kompilera om det som dndrats vid varje sparning
3.2 Ovning functions.
3.2.1 Grunduppgifter; férberedelse infor laboration
3.2.2 Extrauppgifter; trdnamer
3.2.3 Fordjupningsuppgifter; utmaningar
3.3 Laboration: irritext
331 Krav e
3.3.2 Tips for att kommaigang
3.3.3 Imspiration
4 Objekt och inkapsling
4.1 Teori e e
4.1.1 Vad rymmer skéldpaddan i Kojo i sitt tillstand?
4.1.2 Vadarettobjekt?
4.1.3 Deklarera, allokera, referera
4.1.4 Olika satt att allokeraobjekt
4.1.5 Vad ar ett singelobjekt?
4.1.6 Allokering: minne reserveras med plats fordata.
4.1.7 Punktnotation, tillstandsfordndring med tilldelning
4.1.8 Punktnotation och operatornotation

99
100
100
101
101
102
102
102
103
103
104
104
104
105
105
105
106
106
107
107
111
114
117
117
118
118

121

122

INNEHALL

4.1.9

4.1.10
4.1.11
4.1.12
4.1.13
4.1.14
4.1.15
4.1.16
4.1.17
4.1.18
4.1.19
4.1.20
4.1.21
4.1.22
4.1.23
4.1.24
4.1.25
4.1.26
4.1.27
4.1.28
4.1.29
4.1.30
4.1.31
4.1.32
4.1.33
4.1.34
4.1.35
4.1.36
4.1.37
4.1.38
4.1.39
4.1.40
4.1.41
4.1.42
4.1.43
4.1.44
4.1.45
4.1.46
4.1.47
4.1.48

Namnrymd och skuggning
Inkapsling: att dolja internadelar
Idiom: Privata variabler med understreck vid "krock”
Principen om enhetligaccess
Exempel: singelobjektet med férdndringsbart tillstand
Exempel: tillstand, attribut
Tillstandséndring
Modul e
Deklarerapaket
Kompilerapaket
PaketiREPL
Vad arentupel?
Tupler som parametrar och returvarde.
Ett smidigt satt att skapa 2-tupler med metoden ->
Typalias for att abstrahera typnamn
Lata variabler med fordrojd initialisering
Singelobjekt &rlata
Vad ar skillnaden mellan val, var, def, lazy val?
Fallgrop: initialiseringsordning och defaultviarden
Programmeringsparadigm
Funktioner ar dkta objektiScala.
Férdjupning: Akta funktionsobjekt &r av funktionstyp
Vaddrenklass?
Vaddarenklass?
Anvinda klassen Color
Lagg till metoder i efterhand med extension
Kollektiva extensionsmetoder
Import av allanamnienvissmodul
Namnbyte vid import
Exkludera (gomma) namn vid import
Lokal import-deklaration
Export
Anvianda dokumentation for fardiga klasser.
Vad arenjar-fil?
Oppen killkod pa Maven Central
Vad ar classpath? e

Kora program + kodbiblitek med Scala CLI
Kompilera om vid varje dndring

4.2 Ovningobjects i

4.2.1 Grunduppgifter; férberedelse infor laboration
4.2.2 Extrauppgifter; tranamer
4.2.3 Fordjupningsuppgifter; utmaningar
4.3 Laboration: blockmole
43.1 Bakgrund
4.3.2 Obligatoriska uppgifter.
4.3.3 Kontrollfragor
4.3.4 Frivilliga extrauppgifter

X1

125
125
126
126
126
127
127
128
128
128
129
129
129
130
130
131
131
131
132
132
133
133
133
133

137
137

INNEHALL

xii

5 Klasser och datamodellering 161
5.1 Teori o e e e e e e 162
5.1.1 En metafor for klass: Stampel 162
5.1.2 Vadiadrenklass? 162
5.1.3 Datamodellering 162
5.1.4 Singelobjekt jamfért med klass 163
5.1.5 Forandring av objektets tillstand 163
5.1.6 Béttre att initialisera med hjilp av klassparametrar 164
5.1.7 Klassdeklarationer och instansiering 164
5.1.8 Ovning: en klass som representerar en person 164
5.1.9 Losning: klassen Person 165
5.1.10 SkapaegennajstoString. 165
5.1.11 Instansprivata klassparametrar 166
5.1.12 Case-klasser dr som vanliga klasser med extra godis 166
5.1.13 Fordjupning: Styra synlighet med private[X]. 167
5.1.14 Styra anviandningen av infixa alfanumeriska operatorer . . . 167
5.1.15 Ovning: Klassen Complex 167
5.1.16 Exempel: Klassen Complex 168
5.1.17 Exempel: Principen om enhetligaccess 168
5.1.18 Instansiering med direkt anvidndningavnew. 169
5.1.19 Indirekt instansiering med fabriksmetoder 169
5.1.20 Hur forhindra direkt instansiering? 170
5.1.21 Kompanjonsobjekt med indirekt instansiering 170
5.1.22 Anvindning av kompanjonsobjekt med fabriksmetoder . .. 171
5.1.23 Alternativa direktinstansieringar med default-argument . . 171
5.1.24 Alternativa séitt att instansiera med fabriksmetod 171
5.1.25 Medlemmar som bara behovs i en enda upplaga 172
5.1.26 Medlemmar i singelobjekt ar statiskt allokerade 172

5.1.27 Attribut i kompanjonsobjekt anvidndas for sadant som ar ge-
mensamt for alla instanser 173
5.1.28 Ovning: en laskigmutant 173
5.1.29 Case-klasser 173
5.1.30 Exempel: oféranderliga case-klassen Point 174
5.1.31 Vad ar en konstruktor? 174
5.1.32 Fordjupning: Hjdlpkonstruktorer i Scala (ovanliga) 174
5.1.33 Fordjupning: Anvandning av hjalpkonstruktor 175
5.1.34 Referens saknas:null 175
5.1.35 Exempel:null 176
5.1.36 Defaultviarden under pagaende konstruktion 176
5.1.37 Problem med initialisering av attribut vid konstruktion . . . 176
5.1.38 Vilka varden har attribut medan konstruktion pagar? 177
5.1.39 Hur undvika initialiseringsproblem vid konstruktion? 177
5.1.40 Be kompilatorn att varna vid initialiseringsproblem 178
5.1.41 Be kompilatorn ge fler bra varningar 178
5.1.42 Referensenthis 179
5.1.43 Gettersochsetters 179
5.1.44 Java-exempel: KlassenJPerson 180
5.1.45 Motsvarande JPersoniScala 180
5.1.46 Forhindra felaktiga attributviarden med setters 180
5.1.47 GettersochsettersiScala 181

INNEHALL

5.14
5.1.4
5.1.5
5.1.5
5.1.5
5.1.5
5.1.5
5.1.5

8 Referenslikhet eller innehallslikhet?
9 Exempel: referenslikhet och innehallslikhet
0 Referenslikhet och egnaklasser
1 Case-klasser ger innehallslikhet
2 Likhetochcase-klasser
3 Sammanfattning case-klass-godis
4 Implementation saknas:???
5 Exempel: ofardigkod

5.2 OVNINg ClaSSeS . . o v v vttt e e

5.2.1
5.2.2
5.2.3

Grunduppgifter; forberedelse infor laboration
Extrauppgifter; tranamer
Fordjupningsuppgifter; utmaningar

5.3 Laboration: blockbattle®,

6 Monster och felhantering

6.1 Teori
6.1.1
6.1.2
6.1.3
6.1.4
6.1.5
6.1.6
6.1.7
6.1.8
6.1.9
6.1.1
6.1.1
6.1.1
6.1.1
6.1.1
6.1.1
6.1.1
6.1.1
6.1.1
6.1.1
6.1.2
6.1.2
6.1.2
6.1.2
6.1.2
6.1.2
6.1.2
6.1.2
6.1.2
6.1.2
6.1.3
6.1.3
6.1.3
6.1.3
6.1.3
6.1.3

Bastypen for alla typer: Any

Alla typer ar subtyper tillAny

Dina egna referenstyper ar subtyper till AnyRef

Vad ar matchning?

Plocka isér ett objekt i sina bestandsdelar med monster . . .

Kolla om det passar med néstlade if-uttryck

Kolla om det passar med match-uttryck

Syntax for match-uttryck

Matchningmedgard
0 Matchning med variabelmonster
1 Matchning med eller-ménster
2 Matchning med typade monster
3 Fordjupning: Unionstyper och typen Matchable
4 Konstruktormonster med case-klasser.
5 Plocka isdr samlingar med djupa moénster
6 Matchningpatupler
7 Monstermatchning och uppriakning med case-objekt
8 Monstermatchning och forseglade typer
9 Mbonstermatcha enumeration
0 Stora/sma begynnelsebokstiaver vid matchning
1 Stora/sma begynnelsebokstidver vid matchning
2 Mbonster pa andra stédllen &nimatch
3 Monsterdelar och variabelt antal argument
4 Partiella funktioner och metoden collect
5 Fordjupning: metoden unapply
6 Hur hantera saknade viarden?.
7 En gemensam bastyp for ett virde som kanske saknas
8 Option for hantering av ev. saknade varden
9 Nagra smidiga metoder pa Option
0 Nagra samlingsmetoder som ger en Option, 6vning
1 Nagra samlingsmetoder som ger en Option,svar
2 Vad ar ett undantag (eng. exception)?
3 Orsaka undantag indirekt med require och assert
4 Kasta undantag direkt med primitiva throw
5 En gemensam bastyp for ndgot som kan misslyckas

xiii

181
182
182
183
183
183
183
184
185
185
191
195
200

Xiv INNEHALL

6.1.36 Hantera undantag som ett virdemed Try 216
6.1.37 Primitiva try-catch-uttryck. 216
6.1.38 Undvik undantagomdetgar 217
6.1.39 Fordjupning: Kontrollerade undantag 217
6.1.40 Fordjupning: Implementera equals med match 218
6.1.41 Fordjupning: equals som fungerar for finala klasser 218
6.1.42 Fordjupning: Recept i 8 steg for arvssdker equals 219
6.1.43 Fordjupning: Siakrare likhetstestiScala3 219
6.2 Ovning patterns 221
6.2.1 Grunduppgifter; forberedelse infor laboration 221
6.2.2 Fordjupningsuppgifter; utmaningar 226
6.3 Laboration: blockbattlel 233
6.3.1 Bakgrund 233
6.3.2 Obligatoriskakrav 234
6.3.3 Valbara krav—véiljminstett 234
6.3.4 Forberedelser infor redovisningen 234
6.3.5 Tipsochforslag 235
7 Sekvenser och enumerationer 239
T.1 Teori . . . o o o e e e e e 240
7.1.1 Vaddarensekvens?0.... 240
7.1.2 Exempel: En striang ar en sekvens avtecken 240
7.1.3 Iterera over elementiensekvens. 240
7.1.4 La&gg till i borjan och i slutet avensekvens 241
7.1.5 Egenskaper hos nagra sekvenssamlingari Scala 241
7.1.6 Vilken sekvenssamling ska jag valja? 242
7.1.7 Nagra konstigheter med Array 242
7.1.8 Oforanderlig eller forandringsbar? 243
7.1.9 Vad ar en sekvensalgoritm? 243
7.1.10 Anvinda fardiga sekvenssamlingsmetoder 243
7.1.11 Nagra anvidndbara samlingsmetoder vid implementation av
sekvensalgoritmer L. 244
7.1.12 Uppdaterad sekvens med kraftfulla metoden patch 244
7.1.13 Anvénda for-uttryck for filtrering med hjalp av gard 245
7.1.14 Anvinda samlingsmetoden filter for filtrering 245
7.1.15 Vanliga sekvensproblem som funktionshuvuden 245
7.1.16 Implementation av sekvensproblem med for-uttryck eller
fardiga samlingsmetoder 246
7.1.17 Implementation av sekvensproblem med map, filter 246
7.1.18 Hierarki av samlingstyper i scala.collectionv2.13 246
7.1.19 L&amna det 6ppet: anvdnd Seq 247
7.1.20 Implementation med generiska funktioner 247
7.1.21 Fordjupning: Anvénda Java-samlingar i Scala med CollectionConverters248
7.1.22 Fordjupning: Skapa generisk Array 248
7.1.23 Repeterade parametrar blir sekvens 249
7.1.24 Sekvenssamling som argument till repeterade parametrar . 249
7.1.25 Enumerationer harenordning 249
7.1.26 Enumerationer kan ha parametrar och medlemmar 250
7.1.27 Enum kan motsvara fullfjadrade case-klasser 250
7.1.28 Enum och moénster-matchning 251

7.1.29 Fordelar med enum jaimfort med uppriakning med heltal . . . 251

INNEHALL

XV
7.1.30 Registrering 252
7.1.31 Registrering av tarningskastiArray 252
7.1.32 Registrering av tarningskastiArray 252
7.1.33 Skapa losningar pa sekvensproblem fran grunden 253
7.1.34 Skapa ny sekvenssamling eller 4ndra pa plats? 253
7.1.35 Algoritm: SEQ-COPY 253
7.1.36 Implementation av SEQ-COPY med while 254
7.1.37 Typ-alias for att abstrahera typnamn 254
7.1.38 Exempel: SEQ-INSERT/REMOVE-COPY 255
7.1.39 Pseudo-kod for SEQ-INSERT-COPY 255
7.1.40 Inséattning/borttagning i kopia av primitiv Array 255
7.1.41 Exempel: PolygonWindow 256
7.1.42 Implementera Polygon 256
7.1.43 Exempel: PolygonArray, 4ndring paplats 257
7.1.44 Exempel: PolygonVector, variabel referens till oféranderlig
datastruktur 257
7.1.45 Exempel: Polygon som oforénderlig caseclass 258
7.1.46 Att sortera och jamfora strangar lexikografiskt 258
7.1.47 Jamfora strangar:likhet o oo L. 259
7.1.48 Algoritmexempel: stranglikhet, pseudokod 259
7.1.49 Algoritmexempel: stranglikhet, implementation 260
7.1.50 Jamfora strangar: "mindre &n” 260
7.1.51 Jamfora strangar: "mindre &n” 260
7.1.52 Jamfora strangar: "mindre &n” 261
7.1.53 SOKning e e e e e 261
7.1.54 Linjarsokning: hitta index for elementetx 262
7.1.55 Sortering e 262
7.1.56 Algoritmisk komplexitet 262
7.1.57 Det finns manga olika sorteringsalgoritmer 263
7.1.58 Bogosort 263
7.1.59 Sortera till ny vektor med insdttningssortering: pseudo-kod 263
7.1.60 Sortera till ny vektor med insédttningssortering: implementation263
7.1.61 Sortera till ny samling med godtyckligt ordningspredikat . . 264
7.1.62 Inséattningssortering pa plats — pseudo-kod 264
7.1.63 Inséattningssortering pa plats — implementation 265
7.2 OVNING SEQUENCES . « « « v o et e e e e e e e e 266
7.2.1 Grunduppgifter; forberedelse infor laboration 266
7.2.2 Extrauppgifter; tranamer L. 274
7.2.3 Fordjupningsuppgifter; utmaningar 276
7.3 Laboration: shuffle 281
7.3.1 Bakgrund 281
732 Givenkod 282
7.3.3 Obligatoriska uppgifter 286
7.3.4 Frivilliga extrauppgifter 287
7.3.5 Bilder med exempel pa olika pokerhénder 287
IIT Losningar 289
L Losningar till 6vningarna 291

L.1 Losning eXpressions v v v it i e e e e e e e e 292

XVi INNEHALL

L.1.1 Grunduppgifter; férberedelse infor laboration 292
L.1.2 Extrauppgifter; tranamer 299
L.1.3 Fordjupningsuppgifter; utmaningar 303
L2 Losning programs ittt e e e e e e e 307
L.2.1 Grunduppgifter 307
L.2.2 Extrauppgifter;trdnamer 311
L.2.3 Fordjupningsuppgifter; utmaningar 313
L.3 Losning functions e 315
L.3.1 Extrauppgifter;trdnamer 318
L.3.2 Fordjupningsuppgifter; utmaningar 320
L.4 Losningobjects. e 323
L.4.1 Grunduppgifter; forberedelse infor laboration 323
L.4.2 Extrauppgifter;trdnamer 330
L.4.3 Fordjupningsuppgifter; utmaningar 331
L5 Losning classSes v v v v i i it e e e e e e e e e e e e e 334
L.5.1 Grunduppgifter; forberedelse infor laboration 334
L.5.2 Extrauppgifter; trdnamer 337
L.5.3 Fordjupningsuppgifter; utmaningar 340
L.6 Losning patterns e 346
L.6.1 Grunduppgifter; férberedelse infor laboration 346
L.6.2 Fordjupningsuppgifter; utmaningar 352
L.7 LoOSning seqUENCES v v v i i i e e e e e e e e e e e 356
L.7.1 Grunduppgifter; férberedelse infor laboration 356
L.7.2 Extrauppgifter;trdnamer 364

L.7.3 Fordjupningsuppgifter; utmaningar 368

Del |

Om kursen

Kapitel -2

Kursens arkitektur

-2.0.1 Veckobversikt
W | Modul Ovn Lab
WO1 | Introduktion expressions | kojo
WO02 | Program och kontrollstrukturer programs -
WO03 | Funktioner och abstraktion functions irritext
W04 | Objekt och inkapsling objects blockmole
WO05 | Klasser och datamodellering classes blockbattleO
WO06 | Monster och felhantering patterns blockbattlel
W07 | Sekvenser och enumerationer sequences shuffle
TP — — —
WO08 | Nastlade och generiska strukturer | matrices life
W09 | Méangder och tabeller lookup words
W10 | Arv och komposition inheritance | snake(
W11 | Varians och kontextparametrar context snakel
W12 | Fordjupning, Projekt extra Projekt0
W13 | Repetition examprep Projektl
W14 | MUNTLIGT PROV Munta Munta
TP VALFRI TENTAMEN - -

Kursen bestar av en modul per ldsvecka med tva forelasningar, en 6vning och en
laboration (forutom nagra veckor som saknar labb och/eller 6vning eller har annan
aktivitet, se veckooversikt). Foreldsningarna ger en 6versikt av den teori som ingar i
varje modul. Genom att gora 6vningarna bearbetar du teorin och forebereder dig infor
laborationerna. Nar du klarat 6vningen och laborationen i en modul &r du redo att ga
vidare till nésta. Tabellen pa nésta uppslag visar begrepp som ingéar i varje modul.
Kursen ar uppdelad i tva ldsperioder. Andra ldasperioden avslutas med ett storre

projekt, en muntlig tentamen och en valfri skriftlig tentamen.

Wwo1

W02

Wwo3

Wwo4

Wo05

W06

Introduktion

Program och
kontrollstruktu-
rer

Funktioner och
abstraktion

Objekt och
inkapsling

Klasser och
datamodelle-
ring

Monster och
felhantering

KAPITEL -2. KURSENS ARKITEKTUR

sekvens, alternativ, repetition, abstraktion, editera, kompilera,
exekvera, datorns delar, virtuell maskin, litteral, varde,
uttryck, identifierare, variabel, typ, tilldelning, namn, val, var,
def, definiera och anropa funktion, funktionshuvud,
funktionskropp, procedur, inbyggda grundtyper, println, typen
Unit, enhetsvirdet (), stranginterpolatorn s, aritmetik,
slumptal, logiska uttryck, de Morgans lagar, if, true, false,
while, for, dod: operativsystem

huvudprogram, program-argument, indata,
scala.io.StdIn.readLine, kontrollstruktur, iterera 6ver element
i samling, for-uttryck, yield, map, foreach, samling, sekvens,
indexering, Array, Vector, intervall, Range, algoritm,
implementation, pseudokod, algoritmexempel: SWAP, SUM,
MIN-MAX, MIN-INDEX, dod: versionshantering

abstraktion, funktion, parameter, argument, returtyp,
default-argument, namngivna argument, parameterlista,
funktionshuvud, funktionskropp, applicera funktion pa alla
element i en samling, uppdelad parameterlista, skapa egen
kontrollstruktur, funktionsvirde, funktionstyp, dkta funktion,
stegad funktion, apply, anonyma funktioner, lambda, predikat,
aktiveringspost, anropsstacken, objektheapen, stack trace,
vardeandrop, namnanrop, klammerparentes och kolon vid
ensam parameter, rekursion, scala.util. Random, slumptalsfro,
dod: typsittning

modul, singelobjekt, punktnotation, tillstdnd, medlem,
attribut, metod, paket, filstruktur, jar, classpath,
dokumentation, JDK, import, selektiv import, namnbyte vid
import, export, tupel, multipla returvirden, block, lokal
variabel, skuggning, lokal funktion, funktioner ar objekt med
apply-metod, namnrymd, synlighet, privat medlem, inkapsling,
getter och setter, principen om enhetlig access, 6verlagring av
metoder, introprog.PixelWindow, initialisering, lazy val,
typalias, dod: maskinkod

applikationsdomén, datamodell, objektorientering, klass,
instans, Any, isInstanceOf, toString, new, null, this,
accessregler, private, private[this], klassparameter, primér
konstruktor, fabriksmetod, alternativ konstruktor,
forandringsbar, oférdnderlig, case-klass, kompanjonsobjekt,
referenslikhet, innehallslikhet, eq, ==

monstermatchning, match, Option, throw, try, catch, Try,
unapply, sealed, flatten, flatMap, partiella funktioner, collect,
wildcard-monster, variabelbindning i monster,
sekvens-wildcard, bokstavliga monster, implementera equals,
hashcode

WO7

TP

W08

W09

W10

W11

W12

W13

W14

TP

Sekvenser och
enumerationer

Nastlade och

oversikt av Scalas samlingsbibliotek och samlingsmetoder,
klasshierarkin i scala.collection, Iterable, Seq, List, ListBuffer,
ArrayBuffer, WrappedArray, sekvensalgoritm, algoritm:
SEQ-COPY, in-place vs copy, algoritm: SEQ-REVERSE,
registrering, algoritm: SEQ-REGISTER, linjarsokning,
algoritm: LINEAR-SEARCH, tidskomplexitet,
minneskomplexitet, 6versikt straingmetoder, StringBuilder,
ordning, inbyggda s6kmetoder, find, indexOf, indexWhere,
inbyggda sorteringsmetoder, sorted, sortWith, sortBy,
repeterade parametrar

matris, nastlad samling, néstlad for-sats, typparameter,

generiska generisk funktion, generisk klass, fri och bunden typparameter,
strukturer generiska datastrukturer, generiska samlingar i Scala
Méngder och innehallstest, mingd, Set, mutable.Set, nyckel-virde-tabell,
tabeller Map, mutable.Map, hash code, java.util. HashMap,
java.util. HashSet, persistens, serialisering, textfiler,
Source.fromFile, java.nio.file
Arv och arv, komposition, polymorfism, trait, extends, asInstanceOf,
komposition with, inmixning supertyp, subtyp, bastyp, override, Scalas
typhierarki, Any, AnyRef, Object, AnyVal, Null, Nothing,
topptyp, bottentyp, referenstyper, virdetyper, accessregler vid
arv, protected, final, trait, abstrakt klass
Varians och ovre- och undre typgrins, varians, kontravarians, kovarians,
kontextpara- typjoker, kontextgrins, typkonstruktor, egentyp, typjoker,
metrar givet varde (given), kontextparameter (using), ad hoc
polymorfism, typklass, api, kodldsbarhet, granskningar
Fordjupning, vilj valfritt fordjupningsomrade, paborja projekt
Projekt
Repetition trina pa extentor, redovisa projekt, trina infor muntligt prov
MUNTLIGT PROV
VALFRI TENTAMEN

6 KAPITEL -2. KURSENS ARKITEKTUR

-2.1 Om ditt Iarande

-2.1.1 Vad I&r du dig?

¢ Grundldggande principer for programmering:
Sekvens, Alternativ, Repetition, Abstraktion (SARA)
= Inga forkunskaper i programmering kravs!

¢ Implementation av algoritmer

¢ Tanka i abstraktioner, dela upp problem i delproblem

¢ Forstaelse for flera olika angreppssatt:

- imperativ programmering
- objektorientering
— funktionsprogrammering

¢ Det moderna programmeringsspraket Scala
¢ Utvecklingsverktyg (editor, kompilator, utvecklingsmiljo)
* Implementera, granska, testa, felsoka

-2.1.2 Progression

Kursens koncept avancerar steg for steg:

¢ Kontrollstrukturer

¢ Funktioner

¢ Objekt

¢ Datastrukturer

¢ Algoritmer

¢ Naistlade strukturer

* Mer avancerade abstraktionsmekanismer

— Komposition
— Polymorfism
- Kontextuella abstraktioner

Vi itererar over koncepten & fordjupar forstaelsen efter hand.

-2.1.3 Hur lér du dig?

* Genom praktiskt eget arbete: Lira genom att gora!
- Ovningar: applicera koncept pa olika sétt
— Laborationer: kombinera flera koncept till en helhet

¢ Genom studier av kursens teori: Skapa forstaelse!
¢ Genom samarbete med dina kurskamrater: Ga djupare!

Kompendiet dr den huvudsakliga kurslitteraturen och definierar kursinnehallet. Fore-
lasningar, 6vningar och laborationer i kompendiet 4r kursens priméra kunskapskallor,

-2.1. OM DITT LARANDE 7

tillsammans med de 6ppna resurser pa nitet som kompendiet hanvisar till. Kompen-
diet dr 6ppen killkod och du valkomnas varmt att bidra!

Om du gérna vill ha en eller flera mer traditionella ldrobocker som bredvidldasning
rekommenderas foljande:

¢ For de som aldrig kodat, och vill ldsa om kodning fran grunden:

— "Introduction to Programming and Problem-Solving Using Scala” Second Edi-
tion (2016), Mark C. Lewis, Lisa Lacher.

— Lewis & Lacher ticker stora delar av kursen, men innehéller dven en del
material som ingar i senare LTH-kurser. Ordningen &ar ganska annorlunda,
men det gar bra att ldsa boken i en annan ordning én den ar skriven.

¢ For de som redan kodat en hel del i ett objektorienterat sprak:

— "Programming in Scala”, Fifth Edition (2021), Martin Odersky, Lex Spoon, and
Bill Venners.

— Martin Odersky &ar upphovspersonen bakom Scala och denna vilskrivna bok
innehaller en komplett genomgang av Scala-spraket med manga exempel och
tips. "Fifth Edition” tacker nya Scala 3. Boken riktar sig till de som redan har
kunskap om nagot objektorienterat sprak, t.ex. Java eller C#. Det finns ett bra
index som gor det 14tt att anpassa din ldsning efter kursens upplédgg. Bokens
ca 800 sidor innehaller mycket material som dr pa en mer avancerad niva &n
denna kurs, men du kommer att ha nytta av innehallet i kommande kurser.

Dessa larobicker foljer inte direkt kursens upplédgg vad géller omfang och progression
och du far sjalv gora den nyttiga hemlidxan att koppla deras innehall till det vi gar
igenom i kursens olika moduler.

-2.1.4 Kursmoment — varfor?

¢ Forelasningar: skapa oversikt, ge struktur, forklara teori, svara pa fragor,
motivera varfor.

e Ovningar: bearbeta teorin steg for steg, grundévningar for alla, extradv-
ningar om du vill/behéver 6va mer, fordjupningsovningar om du vill ga
djupare; forberedelse infor laborationerna.

¢ Laborationer: obligatoriska, satta samman teorins delar i ett storre program;
l6sningar redovisas for handledare; gk pa alla for att fa munta.

¢ Resurstider: fa hjilp med 6vningar och laborationsforberedelser av handledare,
fraga vad du vill.

¢ Samarbetsgrupper: gruppliarande genom samarbete, hjidlpa varandra.

¢ Individuell projektuppgift: obligatorisk, du visar att du kan skapa ett stor-
re program sjéalvstindigt; redovisas for handledare.

¢ Muntligt prov: obligatoriskt, ska klaras for godkéint pa kursen; du visar att
du har tillracklig forstaelse for kursens koncept for att klara nésta kurs.

¢ Tentamen: Valfri for 6verbetyg men alla uppmuntras att forséka. Du maste
vara godkind pa alla obligaotriska moment for att fa tenta. Tentan gérs med
papper, penna och snabbreferensen som enda hjalpmedel. Anméilan kravs.

-2.1.5 En typisk kursvecka

1. Ga pa forelasningar pA mandag-tisdag

8 KAPITEL -2. KURSENS ARKITEKTUR

2. Jobba individuellt med teori, 6vningar, labbforberedelser pA mandag-torsdag

3. Traffas regelbundet i samarbetsgruppen och hjilp varandra att forsta mer
och férdjupa larandet, forslagsvis pa aterkommande tider varje vecka da alla i
gruppen kan

4. Kom till resurstiderna och fa hjilp och tips av handledare och kurskamrater
pa onsdag-torsdag

5. Genomfor den obligatoriska laborationen pa fredag

Se detaljerna och undantagen i schemat i TimeEdit

Kapitel -1

Anvisningar

Detta kapitel innehéller anvisningar och riktlinjer for kursens olika delar. Lis noga
sé att du inte missar viktig information om syftet bakom kursmomenten och vad som
forvantas av dig.

-1.1 Samarbetsgrupper

Ditt larande i allménhet, och ditt programmeringsldrande i synnerhet, féordjupas om
det sker i dialog med andra. Dessutom ar din samarbetsformaga och din pedagogiska
formaga avgorande for din framgang som professionell systemutvecklare. Darfor
ar kursdeltagarna indelade i samarbetsgrupper om 4-6 personer dir medlemmarna
samverkar for att alla i gruppen ska na sa langt som majligt i sina studier.

For att hantera och dra nytta av skillnader i forkunskaper dr samarbetsgrupperna
indelade sa att deltagarna har varierande forkunskaper baserat pa en forkunskaps-
enkit. De som redan har provat pa att programmera far da chansen att tréana pa sin
pedagogiska formaga som &r sa viktig for systemutvecklare, medan de som dnnu inte
kommit lika langt kan dra nytta av gruppmedlemmarnas samlade kompetens i sitt
larande. Kompetensvariationen i gruppen kommer att fordndras under kursens gang,
da olika individer lar sig olika snabbt i olika skeden av sitt ldrande; de som till att
borja med har ett forsprang kanske senare far kampa for att komma 6ver en viss
larandetroskel.

Samarbetsgrupperna organiserar sjilva sitt arbete och varje grupp far finna de
samarbetsformer som passar medlemmarna bést. Har foljer nagra erfarenhetsbasera-
de tips:

1. Tréaffas sa fort som mgjligt i hela gruppen och lar kdnna varandra. Ju snabbare
ni kommer samman som grupp och far den sociala interaktionen att fungera
desto battre. Ni kommer att ha nytta av denna investering under hela terminen
och kanske under resten av er studietid.

2. Kom overens om stdende motestider och métesplatser. Det ar viktigt med kon-
tinuiteten i arbetet for att samarbetet i gruppen ska utvecklas och fordjupas.
Traffas minst en gang i veckan. Ha en stdende agenda, t.ex. en runda runt bordet
dér var och en berédttar hur langt hen kommit och listar de begreppen som hen
for tillfallet behover fokusera pa.

3. Hjalps at att tillsammans identifiera och diskutera era olika individuella stu-
diebehov och studieambitioner. Nar man ska ldra sig att programmera stéter
man pa olika larandetrésklar som man kan fa hjalp att ta sig 6ver av ndgon som

9

10 KAPITEL -1. ANVISNINGAR

redan ar forbi troskeln. Men det géaller da for den som hjalper att forst forsta
exakt vad det 4r som &dr svart, eller vilka specifika pusselbitar som saknas, for
att pa basta satt kunna underlitta for en medstudent att ta sig 6ver troskeln.
Det giller att hjilpa lagom mycket sa att var och en sjalvstéandigt far chansen
att skriva sin egen kod.

4. Var en schysst kamrat och agera professionellt, speciellt i situationer déar grupp-
deltagarna vill olika. Kommunicera pa ett respektfullt siatt och sok konstruktiva
kompromisser. Att utvecklas socialt ar viktigt for din framtida yrkesutévning
som systemutvecklare och i samarbetsgruppen kan du trdna och utveckla din
samarbetsformaga.

-1.1.1 Samarbetskontrakt

Ni ska uppritta ett samarbetskontrakt redan under forsta veckan och visa for en
handledare. Alla gruppmedlemmarna ska skriva under kontraktet. Handledaren ska
ocksa skriva under som bekriftelse pa att ni visat kontraktet.

Syftet med kontraktet ar att ni ska diskutera igenom i gruppen hur ni vill ar-
beta och vilka regler ni tycker &ar rimliga. Ni bestammer sjidlva vad kontraktet
ska innehéalla. Nedan finns forslag pa punkter som kan inga i ert kontrakt. En
kontraktsmall finns hir: https://github.com/lunduniversity/introprog/blob/
master/study-groups/collaboration-contract. tex

Samarbetskontrakt
Vi som skrivit under detta kontrakt lovar att gora vart basta for att folja samarbets-
reglerna nedan, sa att alla ska ldra sig sa4 mycket som mgjligt.

1. Komma i tid till gruppméten.

2. Vara vil forberedda genom sjalvstudier infér gruppmoten.

3. Hjilpa varandra att férsta, men inte l6sa uppgifter 4t nagon annan.
4. Ha ett respektfullt bemotande dven om vi har olika asikter.

5. Inkludera alla i gemenskapen.

6. ..

-1.1.2 Grupplaboration

Laboration snake0 i lasvecka W10 ar en grupplaboration. Féljande anvisningar gél-
ler speciellt for grupplaborationen. (Allmédnna anvisningar som géller for bade de
individuella laborationerna och grupplaborationer finns i avsnitt -1.5.)

1. Diskutera i din samarbetsgrupp hur ni ska dela upp koden mellan er i flera olika
delar, som ni kan arbeta med var for sig. En sadan del kan vara en klass, en
trait, ett objekt, ett paket, eller en funktion.

2. Varje del ska ha en huvudansvarig individ.

3. Arbetsfordelningen ska vara nagorlunda jamnt fordelad mellan gruppmedlem-
marna.

https://github.com/lunduniversity/introprog/blob/master/study-groups/collaboration-contract.tex
https://github.com/lunduniversity/introprog/blob/master/study-groups/collaboration-contract.tex

-1.2. FORELASNINGAR 11

4. Den som ar huvudansvarig for en viss del redovisar den delen.

5. Ni ska ta fram en gruppgemensam checklista fér kodgranskning. Varje grupp-
medlem ska granska minst en annan gruppmedlems kod enligt checklistan.

6. Grupplaborationen gors 6ver tva veckor uppdelat pa tva delredovisningar. Vid
forsta redovisningen ska arbetsupplédgget och pagaende utveckling redovisas.
Vid andra tillfdallet ska de fardig 16sningarna presenteras av respektive huvud-
ansvarig individ.

7. Vid forsta redovisningen ska du redogora for handledaren hur ni delat upp koden
och vem som dr huvudansvarig for vad och vad ditt ansvar omfattar, samt hur
ni jobbar praktiskt med att synkronisera er utveckling.

8. Grupplaborationen dr en extra stor uppgift och grupparbetet behover ledtid
for att ni ska hinna koordinera er sinsemellan. Du behover darfor planera for
att arbeta med nagot i grupplabben i stort sett varje dag under de tillgingliga
veckorna, och vara redo att bidra i diskussioner.

-1.2 Forelasningar

En normal ldsperiodsvecka borjar med tva foreldsningspass om 2 timmar varde-
ra. Foreldsningarna ger en 6versikt av kursens teoretiska innehall och gar igenom
inneboérden av de begrepp du ska ldra dig. Foreldsningarna innehaller manga program-
meringsexempel och foreldsaren ”1ajvkodar” da och da for att illustrera den kreativa
problemlésningsprocess som ingér i all programmering. Foreldsningarna beror dven
kursens organisation och olika praktiska detaljer.

Pa foreldsningarna ges goda mojligheter att stélla allménna fragor om teorin och
att 1 plenum diskutera specifika svarigheter (individuell lararhjalp ges pa resurstider,
se avsnitt -1.4, och pa laborationer, se avsnitt -1.5). Aven om det 4r ménga i forelis-
ningssalen, tveka inte att stdlla fragor — det ar sidkert fler som undrar samma sak som
du!

Foreldasningarna ar inte obligatoriska, men det 4r mycket viktigt att du gar dit,
aven om du i perioder kdnner att du har bra koll pa all teori. Pa foreldsningarna far
du en 6vergripande d&mnesstruktur och en konkret programmeringsupplevelse, som
du delar med dina kursare och kan diskutera i samarbetsgrupperna. Forelasningarna
ger ocksa en prioritering av materialet och forbereder dig infor examinationen med
praktiska rad och tips om hur du bor fokusera dina studier.

-1.3 Ovningar

I en normal ldsperiodsvecka ingar en 6vning med flera uppgifter och deluppgifter.
Ovningarna utgor grunden for dina programmeringsstudier och erbjuder en syste-
matisk genomgang av kursteorins alla delar genom praktiska kodexempel som du
genomfor steg for steg vid datorn med hjilp av ett interaktivt verktyg som kallas
Read-Evaluate-Print-Loop (REPL). Om du gor 6vningarna i REPL sikerstéller du att
du skaffar dig tillracklig forstaelse for alla begrepp som ingar i kursen och att du inte
missar nagon viktig pusselbit.

Ovningarna fungerar ocksa som forberedelse infor laborationerna. Om du inte gor
veckans 6vning ar det inte troligt att du kommer att klara veckans laboration inom
rimlig tid.

12 KAPITEL -1. ANVISNINGAR

Tva saker ar sarskilt viktiga nar du lar dig att programmera:

* Programmera! Det riacker inte med att bara passivt l4sa om programmering;
du maéste aktivt sjalv skriva mycket kod och genomféra egna programmeringsex-
periment. Det underléttar stort om du bejakar din nyfikenhet och experiment-
lusta. Alla programmeringsfel som du gor och alla dina misstag, som i efterhand
verkar enkla, dr i sjdlva verket oumbarliga steg pa viagen och ger avgérande
“Aha!”-upplevelser. Kursens 6vningar 4r grunden for denna form av larande.

e Ha talamod! Det ir forst nir du har formigan att aktivt kombinera mdnga
olika programmeringskoncept som du sjialv kan losa lite storre programmerings-
uppgifter. Det kan vara frustrerande i bérjan innan du nar sa langt att din
verktygslada med begrepp ar tillrackligt stor for att du ska kunna skapa den
kod du vill. Ibland kréavs det extra talamod innan allt plotsligt lossnar. Manga
programmeringsléirare och -studenter vittnar om att "polletten plotsligt trillar
ner” och allt faller pa plats. Ovningarna syftar till att, steg for steg, bygga din
verktygslada sa att den till slut blir tillriackligt kraftfull for mer avancerad
problemldsning.

Olika studenter har olika ambitionsniva, skilda férkunskaper, varierande arbetska-
pacitet, mer eller mindre valutvecklad studieteknik och olika latt for att 14ra sig att
programmera. For att hantera denna variation erbjuds 6vningsuppgifter av tre olika
typer:

¢ Grunduppgifter. Varje veckas grunduppgifter ticker basteorin och hjilper dig
att sdkerstélla att du kan ga vidare utan kunskapsluckor. Grunduppgifterna
utgor dven basen for laborationerna. Alla studenter bor gora alla grunduppgifter.
En bra forstaelse for innehallet i grunduppgifterna ger goda férutsiattningar att
klara godkéint betyg pa sluttentamen.

¢ Extrauppgifter. Om du upplever att grunduppgifterna &r svara och du vill ova
mer, eller om du vill vara séker pa att du verkligen befister dina grundkunskaper,
da ska du gora extrauppgifterna. Dessa 4r p4 samma niva som grunduppgifterna
och ger extra trianing.

¢ Fordjupningsuppgifter. Om du vill ga djupare och har kapacitet att lara dig
dnnu mer, gor da fordjupningsuppgifterna. Dessa kompletterar grunduppgifter-
na med mer avancerade exempel och gar utéver vad som kravs for godkéant pa
kursen. Om du satsar pa nagot av de hogre betygen ska du gora fordjupnings-
uppgifterna. Vissa fordjupningsuppgifter har en stjirna i marginalen. Denna
symbol visar att uppgiften dr allménbildande, men 6verkurs och kommer ej pa
tentamen.

Till varje 6vning finns losningar som du hittar langst bak i detta kompendium.
Titta inte pa l6sningen innan du sjalv forst forsokt losa uppgiften. Ofta innehaller
losningarna kommentarer och tips sa glom inte att kolla igenom veckans lésningar
innan du boérjar forbereda dig infor veckans laboration.

Tank pa att det ofta finns mdnga olika losningar pa samma programmerings-
problem, som kan vara likvardiga eller ha olika fordelar och nackdelar beroende
pa sammanhanget. Diskutera gérna olika losningsvarianter med dina kursare och
handledare — att prova manga olika séatt att 16sa en uppgift fordjupar ditt larande
avsevart!

*

-1.4. RESURSTIDER 13

Manga uppgifter lyder "testa detta i REPL och férklara vad som hinder” och
svarigheten ligger ofta inte i att skapa sjilva koden utan att forsta hur den fungerar
och varfor. Pa detta satt tranar du ditt programmeringstinkande med hjilp av en
vaxande begreppsapparat. Syftet ar ofta att illustrera ett allméngiltigt koncept och
det ar darfor extra bra om du skapar egna Gvningsuppgifter p4 samma tema och
experimenterar med nya varianter som ger dig ytterligare forstaelse.

Ovningsuppgifterna innehaller ofta firdiga kodsnuttar som du ska skriva in i
REPL medan den kor i ett terminalfonster. REPL-kod visas i 6vningsuppgifterna med

ljus text pa mork bakgrund, sa har:

scala> val msg = "Hello world!"

scala> println(msg)

Prompten scala> indikerar att REPL ar igdng och véantar pa indata. Du ska skriva
den kod som star efter prompten. Mer information om hur du anvinder REPL hittar
du i appendix ??.

Aven om kompendiet finns tillgingligt for nedladdning, frestas inte att klippa ut
och klistra in alla kodsnuttar i REPL. Ta dig istéllet den ringa tiden det tar att skriva
in koden rad for rad. Medan du sjalv skriver hinner du tdnka efter, och det egna,
aktiva skrivandet framjar ditt larande och gor det lattare att komma ihag och forsta.

-1.4 Resurstider

Under varje lasperiodsvecka finns ett flertal resurstider i schemat. Det finns minst en
tid som passar din schemagrupp, men du far garna ga pa andra och/eller flera tider i
man av plats. Resurstiderna ar schemalagda i datorsal med Linuxdatorer och i varje
sal finns en handledare som &r redo att svara pa dina fragor.

Foljande riktlinjer géller for resurstiderna:

1. Syfte. Resurstiderna ar primért till for att hjdlpa dig vidare om du kor fast med
ovningarna eller laborationsforberedelserna, men du far fraga om vad som helst
som ror kursen i den man handledaren kan svara och hinner med.

2. Samarbete. Hjilp gédrna varandra under resurstiderna! Om nagon kursare kor
fast ar det utvecklande och larorikt att hjalpa till. Om schema och plats tillater
kan du gdrna ga pa samma resurstidstillfdlle som nidgon medlem i din samar-
betsgrupp, men ni kan ocksa lika girna hjilpas at tvirs 6ver gruppgréanserna.

3. Hansyn. Nar du hjalper andra, tidnk pa att prata riktigt tyst sa att du inte
stor andras koncentration. Tank ocksa pa att alla behover trana mycket sjalv
utan att bli alltfor styrda av en "bakséatesforare”. Ta inte 6ver tangentbordet
fran nagon annan; ge hellre vilgenomténkta tips pa viagen och lat din kursare
behalla kontrollen Gver uppgiftslésningen.

4. Fokus. Du ska inte gora och redovisa laborationen pa resurstiderna; dessa
ska goras och redovisas pa laborationstid. Men om du varit sjuk eller ej blivit
godkind pa nagon enstaka laboration kan du, om handledaren sa hinner, be att
fa redovisa din restlaboration pa en resurstid.

5. Framstegsprotokoll. Pa sidan iii finns ett framstegsprotokoll for 6vningarna.
Hall detta uppdaterat allteftersom du genomfor 6vningarna och visa protokollet
nér du fragar om hjalp av handledare. Da blir det lattare for handledaren att se
vilka kunskaper du férviarvat hittills och anpassa dialogen darefter.

14 KAPITEL -1. ANVISNINGAR

-1.5 Laborationer

En normal lasperiodsvecka avslutas med en ldrarhandledd laboration. Medan 6vningar
tranar teorins olika delar i manga mindre uppgifter, syftar laborationerna till traning
i att kombinera flera begrepp och applicera dessa tillsammans i ett storre program
med flera samverkande delar.

En laboration varar i 2 timmar och dr schemalagd i salar med datorer som kor
Linux. Foljande anvisningar géller for laborationerna:

1. Obligatorium. Laborationerna ar obligatoriska och en viktig del av kursens
examination. Godkdnda laborationer visar att du kan tillampa den teori som
ingar i kursen och att du har tillgodogjort dig en grundldggande formaga att
sjalvstandigt, och i grupp, utveckla storre program med manga delar. Observera
att samtliga laborationer maste vara godkdnda innan du far gora det muntliga
provet och den valfria tentan!

2. Individuellt arbete och fusk. Du ska lésa de individuella laborationerna
sjalvstandigt genom eget, enskilt arbete. Du far hjédlpa andra med att forsta men
inte ge eller ta emot fiardiga l6sningar. Lis noga nedan om vad som ar tillatet och
inte. Fusk kan medféra avstiangning fran universitetet och indraget studiemedel.
Urkundsforfalskning kan medfora atal i domstol.

(a) Det ar tillatet att under forberedelserna diskutera 6vergripande principer
for laborationernas lésningar med andra, men var och en ska sjalvstandigt
skapa en egen l6sning.

(b) Under redovisningen ska du for handledare pa begéran ingaende forklara
din individuella 16sning och de begrepp som ingar i larandemalen.

(c) Speciella anvisningar for grupplaborationer finns i avsnitt -1.1.2.
(d) Det ar inte tillatet att lagga ut 16sningar pa nétet; det ar medhjalp till fusk.

(e) Det ar inte tillatet att anvinda artificiell intelligens for att generera 16s-
ningar. Det ar viktigt att du i denna kurs lir dig att sjalvstandigt utveckla
grundldggande 16sningar sa att du i framtiden ska kunna granska och
viardera kvaliteten pa Al-genererad kod. Du ska darfor stianga av tillag-
get Copilot i VS Code (eng. disable extension copilot)! — fraga gérna en
handledare om hjilp om hur detta gar till.

(f) Las noga pa denna webbsida om var griansen gar mellan samarbete och
fusk: https://cs.lth.se/utbildning/samarbete-eller- fusk/

(g) Fusk ar inte bara riskabelt och oetiskt, det undergriaver dessutom dina
fortsatta studier. Begreppen som du lir dig i denna kurs ir en grundforut-
séattning for att du ska ha gléddje av efterféljande kurser och ett djupinriktat
larande i denna kurs ar grundldggande for hela din utbildning.

3. Forberedelser. Till varje laboration finns férberedelser som du ska gora fore
laborationen. Detta dr helt avgorande for att du ska hinna gora laborationen in-
om 2 timmar. Ta hjilp av en kamrat eller en handledare under resurstiderna om
det dyker upp nagra fragor under ditt forberedelsearbete. Innan varje laboration
skall du ha:

(a) studerat relevanta delar av kompendiet;

1https://stackoverflow.com/questions/75377406

https://cs.lth.se/utbildning/samarbete-eller-fusk/
https://stackoverflow.com/questions/75377406

v ®

-1.6. PROJEKTUPPGIFT 15

6.

(b) gjort grunduppgifterna som ingar i veckans 6vning, och gidrna dven (nagra)
extradévningar och/eller fordjupningsévningar;

(c) last igenom hela laborationen noggrant;

(d) lost forberedelseuppgifterna. I labbforberedelserna ska du i forekommande
fall skriva delar av den kod som ingar i laborationen. Det kravs inte att
allt du skrivit ar helt korrekt, men du ska ha gjort ett rimligt forsok. Ta
hjalp om du far problem med uppgifterna, men lat inte nagon annan lésa
uppgiften at dig.

Om du inte hinner med alla obligatoriska labbuppgifter, far du géra de atersta-
ende uppgifterna pa egen hand och redovisa dem vid paféljande labbtillfille eller
resurstid, och forbereda dig dnnu béattre till ndsta laboration...

Sjukanméilan. Om du ar sjuk vid nagot laborationstillfdlle maste du anméla
detta till kursansvarig via mejl fore laborationen. Om du varit sjuk ska du férsoka
gora uppgiften pa egen hand och sedan redovisa den vid néasta labbtillfille eller
resurstid. Om du behover hjalp att komma ikapp efter sjukdom, kom till en
eller flera resurstider och prata med en handledare. Om du uteblir utan att ha
anmailt sjukdom kan kursansvarig besluta att du far vinta till ndsta ldsar med
redovisningen, och da far du inte nagot slutbetyg i kursen under innevarande
lasar.

. Skriftliga svar. Vid nagra laborationsuppgifter finns en penna i marginalen.

Denna symbol indikerar att du ska skriva ner och spara ett resultat som du
behover senare, och/eller som du ska visa upp for labbhandledaren vid en efter-
foljande kontrollpunkt eller vid den avslutande redovisningen.

Kontrollpunkter. Vid nagra laborationsuppgifter finns en 6gonsymbol med
en bock i marginalen. Detta innebér att du natt en kontrollpunkt dar du ska
diskutera dina resultat med en handledare. Rick upp handen och visa vad
du gjort innan du fortsiatter. Om det ar ldng vintan innan handledaren kan
komma sa ar det ok att dnda ga vidare, men glom inte att senare diskutera med
handledaren sa att ni gemensamt sékerstiller att du forstatt alla delresultat.
Dialogen med din handledare dr en viktig chans till aterkoppling pa din kod — ta
vara pa den!

-1.6 Projektuppgift

Efter avslutad labbserie foljer en obligatorisk projektuppgift diar du pa egen hand ska
skapa ett stort program med manga olika samverkande delar. Det ar forst ndr médngden

kod blir riktigt stor som du verkligen har nytta av de olika abstraktionsmekanismer

du lart dig under kursens gang och din felsokningsforméaga sitts pa prov. Féljande
anvisningar géller for projektuppgiften:

1.

Val av projektuppgift. Du viljer sjilv projektuppgift. I kapitel ?? finns flera
forslag att vilja bland. Las igenom alla uppgiftsalternativ innan du véljer vilken
du vill gora. Du kan ocksa i samrad med en handledare definiera en egen
projektuppgift, men innan du borjar pa en egendefinierad projektuppgift ska
en skriftlig beskrivning av uppgiften godkénnas av handledare i god tid innan
redovisningstillfdallet. Valj uppgift efter vad du tror du klarar av och undvik bade
en for simpel uppgift och att ta dig vatten 6ver huvudet.

16 KAPITEL -1. ANVISNINGAR

2. Anvisningarna 1 och 2 for laborationer (se avsnitt -1.5) géaller ocksa for pro-
jektuppgiften: den dr obligatorisk och arbetet ska ske individuellt. Du far
diskutera din projektuppgift pa ett 6vergripande plan med andra och du kan be
om hjilp av handledare pa resurstid med enskilda detaljer om du kor fast, men
l6sningen ska vara din och du ska ha skrivit hela programmet sjilv.

3. Omfattning. Skillnaden mellan projektuppgiften och labbarna ar att den ska
vara vdsentligt mer omfattande dn de storsta laborationerna och att du fardig-
stéller den kompletta losningen innan redovisningstillfiallet. Du behover déarfor
borja i god tid, forslagsvis tva veckor innan redovisningstillfallet, for att sakert
hinna klart. Det ar viktigt att du tidnker igenom omfattningen noga, i forhallande
till ditt val av projektuppgift, gdrna utifran din sjalvinsikt om vad du behover
trana pa. Diskutera gérna med en handledare hur du anvénder projektuppgiften
pa basta séatt for ditt ldrande.

4. Dokumentation. Infor redovisningen ska du skapa automatiskt genererad
dokumentation utifran relevanta dokumentationskommentarer for minst hilften
av dina publika metoder, enligt instruktioner i Appendix ??.

5. Kodlagring och versionshantering. Projektuppgiften kan vara ett lampligt
tillfalle att trdna pa versionshantering med git. Det r, precis som for labora-
tioner, inte tillatet att lagra dina l6sningar oppet pa niatet. Om du vill trana pa
att anvinda en kodlagringsplats, t.ex. GitHub eller GitLab, var da noga med
att kontrollera att repositoriet ar stéangt (eng. closed repository), sa att du inte
riskerar medhjalp till fusk. Anvandning av git och kodlagringsplats ar valfritt.

6. Redovisning. Vid redovisningen anvinder du tiden med handledaren till att
ga igenom din 16sning, redogora for hur din kod fungerar samt diskutera for- och
nackdelar med ditt angreppssétt. Du ska ocksa beskriva hur ditt framvaxten av
ditt program och hur du stegvis har avlusat och férbéittrat implementationen.
Pa redovisningen ska du dven ga igenom dokumentationen av din kod.

-1.7 Muntligt prov

Pa schemalagd tid senast sista ldsveckan i december ska du avlidgga ett obligatoriskt
muntligt prov for handledare. Du maste vara godként pa alla laborationer for att fa
gora det muntliga provet. Syftet med provet ar att kontrollera att du har godkiand
forstaelse for de begrepp som ingar i kursen. Du rekommenderas att forbereda dig noga
infor provet, t.ex. genom att ga igenom grundldggande begrepp for varje kursmodul
och repetera grundévningar och laborationer.

Provet sker som ett stickprov ur kursens innehall. Du kommer att f4 ndgra slump-
vis valda fragor ddr du ombeds forklara nagra av de begrepp som ingar i kursen. Du
far dven uppdrag att skriva kod som liknar kursens 6vningar och forklara hur koden
fungerar. Du kan tréna pa typiska fragor har: https://fileadmin.cs.lth.se/pgk/
muntabot/

Om det visar sig oklart huruvida du uppnatt godkénd forstaelse kan du behova
komplettera ditt muntliga prov. Kontakta kursansvarig for information om omprov.

https://fileadmin.cs.lth.se/pgk/muntabot/
https://fileadmin.cs.lth.se/pgk/muntabot/

-1.8. VALFRI TENTAMEN 17

-1.8 Valfri tentamen

Kursen avslutas med en valfri skriftlig tentamen med snabbreferensen? som enda

tillatna hjalpmedel. Du méaste vara godkind pa obligatoriska moment for att fa ten-
tera. Tentamensuppgifterna ar uppdelade i tva delar, del A och del B, med foljande
preliminira betygsgrénser:

* Del A omfattar 20% av den maximala podngsumman.

* Om du pa del A erhaller farre poiang én vad som kravs for att na upp till en
bestamd “rattningstroskel”, kan din tentamen komma att underkidnnas utan att
del B bedoms.

* Preliminira betygsgranser:

— For betyg 4 kravs prel. minst 67% av maxpoédngen.

— For betyg 5 kravs prel. minst 83% av maxpoédngen.

2https ://fileadmin.cs.lth.se/pgk/quickref.pdf

https://fileadmin.cs.lth.se/pgk/quickref.pdf

18

KAPITEL -1. ANVISNINGAR

Kapitel 0

Hur bidra fill kursmaterialet?

0.1 Bidrag &@r varmt valkomnal

Ett av huvudsyftena med att gora detta kursmaterial fritt och 6ppet ar att mgjliggora
bidrag fran alla som ar intresserade. Speciellt vilkommet dr bidrag fran studenter
som vill vara delaktiga i att utveckla undervisningen.

0.2 Instruktioner

0.2.1 Vad behovs for att kunna bidra?

Om du hittar ett problem, t.ex. ett enkelt stavfel, eller har nagot mer omfattande
som borde forbattras, men dnnu inte kdnner till eller har tillgang till de verktyg
som beskriv nedan och som behdovs for att gora bidrag, kontakta da nagon som redan
bidragit till materialet, sa att ndgon annan kan implementera ditt forslag.

Innan du sjalv kan implementera éndringar direkt i materialet, behover du kdnna
till, och ha tillgang till, ett eller flera av foljande verktyg (beroende pa vad dndringen
géller):

¢ Latex: en.wikibooks.org/wiki/LaTeX

* Scala: en.wikipedia.org/wiki/Scala_%28programming_language%29
git: https://en.wikipedia.org/wiki/Git_%28software%29

GitHub: en.wikipedia.org/wiki/GitHub

sbt: en.wikipedia.org/wiki/SBT_%28software%29

°

Las mer om hur du bidrar hér:
github.com/lunduniversity/introprog#how-to-contribute

0.2.2 Svenska eller engelska?

Vi blandar engelska och svenska enligt féljande principer:

¢ Publika diskussioner, t.ex. i issues och pull requests pa GitHub, sker pa engelska.
I en framtid kan delar av materialet komma att 6verséttas till engelska och
da ar det bra om &ven icke-svensksprakiga kan forsta vad som har hént. Alla
andringshéindelser sparas och man kan séka och gé tillbaka i historiken.

19

https://en.wikibooks.org/wiki/LaTeX
https://en.wikipedia.org/wiki/Scala_%28programming_language%29
https://en.wikipedia.org/wiki/Git_%28software%29
https://en.wikipedia.org/wiki/GitHub
https://en.wikipedia.org/wiki/SBT_%28software%29
https://github.com/lunduniversity/introprog#how-to-contribute

20 KAPITEL 0. HUR BIDRA TILL KURSMATERIALET?

¢ Kompendiet finns for nidrvarande bara pa svenska eftersom kursen initialt en-
dast ges for svensksprakiga studenter, men texten ska hjialpa ldsaren att tillgo-
dogora sig motsvarande engelsk terminologi. Skriv darfér mostvarande engelska
begrepp (eng. concept) i parentes med hjélp av latex-kommandot \Eng{concept}.

* Pa 6vningar och foreldsningar dr svenska variabelnamn ok. Svenska kan anvin-
das for att hjalpa den som haller pa att lara sig att skilja pa ord som vi sjilv
hittar pa och ord som finns i programmeringsspraket. Detta signalerar ocksa
att nar man lar sig och experimenterar kan man hitta pa tokroliga namn och
anvanda svenska hur mycket man vill. Man lar sig genom att prova!

¢ Kod ilabbar ska vara pa engelska. Detta signalerar att nar man kodar for att
det ska bli nagot bestdende, da kodar man pa engelska.

0.3 Exempel

Som exempel pa hur det gar till i ett typiskt 6ppen-killkodsprojekt, beskrivs ne-
dan vad som hénde i ett verkligt fall: en dokumentationsuppdatering av Scala-
dokumentationen efter att ett fel upptackts. Detta exempelfall ar ett typiskt scenario
som illustrerar hur det kan g4 till, och vad man kan behéva tédnka pa. Exemplet ger
ocksa lankar till och inblick i ett riktigt stort projekt med 6ppen killkod.

Scenario: att géra ett bidrag vid upptdckt av problem

“Jag fick till min stora glddje denna Pull Request (PR) accepterad till dokumentations-

sajten for Scala. Man kan se mitt bidrag hér:

github.com/scala/scala.github.com/pull/517/commits/2624c305a8a6f24ea3398fe0fcbd0c72492bdd12
Att borja med att bidra till dokumentation ér ofta en bra vig att komma in i ett

oppen-kallkodsprojekt, da det 4r en god chans att hjilpa till utan att det behover krava

djup kompetens om koden i repot!. Jag beskriver nedan vad som hénde steg for steg

da jag fick en riktig PR accepterad, som ett typiskt exempel pa hur det ofta fungerar.

1. Jag tyckte dokumentationen for metoden lengthCompare pa indexerbara sam-
lingar pa scala-lang.org/documentation var férvirrande. Nir jag provade i REPL
blev det uppenbart att nagot var fel: antingen sa var dokumentationen fel eller
sa funkade inte metoden som den skulle. Ojoj, kanske har jag upptéckt ett nytt
fel? En chans att bidra!

2. Forst sokte jag noga bland alla drenden som ligger under fliken ’issues’ pa
GitHub for att se om nagon redan hittat detta probelm. Om sé vore fallet hade
jag kunnat kommentera ett sddant drende och skriva nagot till stod for att den
behover fixas, eller allra helst att erbjuda mig att forsoka fixa den. Men jag
hittade inget drende om detta...

3. Jag skapade darfor ett nytt d&rende genom att klicka pa knappen New issue i
webbgrianssnittet pa GitHub och hér syns resultatet:
https://github.com/scala/scala.github.com/issues/515#

Jag tankte noga pa hur jag skulle formulera mig:

* Arendetiteln ar extra viktig: den ska sammanfatta pa en enda rad vad det
hela ror sig om sa att lasaren av rubriken férstar vad problemet handlar
om.

10Ordet repo &r en forkortning av repositorium, hér i betydelsen en lagringsplats for kod.

https://github.com/scala/scala.github.com/pull/517/commits/2624c305a8a6f24ea3398fe0fcbd0c72492bdd12
http://scala-lang.org/documentation/
https://github.com/scala/scala.github.com/issues/515#

0.3. EXEMPEL 21

10.

11.

¢ Jag jobbade sedan med att skriva en tydlig och detaljerad beskrivning av
problemet och angav exakt vilken version det géllde. Det ar bra att klistra
in exempel fran Scala REPL och andra testfallskérningar med indata och
utdata om relevant. Det ar viktigt att problemet gar att hitta och aterskapa
av andra, darfér behovs information om vilken version det géller och ett
minimalt testfall som renodlar problemet.

* Det dr bra att stélla fragor och komma med forslag for att 6ppna en diskus-
sion om &rendet. Jag fragade speciellt om detta var ett dokumentationspro-
blem eller en bugg i koden.

¢ OBS! Man ska inte 6ppna ett d&rende innan man forst kollat noga att det
verkligen ar nagot som bor atgirdas och att det inte 4r en dubblett eller
overlapp med andra issues: varje gdng man oppnar ett drende kommer det
att generera arbete for andra 4ven om drendet inte ens till slut resulterade
i nadgon atgéard...

¢ Om det ar ett mer oppet, allméant forslag, en forbattring eller en helt
ny feature kan man ocksa skapa en issue (det méaste alltsa inte vara en
renodlad bugg). Ar man osiker pa om idrendet &r relevant, ar det bra att
diskutera det i gemenskapens mejlforum forst.

Jag fick snabbt kommentarer pa mitt drende, vilket dr kidnnetecknande for
en vil fungerande gemenskap (eng. community) med alerta reposkétare (eng.
maintainers). Och nar jag fick uppmuntran att bidra, sa erbjod jag mig att
implementera forbattringen.

. Tank pa att alltid skriva alla kommentarer och svar i en saklig, kortfattad och

trevlig ton!

Naista steg ar att "forka” repot pa GitHub genom att helt enkelt klicka pa Fork i
webbgrinssnittet. Jag fick da en egen kopia av repot under min egen anvéindare
pa GitHub, déar jag har rattigheter att dndra.

Darefter klonade jag repot till min lokala maskin med terminalkommandot
git clone https://... (eller sa kan man anvéanda skrivbordsappen GitHub
Desktop).

. Sedan réattade jag problemet direkt i relevant fil i en editor pa min dator, i

detta fallet var filen i formatet Markdown (ett 14ttlast textformat som man kan
generera HTML fran):
raw.githubusercontent.com/scala/scala.github.com/master/overviews/collections/seqs.md

Nair jag fixat problemet gjorde jag git add pa filen och sedan

git commit -m "valgenomténkt commit msg"

Jag tankte efter noga innan jag skrev forsta raden i commit-meddelandet sa
att det skulle vara bade kort och kérnfullt. Men dnda glomde jag att inkludera
issue-numret : (, se min kommentar till commiten, som jag tillfogade i efterhand,
nér jag till slut upptéackte min fadéis:
scala.github.com/commit/2624c305a8a6f24ea3398fe0fcbd0c72492bdd 12#comments

Efter att jag gjort git commit sa finns &ndringen dnnu sa ldnge bara lokalt pa
min dator. Da giller det att ”pusha” till min fork pa GitHub med git push (eller
anvanda Sync-knappen i GitHub-desktop-appen).

Darefter skapade jag en PR genom att helt enkelt trycka pa knappen New pull
request pa GitHub-sidan fér min fork. Jag tidnkte efter noga innan jag forfattade

https://raw.githubusercontent.com/scala/scala.github.com/master/overviews/collections/seqs.md
https://github.com/bjornregnell/scala.github.com/commit/2624c305a8a6f24ea3398fe0fcbd0c72492bdd12#comments

22 KAPITEL 0. HUR BIDRA TILL KURSMATERIALET?

rubriken som beskriver denna PR. Hade denna &ndring varit mer omfattande
hade jag ocksa behovt gora en detaljerad beskrivning av hur dndringen var
implementerad for att underliatta granskningen av mitt forslag. Ni kan se denna
(numera avlutade) PR hér:
https://github.com/scala/scala.github.com/pull/517

12. Néir jag skapat en PR fick de som skoter repot ett automatiskt meddelande om
denna nya PR och den efterféljande granskningsfasen intridddes. Den brukar
sluta med att en eller flera andra personer kommenterar PR i webbgrianssnitttet
med 'LGTM’. LGTM = "Looks Good To Me” och betyder ungefar "jag har kollat pa
detta nu och det verkar (vad jag kan bedéma) vara utmérkt och alltsa redo for
merge". Om det inte ser bra ut s forvintas granskaren foresla vad som behover
forbattras i en saklig och trevlig ton.

13. Nar PR ar granskad sa kan en person, som har rattigheter att dndra, “merga” in
PR pa huvudgrenen, som ofta kallas master, i det centrala repot, som ofta kallas
upstream.

14. Avslutningsvis kan drendet stdngas av de ansvariga for repot. Denna issue ar
nu markerad "Closed” och syns inte ldngre i listan med aktiva issues.

Puh! Sen var det klart :) ”

Epilog: Om du i framtiden far chansen att gora fler bidrag ar det viktigt att forst
uppdatera din fork mot upstream innan du gor nagra nya andringar i din lokala kopia;
annars ar risken att din PR innehaller féraldrad information och ddrmed blir en merge
onodigt kranglig. Detta kan man géra genom en knapp i GitHub Desktop eller genom
att folja denna beskrivning: help.github.com/articles/syncing-a-fork/ Det dr i allménhet
den som dndrar som ansvarar for att Andringar alltid sker i samklang med den mest
aktuella versionen av upstream.

https://github.com/scala/scala.github.com/pull/517
https://help.github.com/articles/syncing-a-fork/

Del li

Moduler

23

Kapitel 1

Infroduktion

Begrepp som ingar i denna veckas studier:

sekvens
alternativ
repetition
abstraktion
editera
kompilera
exekvera
datorns delar
virtuell maskin
litteral

virde
uttryck
identifierare
variabel

typ
tilldelning
namn

val

var

def

ODoooooDgooooooooogogog

25

oooooooboooooooboogoo

definiera och anropa funktion
funktionshuvud
funktionskropp
procedur

inbyggda grundtyper
println

typen Unit
enhetsvardet ()
stranginterpolatorn s
aritmetik

slumptal

logiska uttryck

de Morgans lagar

if

true

false

while

for

dod: operativsystem

26 KAPITEL 1. INTRODUKTION

1.1 Teori

1.1.1 Hur fungerar en dator?

Minne med minnesceller
‘ Indata-enhet ’

-

‘ Utdata-enhet ’

address | innehall
42
13
18
21
55
64
48

O [W|IN| =IO

Minnet innehaller endast heltal som
representerar data och instruktioner.

1.1.2 Vad é&r programmering?

¢ Programmering innebar att ge instruktioner till en maskin.

¢ Ett programmeringssprak anvinds av ménniskor for att skriva killkod som
kan oversittas av en kompilator till maskinsprak som i sin tur exekveras
av en dator.

¢ Ada Lovelace publicerade det forsta programmet redan pa 1800-
talet &mnat for en kugghjulsdator.

¢ sv.wikipedia.org/wiki/Programmering
¢ en.wikipedia.org/wiki/Computer_programming
* Ha picknick i Ada Lovelace-parken pa Brunnshog!

1.1.3 Vad ér en kompilator?

‘ Killkod ’F‘?_‘”.
méanniskor
Kompilator
. For
‘ Maskinkod .
maskiner

Grace Hopper uppfann kompilatorn 1952.
en.wikipedia.org/wiki/Grace_Hopper

https://sv.wikipedia.org/wiki/Programmering
https://en.wikipedia.org/wiki/Computer_programming
http://kartor.lund.se/wiki/lundanamn/index.php/Ada_Lovelace-parken
https://en.wikipedia.org/wiki/Grace_Hopper

1.1. TEORI

1.1.4 Virtuell maskin (VM) == abstrakt hdrdvara

¢ En VM ar en "dator” implemen-
terad i mjukvara som kan tol-
ka en abstrakt “maskinkod” som |
oversitts under korning till
den verkliga maskinens kon-
kreta maskinkod.

¢ Med en VM blir kiallkoden platt-
formsoberoende och fungerar
pa manga olika maskiner.

¢ Exempel JVM:
Java Virtual Machine

‘ Kallkod ’

Kompilator

‘ Abstrakt "maskinkod”

VM interpreterar

‘ Konkret maskinkod ’

1.1.5 Vad bestdr ett program av?

¢ Text som foljer entydiga sprakregler (grammatik):

- Syntax: textens konkreta utseende
- Semantik: textens betydelse (vad maskinen gér/berdknar)

¢ Nyckelord: ord med speciell betydelse, t.ex. if, while

¢ Deklarationer: definitioner av nya ord: def gurka = 42

* Satser ir instruktioner som gor nagot: print("hej")

¢ Uttryck ar instruktioner som berdknar ett resultat: 1 + 1
¢ Data ar information som behandlas: t.ex. heltalet 42

* Instruktioner ordnas i kodstrukturer: SARA

- Sekvens: ordningen spelar roll for vad som hénder

— Alternativ: olika resultat beroende pa uttrycks virde

- Repetition: instruktioner upprepas manga ganger

— Abstraktion: nya byggblock skapas for att ateranviandas

1.1.6 Exempel pd programmeringssprdk

Det finns massor med olika sprak och det kommer stindigt nya.

e Java ¢ Scala
e C * Rust
o C++ e Go

o C# ¢ Kotlin
¢ Python LI

e JavaScript

28 KAPITEL 1. INTRODUKTION

Nagra topplistor: e PYPL
¢ Redmonk * TIOBE

1.1.7 Olika programmeringsparadigm

¢ Det finns manga olika programmeringsparadigm (sétt att programmera pa), till
exempel:

- imperativ programmering: programmet 4r uppbyggt av satser som pa-
verkar systemets tillstand

- objektorienterad programmering: en sorts imperativ programmering
dar programmet bestar av objekt som kapslar in data och erbjuder opera-
tioner som bearbetar dessa data

- funktionsprogrammering: programmet 4r uppbyggt av samverkande
funktioner som undviker férandringar av data

- deklarativ programmering, logikprogrammering: programmet ar upp-
byggt av logiska uttryck som beskriver olika fakta eller villkor och exekve-
ringen utgors av en bevisprocedur som soker efter varden som uppfyller
fakta och villkor

Denna kurs behandlar de tre forsta.

1.1.8 Hello world

Kor rad for rad i Scala REPL (Read-Evaluate-Print-Loop):

> scala
Welcome to Scala 3.7.2 (21.0.5, Java OpenlDK 64-Bit Server VM).
Type in expressions for evaluation. Or try :help.

scala> println("Hello World!")
Hello World!

@main framfor valfri funktion anger var ett fristaende program ska starta:

@main def hi = println("Hello world!")

Spara texten ovan i filen hello.scala och kompilera ditt program:

> scala compile hello.scala

Kor ditt program med scala run som kompilerar automatiskt vid behov.

> scala run hello.scala
Hello World!

https://redmonk.com/sogrady/2025/06/18/language-rankings-1-25/
http://pypl.github.io/PYPL.html
https://www.tiobe.com/tiobe-index/
https://en.wikipedia.org/wiki/Programming_paradigm

1.1. TEORI 29

1.1.9 Utvecklingscykeln

editera; kompilera; hitta fel och forbattringar; editera; kompilera; hitta fel och forbatt-
ringar; editera; kompilera; hitta fel och forbattringar; editera; kompilera; hitta fel och
forbattringar; editera; kompilera; hitta fel och férbéttringar; editera; kompilera; hitta
fel och férbattringar; ...

upprepa(1000) {
editera
kompilera
testa

1.1.10 Utvecklingsverktyg

* Din verktygskunskap ar mycket viktig for din produktivitet.

¢ Lir dig kortkommandon foér vanliga handgrepp.

¢ Alla verktyg som behovs finns foérinstallerade pa LTH:s linuxdatorer. Om din
egen burk kranglar: kér pa skolans burkar sa du ej fordréjs!

¢ Verktyg vi anvéander i kursen:

Scala REPL: fran 6vn 1

Barnvénlig Scala-programmering med Kojo: Lab 1
Texteditor for kod, t.ex VS code: fran 6vn 2

Kompilera och kor fristdende program med scala: fran 6vn 2

¢ Andra verktyg som &r bra att lira sig:

— Git for versionshantering
— GitHub for kodlagring — men inte av losningar till labbar!
— Linux/Ubuntu och nyttiga terminalkommando

1.1.11 Installera verktyg pd din egen dator

Nar du ska skriva kod i en editor, kompilera i terminalen och koéra ditt program som
en fristaende applikation, sa behovs:

¢ En editor: VS Code med tillagget Scala (Metals)

¢ Kormiljon OpendDK

¢ Kommandoverktyg for terminalen: scala

* Se instruktioner hér: https://lunduniversity.github.io/pgk/#verktyg
* Lids mer i Appendix C.

¢ Tips om du kér Windows: installera nya Windows Terminal

¢ Installationshjalp:

1. Drop-in som institutionen ordnar pa lunchtid.
2. Pluggkvallar som SRD ordnar.

3. #fragor-och-svar pa var Discord-server

4. Fraga handledare pa resurstid (i man av tid).

https://lunduniversity.github.io/pgk/#verktyg

30 KAPITEL 1. INTRODUKTION

1.1.12 Scala Command Line Interface (CLI)

¢ Utvecklingen av ett nytt kommandogréanssnitt (eng. Command Line Interface
(CLI)) for Scala startades 2022 i ett 6ppenkéillkodsprojekt som leds av Virtuslab.

¢ [augusti 2024 blev scala-cli det nya scala-kommandot. (Fore Scala 3.5 hette
kommandot scala-cli.)

¢ Lias mer i Appendix C och F, samt har: https://scala-cli.virtuslab.org/

® Du kan se vad Scala CLI kan gora via hjilp-optionen:

> scala help

scala-cli help ar "gamla” kommandot som ocksa ingér i Scala-installationen.

1.1.13 Tips och trix med scala i terminalen

e Skriv :help i REPL sa far du se vilka kommando som finns.

* Du kan avsluta REPL med :q eller trycka Ctrl+D.

¢ Ett vertikalstreck visas om du trycker ENTER mitt i en ofullstindigt rad.
Detta indikerar att du kan fortsitta skriva pa ny rad innan tolkning sker.

¢ Om du vill att REPL ska vanta att tolka raden du skrivit och istillet ge dig
dannu en rad, sa tryck forst ner ESC-tangenten och sedan ENTER.

¢ Om du vill férhindra att REPL ger ny rad efter ENTER vid ofullstindig rad, sa
skriv ett semikolon och tryck ENTER.

¢ Starta repl med punkt efter blanktecken om du vill ha tillgang till koden i alla
scala-filer i aktuell katalog i din REPL-session:
scala repl .

¢ Kor med punkt efter blanktecken sa kompileras och exekveras alla scala-filer i
aktuell katalog och eventuella underkataloger:
scala run .

1.1.14 Litteraler

¢ En litteral representerar ett fixt virde i koden och anvands for att skapa data
som programmet ska bearbeta.
¢ Exempel:
42 heltalslitteral
42.0 decimaltalslitteral
e teckenlitteral, omgérdas med ’enkelfnuttar’
"hej" stranglitteral, omgirdas med "dubbelfnuttar”
true litteral for sanningsvéardet "sant”
¢ Literaler har en typ som avgor vad man kan gora med dem.

https://scala-cli.virtuslab.org/

1.1. TEORI

31

1.1.15 Exempel pd inbyggda datatyper i Scala

Int for heltal

Alla virden, uttryck och variabler har en datatyp, t.ex.:

— Long for extra stora heltal (tar mer minne)
— Double for decimaltal, sa kallade flyttal med flytande decimalpunkt
— String for stréangar

¢ Kompilatorn héaller reda pa att uttryck kombineras pa ett typsakert satt. An-
nars blir det kompileringsfel.

® Scala och Java ar s.k. statiskt typade sprak, vilket innebéar att kontroll av
typinformation sker vid kompilering (eng. compile time)'.

® Scala-kompilatorn gor typhéirledning: man slipper skriva typerna om kom-
pilatorn kan lista ut dem med hjélp av typerna hos deluttrycken.

1.1.16 Grundtyper i Scala

Dessa grundtyper (eng. basic types) finns inbyggda i Scala:

Svenskt namn

Engelskt namn

Grundtyper

heltalstyp
flyttalstyp

numeriska typer

strangtyp
(teckensekvens)

sanningsvéardestyp
(boolesk typ)

integral type

floating point
number types

numeric types

string type

truth value type

Byte, Short, Int, Long, Char
Float, Double

heltalstyper och flyttalstyper
String

Boolean

1Andra sprék, t.ex. Python och Javascript 4r dynamiskt typade och dér skjuts typkontrollen upp
till korningsdags (eng. run time)
Vilka éar for- och nackdelarna med statisk vs. dynamisk typning?

https://sv.wikipedia.org/wiki/Datatyp
https://sv.wikipedia.org/wiki/Typsystem
https://en.wikipedia.org/wiki/Type_inference

32

KAPITEL 1. INTRODUKTION

1.1.17 Grundtypernas omfdang

Grundtyp | Antal bitar | Omfang: minsta & storsta virde
Byte 8 -27..27-1

Short 16 —215 215_1

Char 16 0..216-1

Int 32 231 2311

Long 64 263 263 _1

Float 32 + 3.4028235-1038

Double 64 + 1.7976931348623157 - 10308

Grundtypen String lagras som en sekvens av 16-bitars tecken av typen Char och kan

vara av godtycklig langd (tills minnet tar slut).

1.1.18 Uttryck

¢ Ett uttryck bestar av en eller flera delar som efter evaluering ger ett resultat.

¢ Delar i ett uttryck kan t.ex. vara:
litteraler (42), operatorer (+), funktioner (math.sin), ...
¢ Exempel:

- Ett enkelt uttryck:
42.0
— Sammansatta uttryck:
40 + 2
(20 + 1) * 2
math.sin(0.5 * math.Pi)
"hej" + " pd " + "dej"

¢ Nar programmet tolkas sker evaluering av uttrycket, vilket ger ett resultat i

form av ett varde som har en typ.

1.1.19 \Variabler

¢ En variabel kan tilldelas viardet av ett enkelt eller sammansatt uttryck.
¢ En variabel har ett variabelnamn, vars utformning féljer sprakets regler for

s.k. identifierare.

¢ En ny variabel infors i en variabeldeklaration och da den kan ges ett virde,
initialiseras. Namnet anviandas som referens till viardet.
¢ Exempel pa variabeldeklarationer i Scala, notera nyckelordet val:

val a = 0.5 x math.Pi
val length = 42 * math.sin(a)
val exclamationMarks = "!!!I"

1.1. TEORI 33

val greetingSwedish = "Hej pa dej" + exclamationMarks

* Vid exekveringen av programmet lagras variablernas virden i minnet och deras
respektive virde hamtas ur minnet nér de refereras.

® Variabler som deklareras med val kan endast tilldelas ett virde en enda gang,
vid den initialisering som sker vid deklarationen.

1.1.20 Regler for identifierare

¢ Enkel identifierare: t.ex. gurka2Tomat

— Borja med bokstav
- ...foljt av bokstéaver eller siffror
- Kan dven innehalla understreck

* Operator-identifierare, t.ex. +:

— Borjar med ett operatortecken, t.ex. + - x / : ? ~ #
- Kan foljas av fler operatortecken

¢ En identifierare far inte vara ett reserverat ord, se snabbreferensen for alla
reserverade ord i Scala.
¢ Bokstavlig identifierare: *kan innehdlla allt®

— Borjar och slutar med backticks °
- Kan innehalla vad som helst (utom backticks)
- Kan anvindas for att undvika krockar med reserverade ord: “val®

1.1.21 Aft bygga strangar: konkatenering och interpolering

¢ Man kan konkatenera striangar med operatorn +
"hej" + " p&d " + "dej"

¢ Efter en stridng kan man konkatenera vilka uttryck som helst; uttryck inom
parentes evalueras forst och virdet gors sen om till en string fére konkatene-
ringen:

val x = 42
val msg = "Dubbla vardet av " + x + " ar " + (x x 2) + "."

* Man kan i Scala fa hjalp av kompilatorn att 6vervaka bygget av strangar med
stranginterpolatorn s:

val msg = s"Dubbla vardet av $x ar ${x x 2}."

https://fileadmin.cs.lth.se/pgk/quickref.pdf

34

KAPITEL 1. INTRODUKTION

1.1.22 Heltalsaritmetik

¢ De fyra rakneséitten skrivs som i matematiken (vanlig precedens):

il scala> 3 +5 x 2 - 1
Pl resO: Int = 12

¢ Parenteser styr evalueringsordningen:

il scala> (3 +5) x (2 - 1)
)l val resl: Int = 8

e Heltalsdivision sker med decimaler avkortade:

Wl scala> 41 / 2
)Pl val res2: Int = 20

¢ Modulorikning med restoperatorn %

il scala> 41 % 2
Pl val res3: Int =1

1.1.23 Flyttalsaritmetik

¢ Decimaltal representeras med s.k. flyttal av typen Double:

il scala> math.Pi
bl val res4: Double = 3.141592653589793

e Stora tal sa som 7 * 102 skrivs:

il scala> math.Pi *x 1E12
Pl val res5: Double = 3.141592653589793E12

* Det finns inte odndligt antal decimaler vilket ger problem med avvrundingsfel.:

scala> 0.1 + 0.2
val res6: Double = 0.30000000000000004

scala> 1E10 + 0.0000000000001
val res7: Double = 1.0E10

scala> BigDecimal("0.1") +
val res8: BigDecimal = 0.3

BigDecimal("0.2") // BigDecimal funkar

0 N o U WN R

L&s mer héar: https://0.30000000000000004 . com

1.1.24 Definiera namn pa uttryck

¢ Med nyckelordet def kan man lata ett namn betyda samma sak som ett ut-
tryck.
¢ Exempel:

https://en.wikipedia.org/wiki/Order_of_operations
https://en.wikipedia.org/wiki/Modulo_operation
https://sv.wikipedia.org/wiki/Flyttal
https://0.30000000000000004.com

1.1. TEORI 35

def gurklangd = 42 + x

e Uttrycket till hoger evalueras varje gang anrop sker,
d.v.s. varje gang namnet anvinds pa annat stille i koden.

gurklangd

1.1.25 Funktion, argument, parameter

¢ En funktion ridknar ut resultat baserat pa indata som kallas argument.
¢ Argument ges namn genom deklaration av parametrar.
¢ Exempel pa deklaration av en funktion med en parameter:

def dubblera(x: Int) = 2 % x

¢ Parametrarnas typ maste beskrivas efter kolon.
¢ Kompilatorn kan hirleda returtypen, men den kan ocksa med fordel, for tyd-
lighetens skull, anges explicit:

def dubblera(x: Int): Int = 2 % X

* Observera att namnet x blir ett "nytt frascht” lokalt namn som bara finns och
syns ”inuti” funktionen och har inget med ev. andra x utanfor funktionen att
gora.

¢ Berdkningen sker forst vid anrop av funktionen:

il scala> dubblera(42)
Yl resl: Int = 84

1.1.26 Fdardiga matte-funktioner i paketet scala.math

¢] paketet scala.math finns manga anvindbara funktioner: t.ex.
math.random() ger slumptal mellan 0.0 och 0.99999999999999999

scala> val x = math.random()
x: Double = 0.27749191749889635

scala> val length = 42.0 * math.sin(math.Pi / 3.0)
length: Double = 36.373066958946424

¢ Studera dokumentationen hér:
https://www.scala-lang.org/api/current/scala/math.html#

* Paketet scala.math delegerar ofta till Java-klassen java.lang.Math som &r
dokumenterad hér:

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/

Math.html

https://www.scala-lang.org/api/current/scala/math.html#
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/Math.html
https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/lang/Math.html

36 KAPITEL 1. INTRODUKTION

1.1.27 Logiska uttryck

* Datorn kan "rdkna” med sanning och falskhet:
s.k. booelsk algebra efter George Boole
¢ Enkla logiska uttryck: (finns bara tva stycken)

true
false

¢ Sammansatta logiska uttryck med logiska operatorer:
&8 och, | | eller, ! icke, == likhet, != olikhet, relationer: > < >= <=
¢ Exempel:

true && true

false || true

I false

42 == 43

42 '= 43

(42 >=43) || (1 + 1 == 2)

1.1.28 De Morgans lagar

De Morgans lagar beskriver vad som hédnder om man negerar ett logiskt uttryck.
Kan anvéndas for att gora forenklingar.

¢ [alla deluttryck sammanbundna med && eller | |,
dndra alla && till | | och omvént.

¢ Negera alla ingaende deluttryck. En relation negeras genom att man byter ==
mot !=, < mot >=, etc.

Exempel pa forenkling diar de Morgans lagar anviands upprepat:

l(a<b || (a==18&b ==1)) —
' (a<b)&! (a=18&b==1) —
''(a<b) & (! (a==1) || ! (b==1)) —
a>=b&& (a'!=1]| b !=1)

1.1.29 Alternativ med if-uttryck

¢ Ett if-uttryck borjar med nyckelordet if, foljt av ett logiskt uttryck (villkor) inom
parentes och tva grenar.

def slumpgronsak = if math.random() < 0.8 then "gurka" else "tomat"

e Uttrycket efter then blir resultatet om villkoret &ar true
e Uttrycket efter else blir resultatet om villkoret 4r false

https://en.wikipedia.org/wiki/Boolean_algebra
https://en.wikipedia.org/wiki/George_Boole
https://en.wikipedia.org/wiki/Augustus_De_Morgan

1.1. TEORI 37

scala> slumpgronsak
resl3: String = gurka

scala> slumpgronsak
resl4: String = gurka

scala> slumpgronsak
resl5: String = tomat

1.1.30 Utiryck eller sats?
Skillnad mellan uttryck och sats:

¢ Ett uttryck ger ett resultat. Exempel: 1+1
¢ En sats har en effekt.
Exempel: utskrift, spara pa fil, tilldela variabel nytt varde.

Skriv ett uttryck nir du ir intresserad av virdet som berdknas.
Skriv en sats néir du vill att nagot ska goras.

Bade satser och uttryck kan i sin tur innehalla satser och uttryck i godtyckligt kom-
plexa nastlade strukturer (mer om det senare).

1.1.31 Variabeldeklaration och tilldelningssats

¢ En variabeldeklaration medfér att plats i datorns minne reserveras sa att
varden av den typ som variabeln kan referera till far plats dar.

¢ Vid deklaration ska variabeln initialiseras med ett startvarde.

¢ En val-deklaration ger en variabel som efter initialisering inte kan &ndras.

Dessa deklarationer... ... ger detta innehall nagonstans i
minnet:

var x = 42 <[42

val y = x +1 v 43

¢ Med en tilldelningssats ges en tidigare var-deklarerad variabel ett nytt varde:
x =13

* Det gamla vardet forsvinner for alltid och det nya virdet lagras istillet:

x| 13
y| 43

Observera att y hér inte paverkas av att x 4ndrade vérde.

38 KAPITEL 1. INTRODUKTION

1.1.32 Tilldelningssatser ar infe matematisk likhet

¢ Likhetstecknet anvinds alltsa for att tilldela variabler nya varden och det &r
inte samma sak som matematisk likhet. Vad hiander har?

X =x+1
* Denna syntax dr ett arv fran de gamla spraken C, Fortran mfl.

¢ [andra sprak anvinds t.ex.
X 1= x +1 eller X <-x+1

* Denna syntax visar kanske béttre att tilldelning ir en stegvis process:

1. Forst berdknas uttrycket till hoger om tilldelningstecknet.
2. Sedan ersatts vardet som variabelnamnet refererar till av det berdknade
uttrycket. Det gamla virdet forsvinner for alltid.

1.1.33 Forkortade tilldelningssatser

¢ Det ar vanligt att man vill tilldela en variabel ett nytt viarde som beror av det
gamla, sa som i
X =Xx+1

¢ Darfor finns forkortade tilldelningssatser som gor sa att man sparar nagra
tecken och det blir tydligare (?) vad som sker (ndr man vant sig vid detta
skrivsiétt):

X +=1

¢ Uttrycket ovan expanderas av kompilatorn till x = x + 1

1.1.34 Exempel pd forkortade tilldelningssatser

scala> var x = 42
val x: Int = 42

scala> x x= 2

scala> x
val res0: Int

scala> x /= 3

scala> x
val resl: Int

https://en.wikipedia.org/wiki/Assignment_(computer_science)

1.1. TEORI 39

1.1.35 Variabler som dndrar vérden kan vara knepiga

* Kod som innehaller variabler som forandras o6ver tid dr ofta svarare att lasa
och begripa.

* Manga buggar beror pa att variabler av misstag forandras pa felaktiga och
oanade sétt.

* Fordanderliga varden blir speciellt svara i kod som kors jamlopande (parallellt).
* | kod som kors i skarpt lage med manga anviandare (s.k. produktionskod) &ar
darfor val att foredra, medan var endast anvinds om det verkligen behovs.

¢ Alltsa: rdkna hellre ut nya varden én forandra befintliga.

1.1.36 Kontrolistrukturer: alternativ och repetition

Anvinds for att kontrollera (fordndra) sekvensen och skapa alternativa vigar genom
koden. Vigen bestams vid kortid.

e if-sats:

if math.random() < 0.8 then println("gurka") else println("tomat")

Olika sorters loopar for att repetera satser. Antalet repetitioner ges vid kortid.
¢ while-sats: bra nir man inte vet hur manga ganger det kan bli.

while math.random() < 0.8 do println("gurka")

* for-sats: bra nir man vill ange antalet repetitioner:

for i <- 1 to 10 do println(s"gurka nr $i")

1.1.37 Scala-2-syntax for kontrolistrukturer fungerar i Scala 3

I Scala 2 anvindes en gammal syntax for kontrollstrukturer som liknar mer C/C++/Java.
Den ar tillaten i Scala 3, men nya mer lattldsta syntaxen ar att foredra.

® Scala-2-syntax for alternativ: parenteser men inget then

if (math.random() < 0.8) println("gurka") else println("tomat")

Scala-2-syntax for repetition:
¢ while-sats: parenteser men inget do

while (math.random() < 0.8) println("gurka")

¢ for-sats: parenteser men inget do

for (i <- 1 to 10) println(s"gurka nr $i")

40 KAPITEL 1. INTRODUKTION

¢ Kojo Desktop funkar dnnu bara med Scala 2 och gamla syntaxen, men Kojo kan
dven koras med Scala 3 (se Appendix A).

1.1.38 Repetera mdnga satser

Om du vill gora flera saker i sekvens inne i en repetition sa kan du skriva flera satser
inom klammer-parenteser:

while math.random() < 0.8 do {
println("gurka")
println("tomat")

}

Du kan efter vissa nyckelord (t.ex. do, then, else) vilja bort klammer-parenteser (eng.
optional braces).

while math.random() < 0.8 do
println("gurka")
println("tomat")

Da ar det indenteringen som avgor vilka satser som ingar.
Detta fungerar i Scala 3 (men inte i Scala 2).

1.1.39 Procedurer

¢ En procedur ir en funktion som gor nagot intressant, men som inte lamnar
nagot intressant returvarde.

¢ Exempel pa procedur i standardbiblioteket: println("hej")

¢ Du deklarerar egna procedurer genom att ange Unit som returvirdestyp.
Da returneras virdet () som betyder "inget”.

scala> def hej(x: String): Unit = println(s"Hej pa dej $x!")
hej: (x: String)Unit

scala> hej("Herr Gurka")

Hej pd dej Herr Gurka!

scala> val x = hej("Fru Tomat")
Hej pa dej Fru Tomat!
x: Unit = ()

* Det som gors kallas (sido)effekt. Ovan ar utskriften sjalva effekten.
e Aven funktioner kan ha sidoeffekter. De kallas da osdkta funktioner.

1.1. TEORI 41

1.1.40 Problemlidsning: nedbrytning i abstraktioner som sen kombi-

neras

En av de allra viktigaste principerna inom programmering idr funktionell ned-
brytning dir underprogram i form av funktioner och procedurer skapas for
att bli byggstenar som kombineras till mer avancerade funktioner och procedu-
rer.

Genom de namn som definieras skapas ateranvandbara abstraktioner som
kapslar in det funktionen gor till ett "byggblock”.

Bra "byggblock” gor det lattare att l16sa svara programmeringsproblem.
Abstraktioner som beridknar eller gor en enda, vildefinierad sak &r enklare
att anvinda, jamfort med de som goér manga, helt olika saker.

Abstraktioner med vialgenomtinkta namn &r enklare att anvianda, jaimfort
med kryptiska eller missvisande namn.

1.1.41 C")Vhing expressions och labb kojo

Pa 6vningen kor du Scala REPL for att trana pa SARA.

Las i Appendix och pa kursens hemsida under "Verktyg” om hur du installerar
och far igang Scala REPL.

Pa laborationen anvéinder du barnvénliga Kojo for trana pa SARA, med fokus
pa abstraktion.

Det finns tva olika sétt att anvinda Kojo:

1. Grafikbiblioteket i kojo i ett fristdende Scala program med vscode och
exekvering i terminalen, se Appendix A. Fungerar fint med nya Scala
3.

2. Skrivbordsappen Kojo Desktop med inbyggd barnvinlig editor (endast
Scala 2, gammal syntax etc).

3. Webbappen http://kojo.lu.se/ direkt i webblidsare; rekommenderas ej —
endast Scala 2, mer begriansad.

Alternativ 1 rekommenderas, men om du forsenas av tekniskt strul, sa kom igdng
med 2 sa lange tills du fatt hjalp.

1.1.42 Koéa med Sigrid

For att koa till handledare pa plats i sal i pgk anviand Sigrid.
(Se hemlig lank i Canvas, sprid ej lanken pa internet sa vi slipper bottar).

Direkt nar undervisningspasset borjar: starta en session med ditt fornamn,
kursnamn pgk och rummets namn. Gor detta d&ven om du inte behéver hjilp
fran start! Da kan ambulanser se antal studenter i varje rum.

Inget 16senord behovs.

Tva olika kéer i varje rum: hjalpko och redovisningsko

— Stéll dig i hjalpko om du vill fa viagledning och stalla fragor
— Stall dig i redovisningsko om du &r klar att redovisa en labb

Du maste klicka pa Uppdatera — annars hiander inget!

http://kojo.lu.se/

42 KAPITEL 1. INTRODUKTION

¢ OBS! Koar inte+Uppdatera sa fort handledare anlénder!
* Om du gar pa extra pass i man av plats sa kan du se vilket rum som har kortast
ko anvind Sigrid Monitor.

1.1.43 Sigrid in action

Sa héar ser det ut nar student star i hjalpko efter att forst ha klickat pa Hjaalp!!! och
sedan pa Uppdatera-knappen:

STUDENT oddput-1 i Alfa

valj tillstand och klicka pa gréna Uppdatera-knappen.

Koar inte Jobbar eller far hjalp.
Hjaalp!!!) stdr i hjalpkén.

Faardiig! Star i redovisningskén.

Loggar ut) Redovisar, lamnar rummet.

Glém inte Koar inte + Uppdatera medan du far hjalp.
Gloém inte Loggar ut + Uppdatera medan du redovisar.

Uppdatera

GLOM INTE Koar inte + Uppdatera nir handledare anlinder!

1.2. OVNING EXPRESSIONS 43

1.2
Mail
O
0

O

ooood

Ovning expressions

Forsta vad som hénder nér satser exekveras och uttryck evalueras.

Kinna till betydelsen av begreppen sekvens, alternativ, repetition och abstrak-
tion.

Kinna till litteralerna for enkla virden, deras typer och omfang.

Kunna deklarera och anvanda variabler och tilldelning, samt kunna rita bilder
av minnessituationen da variablers virden foréandras.

Forsta skillnaden mellan olika numeriska typer, kunna omvandla mellan dessa
och vara medveten om noggrannhetsproblem som kan uppsta.

Forsta booleska uttryck och virdena true och false, samt kunna forenkla
booleska uttryck.

Forsta skillnaden mellan heltalsdivision och flyttalsdivision, samt anvéindning
av rest vid heltalsdivision.

Forsta precedensregler och anvéndning av parenteser i uttryck.

Kunna anvinda if-satser och if-uttryck.

Kunna anvianda for-satser och while-satser.

Kunna anvédnda math. random() for att generera slumptal i olika intervaller.
Kunna beskriva skillnader och likheter mellan en procedur och en funktion.

Forberedelser

0
g

1.2.1

Studera begreppen i kapitel 1
Du behover en dator med Scala och Kojo, se appendix ?? och ??.

Grunduppgifter; férberedelse infér laboration

Uppgift 1. Para ihop begrepp med beskrivning.

Koppla varje begrepp med den (forenklade) beskrivning som passar bast:

litteral 1 A | att infora nya begrepp som férenklar kodningen
string 2 B | antingen sann eller falsk

sats 3 C | att oversatta kod till exekverbar form

uttryck 4 D | anger ett specifikt datavirde

funktion 5 E | decimaltal med begridnsad noggrannhet

procedur 6 F | en kodrad som gor nagot; kan sirskiljas med semikolon
exekveringsfel 7 G | en sekvens av tecken

kompileringsfel | 8 H | kombinerar viarden och funktioner till ett nytt virde
abstrahera 9 I | beskriver vad data kan anvéindas till

kompilera 10 J | vid anrop sker (sido)effekt; returvardet ar tomt

typ 11 K | vid anrop berdknas ett returvirde

for-sats 12 L | for att d&ndra en variabels virde

while-sats 13 M | kan intraffa innan exekveringen startat

tilldelning 14 N | kan intraffa medan programmet kor

flyttal 15 O | bra da antalet repetitioner ar bestamt i forvag
boolesk 16 P | bra da antalet repetitioner ej ar bestamt i forvag

44 KAPITEL 1. INTRODUKTION

Uppgift 2. Utskrift i Scala REPL.
Starta Scala REPL (eng. Read-Evaluate-Print-Loop).

> scala
Welcome to Scala 3.1.2 (17.0.2, Java Open]DK 64-Bit Server VM).

Type in expressions for evaluation. Or try :help.
scala -version.
scala>

a) Skriv efter prompten scala> en sats som skriver ut en valfri (bruklig/knasig)
hilsningsfras, genom anrop av proceduren println med nagot strangargument. Tryck
pa Enter sa att satsen kompileras och exekveras.

b) Skriv samma sats igen (eller tryck pil-upp) men ”glém bort” att skriva hégerpa-
rentesen efter argumentet innan du trycker pa Enter. Vad hander?

Tips infor fortsdttningen: Det finns manga anvindbara kortkommandon och andra
trix for att jobba snabbt i REPL. Be girna nagon som kan dessa trix att visa dig hur
man kan jobba snabbare. Lis appendix ?? och prova sedan att kopiera och klistra in
text. Anvand piltangenterna for att bladdra i historiken, Ctrl+A for att komma till
bérjan av raden, Ctrl+K for att radera resten av raden, etc.

Uppgift 3. Konkatenering av strangar.

a) Skriv ett uttryck som konkatenerar tva striangar, t.ex. "gurk" och "burk", med
hjilp av operatorn + och studera resultatet. Vad har uttrycket for varde och typ? Vilken
siffra star efter ordet res i variabeln som lagrar resultatet?

b) Anviand resultatet fran konkateneringen, t.ex. res0 (byt ev. ut 0:an mot siffran
efter res i utskriften fran forra evalueringen), och skriv ett uttryck med hjalp av
operatorn * som upprepar resultatet fran férra deluppgiften 42 ganger.

Uppgift 4. Nar upptdicks felet?
a) Vad har uttrycket "hej" * 3 for typ och viarde? Testa i REPL.

b) Byt ut 3:an ovan mot ett sa pass stort heltal s att minnet blir fullt, men inte
sa stort att talet inte far plats i det givna omfanget for grundtypen Int. Hur borjar
felmeddelandet? Ar detta ett kortidsfel eller ett kompileringsfel?

c¢) Vilj ett varde pa argumentet efter operatorn * sa att ett typfel genereras. Hur
borjar felmeddelandet? Ar detta ett kortidsfel eller ett kompileringsfel?

Tips infor fortsdittningen: Gor garna fel niar du kodar sa lar du dig mer! Trana
pa att tolka olika felmeddelanden och fraga nagon om hjilp om du inte forstar.
Kompilatorns utskrifter kan vara till stor hjilp, men &r ibland kryptiska. Om du
kor fast och inte kommer vidare sjalv sa be om hjalp, men be om tips snarare dn
fardiga losningar sa att du behaller initiativet sjalv och tar kontroll 6ver nédsta steg
i ditt larande.

Uppgift 5. Litteraler och typer.

a) Ta hjalp av REPL-kommadot : type (kan forkortas :t) vid behov for att para ihop
nedan litteraler med rétt typ.

1.2. OVNING EXPRESSIONS 45

1 1 A | String
1L 2 B | Boolean
1.0 3 C | Boolean
1D 4 D | Unit

1F 5 E | Int

1! 6 F | Double
"1t 7 G | Long
true 8 H | Float
false | 9 I | Char

() 10 J | Double

b) Vad hidnder om du adderar 1 till det storsta mgjliga viardet av typen Int?
Tips: se snabbreferensen ? under rubriken ”The Scala type system” avsnitt "Methods
on numbers”.

¢) Vad ar skillnaden mellan typerna Long och Int?
d) Vad ar skillnaden mellan typerna Double och Float?

Uppgift 6. Matematiska funktioner. Anvinda dokumentation.

a) Antag att du har ett schackbriade med 64 rutor. Tank dig att du bérjar med att
lagga ett enda riskorn pa forsta rutan och sedan lagger dubbelt s& manga riskorn i
en ny hog for varje efterfoljande ruta: 1, 2, 4, 8, ... etc. Nar du har gjort detta for alla
rutor, hur manga riskorn har du totalt lagt pa schackbridet??

Tips: Du ska beridkna 264 — 1. Om du skriver math. i REPL och trycker TAB far du
se inbyggda matematiska funktioner i Scalas standardbibliotek:

[
scala> math. // Tryck TAB direkt efter punkten och betrakta listan

Anvind funktionen math.pow och ldmpliga argument. Om du anger math.pow eller
math.pow() utan argument far du se funktionshuvudet med parameterlistan.

Om du surfar till http://www.scala-lang.org/api/current/ och skriver math i
sokrutan och sedan, efter att du klickat pa scala.math, skriver pow i rutan lingre ner,
sa filtreras sidan och du hittar dokumentationen av def pow som du kan klicka pa
och ldsa mer om.

b) Definiera funktionen omkrets nedan i REPL. Gar det bra att utelamna returtyp-
annoteringen? Varfor? Finns det anledning att ha den kvar?

def omkrets(radie: Double): Double = 2 x math.Pi *x radie

¢) dJordens (genomsnittliga) diameter (vid ekvatorn) &ar ca 12750 km. Skriv ett uttryck
som anropar funktionen omkrets ovan for att berdkna hur manga kilometer per dag
man ungefir maste firdas om man vill aka jorden runt pa 80 dagar.

Uppgift 7. Variabler och tilldelning. Fordndringsbar och ofordnderlig variabel.

a) Rita en ny bild av datorns minne efter varje exekverad rad 1-6 nedan. Varje bild

ska visa alla variabler som finns i minnet och deras variabelnamn, typ och virde.
[
Il scala> var a = 13

2ht‘cps ://fileadmin.cs.lth.se/pgk/quickref.pdf
3https ://en.wikipedia.org/wiki/Wheat_and_chessboard_problem

http://www.scala-lang.org/api/current/
https://fileadmin.cs.lth.se/pgk/quickref.pdf
https://en.wikipedia.org/wiki/Wheat_and_chessboard_problem

o U~ W N

46 KAPITEL 1. INTRODUKTION

scala>
scala>
scala>

scala>
scala>

Efter forsta raden ser minnessituationen ut sa hér:

a: Int| 13

b) Varfor blir det fel pa rad 4? Ar det ett kompileringsfel eller exekveringsfel? Hur
lyder felmeddelandet?

Uppgift 8. Slumptal med math. random().

a) Vad ger funktionen math. random() for resultatvirde? Vilken typ? Vad ar storsta
och minsta mgjliga virde?
Tips: Sok har: http://www.scala-lang.org/api/current/och prova i REPL.

b) Deklarera den parameterlosa funktionen def roll: Int = ??? som ska repre-
sentera ett tdrningskast och ge ett slumpmassigt heltal mellan 1 och 6. Testa funktio-
nen genom att anropa den manga ganger.

Tips: Anviand math. random() och multiplicera och addera med lampliga heltal. Omge
berakningen med parenteser och avsluta med .toInt for att avkorta decimaler och
omvandla typen fran Double till Int.

Uppgift 9. Repetition med for, foreach och while.

a) Sa har kan en for-sats ser ut:
for i <- 1 to 10 do print(s"$i, ")

Anvind en for-sats for att skriva ut resultatet av 100 tarningskast med funktionen
roll fran uppgift 8.

b) Sa hir kan en foreach-sats ser ut:

(1 to 10).foreach(i => print(s"$i, "))

Anvind en foreach-sats for att skriva ut resultatet av 100 tdrningskast med funktio-
nen roll fran uppgift 8.

¢) Sa hir kan en while-sats se ut:

var i =1
while i <= 10 do { print(s"$i, "); i =1+ 1}

Anvind en while-sats for att skriva ut resultatet av 100 tarningskast med funktionen
roll fran uppgift 8. Vad héinder om du glommer i = i + 17?

Uppgift 10. Alternativ med if-sats och if-uttryck.

a) Sa har kan en if-sats se ut (notera dubbla likhetstecken):

if roll == 3 then println("TRE") else println("INTE TRE")

Testa ovan i REPL. Skriv sedan en for-sats som kastar 100 tarningar och skriver ut
strangen "GRATTIS! " om det blir en sexa, annars en ledsen smiley: ": ("

http://www.scala-lang.org/api/current/

1.2. OVNING EXPRESSIONS 47

b) Sa hir kan ett if-uttryck se ut:

if roll < 6 then 0 else 1

Testa ovan i REPL. Skriv sedan en while-sats som kastar 100 tdrningar och riknar
antalet sexor. Skriv ut antalet efter while-satsen.

¢) Forenkla implementationen av denna funktion:

def isAdult(age: Int) = if age >= 18 then true else false

Uppgift 11. Sekvens, sats och block.

a) Vad gor dessa satser?

scala> def p = { print("san"); print("!"); println("hej")}

scala> p;p;p;p

b) Anvéind pil-upp for att fa tillbaka raden du skrev med definitionen av proceduren
p. Byt plats pa striangarna i utskriftsanropen i proceduren p sa att utskriften blir:

hejsan!
hejsan!

hejsan!
hejsan!

¢) Hur tolkar kompilatorn klammerparenteser och semikolon? Vad ar ett block?

Uppgift 12. Heltalsdivision. Vilket virde och vilken typ hor till vilket uttryck? Ar du
osdker pa svaret, testa i REPL.

4 / 42 1 A 4: Int
42.0 / 2 2 B 10: Int

42 / 4 3 C 21.0: Double
42 % 4 4 D | true : Boolean
4 % 42 5 E | false: Boolean
40 % 4 == 6 F 0: Int

42 % == 7 G 2: Int

Uppgift 13. Booleska vdirden. Vilket virde har dessa uttryck?

a) true && true
b) false && true

c¢) true || true
d) false || true
e) false || false
f) true == true

g) true != false
h) true > false
i) true & (1 / 0 > 1)
j) false & (1 / 0 > 1)

48 KAPITEL 1. INTRODUKTION

Uppgift 14. Booleska variabler. Vad skrivs ut pa rad 2 och 4 nedan?

scala> var monster = false
scala> if monster then println("akta dig!!!")

scala> monster = true
scala> if monster then println("akta dig!!!")

Uppgift 15. Turtle graphics med Kojo. Pa veckans laboration ska du anvidnda Kojo
for att verifiera att du kan anvinda sekvens, alternativ, repetition och abstraktion.
Med Kojo ska du skapa Scala-program som ritar fargglada figurer med hjalp av ett
lattanvént Scala-bibliotek for turtle graphics®.

Om du anvinder Kojo som ett grafikbibliotek (rekommenderas) och kér med scala
run (se Appendix ??) sa kan du anvianda Scala 3. Men kor du Kojo Desktop sa ar
det Scala 2 som géller och dven om det mesta i veckans labb fungerar lika i Scala
2 och Scala 3 sa kraver Scala 2 den gamla syntaxen for kontrollstrukturer med
nodvindiga parenteser runt villkorsuttryck, utan varken do eller then, och varken
valfria klammerparenteser eller indenteringssyntax.

Skriv in och kor nedan program med valfri metod enligt Appendix ??. Notera
kopplingen mellan satsernas ordning och vad som hénder i ritfonstret.

fram; hoger
fram; vanster
farg(gron)
fram

Om du koér Kojo Desktop &r det bra att borjar programmet med sudda (varfor det??).

a) Skriv kod som ritar en kvadrat enligt bilden nedan.

Ritfénster (Canvas)

2

Prova gérna olika sitt att skriva din kod utan att resultatet dndras: skriv satser i
sekvens pa flera rader eller satser i sekvens pad samma rad med semikolon emellan;
anvind blanktecken och blanka rader i koden. Hur vill du gruppera dina satser sa att
de &r latta for en ménniska att 1dsa?

b) Rita en trappa enligt bilden nedan.

4https ://en.wikipedia.org/wiki/Turtle_graphics

5Nir du trycker pa playknappen i Kojo Desktop sa nollstills varken canvas i ritfonstret eller paddans
tillstand. Genom att borja dina Kojo Desktop-program med sudda sa startar du exekveringen i exakt
samma utgangslédge: en tom canvas diar paddan pekar uppat, pennan &r nere och pennans fiarg ar rod.

https://en.wikipedia.org/wiki/Turtle_graphics

1.2. OVNING EXPRESSIONS 49

i
L

w

-

¢) Rita valfri bild pa valfri bakgrund med hjilp av nagra av procedurerna i tabellen
nedan. Du kan till exempel rita en rosa triangel med lila konturer mot svart bakgrund.
Forsok att underliatta lasbarheten av din kod med hjialp av lampliga radbrytningar
och gruppering av satser.

fram(100) Paddan gar framat 100 steg (25 om argument saknas).
farg(rosa) Satter pennans farg till rosa.

fyll(lila) Satter ifyllnadsfargen till lila.

fyll(genomskinlig) Gor sa att paddan inte fyller i nagot nér den ritar.
bredd(20) Gor sa att pennan far bredden 20.

bakgrund(svart) Bakgrundsfiargen blir svart.

pennaNer Satter ner paddans penna sa att den ritar néar den gar.
pennalpp Sanker paddans penna sa att den inte ritar nir den gar.
hoger(45) Paddan vrider sig 45 grader at hoger.

vanster(45) Paddan vrider sig 45 grader at vanster.

hoppa Paddan hoppar 25 steg utan att rita.

hoppa(100) Paddan hoppar 100 steg utan att rita.

hoppaTill(100, 200)
gaTill (100, 200)
oster

Paddan hoppar till 1laget (100, 200) utan att rita.
Paddan vrider sig och gar till laget (100, 200).
Paddan vrider sig sa att nosen pekar at hoger.

vaster Paddan vrider sig sa att nosen pekar at vinster.
norr Paddan vrider sig sa att nosen pekar uppat.
séder Paddan vrider sig sa att nosen pekar nerat.
sattVinkel(90) Paddan vrider nosen till vinkeln 90 grader.

Tips infor fortsdtiningen: Ha bade REPL och en editor igang samtidigt. Da kan du
undersoka hur olika kodfragment fungerar i REPL, medan du stegvis skapar allt
storre program i editorn. Detta satt att jobba har du stor nytta av under resten av
kursen. Oavsett vilka andra verktyg du kor ar det anviandbart att ha REPL igdng
1 ett eget fonster som hjilp i den kreativa processen, medan du jagar buggar och
medan du lar dig nya koncept. Sa fort du undrar hur nagot fungerar i Scala: fram
med REPL och testa!

u A W NP

50 KAPITEL 1. INTRODUKTION
1.2.2 Extrauppagifter; tréina mer

Uppgift 16. Typ och virde. Vilket varde och vilken typ hor till vilket uttryck? Ar du
osdker pa svaret, testa i REPL.

1.0 + 18 1 A | 1.042E42: Double
(41 + 1).toDouble 2 B | 65: Int
1.042e42 + 1 3 C | 113: Int
12E6.tolong 4 D | 48: Int
32.toChar.toString | 5 E | " ": String
'A'.toInt 6 F | 0: Int
0.toInt 7 G | 'x': Char
'0'.toInt 8 H | 19.0: Double
'9'.tolInt 9 I | 12000000: Long
‘A + 'O 10 Jd | 'g': Char

(‘A" + '0').toChar | 11 K | 42.0: Double
"x!%#" . charAt(0) 12 L | 57: Int

Uppgift 17. Satser och uttryck.
a) Vad ar det for skillnad pa en sats och ett uttryck?
b) Ge exempel pa satser som inte ar uttryck?

¢) Forklara vad som hinder for varje evaluerad rad:

scala> def vardeSaknas = ()
scala> vardeSaknas

scala> vardeSaknas.toString
scala> println(vardeSaknas)
scala> println(println("hej"))

d) Vilken typ har litteralen ()?
e) Vilken returtyp har printin?

Uppgift 18. Procedur med parameter. En procedur dr en funktion som orsakar en
effekt, till exempel en utskrift eller en variabeltilldelning, men som inte returnerar
nagot intressant resultatvirde.®

a) Deklarera en foriandringsbar variabel highscore som initieras till 0.

b) Deklarera en procedur updateHighscore som tar en parameter points och tillde-
lar highscore ett nytt virde om points ar storre &n highscore och skriver ut striangen
"REKORD!". Om inte points &r storre &n highscore ska stringen "GE INTE UPP!"
skrivas ut. Testa proceduren i REPL.

¢) Gor en ny variant av updateHighscore, som inte ar en procedur utan i stillet ar
en funktion som ger en striang for senare utskrift. Testa funktionen i REPL.

81 Scala &r procedurer funktioner som returnerar det tomma vérdet, vilket skrivs () och &r av typen
Unit. I Java och flera andra spréak finns inget tomt virde och man har en specialsyntax for procedurer
som anvéinder nyckelordet void.

1.2. OVNING EXPRESSIONS 51

Uppgift 19. Flyttalsaritmetik.

a) Vilket ar det minsta positiva virdet av typen Double?
b) Vad ar virdet av detta uttryck? Varfor blir det s&?

scala> Double.MaxValue + Double.MinPositiveValue == Double.MaxValue

Uppgift 20. if-sats. For varje rad nedan, beskriv vad som skrivs ut.

scala> if !true then println("sant") else println("falskt")

scala> if !false then println("sant") else println("falskt")

scala> def singlaSlant = if math.random() < 0.5 then "krona" else "klave"
scala> for 1 <- 1 to 5 do print(s"$i:$singlaSlant ")

© 00 N O U A W N -

e el =
A W N R

Uppgift 21. Deklarera féljande variabler med nedan initialvarden:

scala> var gronsak = "gurka"

scala> var frukt = "banan"

Ange for varje rad nedan vad uttrycket har for viarde och typ:

scala> if gronsak == "tomat" then "gott" else "inte gott"
scala> if frukt == "banan" then "gott" else "inte gott"
scala> if true then grdnsak else 42

scala> if false then grdnsak else 42

Uppgift 22. Modulo-operatorn % och Booleska virden.

a) Deklarera en funktion def isEven(n: Int): Boolean = ??7? som ger true om
talet n 4r jamnt, annars false

b) Deklarera en funktion def isOdd(n: Int): Boolean = ??? som ger false om
talet n 4r jamnt, annars true.

Uppgift 23. Skillnader mellan var, val, def.

a) Evaluera varje rad en i taget i tur och ordning i Scala REPL. For varje rad nedan:
forklara for vad som hénder och notera virde och ev fel.

scala>
scala>
scala>
scala>
scala>
scala>
scala> { println("hej z!"); math.random() }

scala> { println("hej w!"); math.random() }
scala> z

scala>

scala>

scala>

scala>

scala>

b) Vad ar det for skillnad pa var, val och def?

A W N P

52 KAPITEL 1. INTRODUKTION

Uppgift 24. Skillnaden mellan if och while. Vad blir resultatet av rad 3 och 4?

scala> def lottol = if math.random() > 0.5 then print("vinst :) ")
scala> def lotto2 = while math.random() > 0.5 do print("vinst :) ")

scala> lottol
scala> lotto2

o Ul A W N =

1.2. OVNING EXPRESSIONS 53
1.2.3 Foérdjupningsuppagifter; utmaningar

Uppgift 25. Logik och De Morgans Lagar. Forenkla foljande uttryck. Antag att poang
och highscore ar heltalsvariabler medan klar dr av typen Boolean.

a) poang > 100 && poang > 1000

b) poang > 100 || podng > 1000

¢) !(poéng > highscore)

d) !(poadng > 0 && poang < highscore)

e) !(poéang < 0 || poadng > highscore)

f) klar == true

g) klar == false

Uppgift 26. Strdanginterpolatorn s. Med ett s framfor en stranglitteral far man hjalp
av kompilatorn att, pa ett typsikert sitt, infoga variabelviarden i en striang. Vari-
ablernas namn ska foregas med ett dollartecken , t.ex. s"Hej $namn". Om man vill
evaluera ett uttryck placeras detta inom klammer direkt efter dollartecknet, t.ex.
s"Dubbla langden: ${namn.size x 2}"

a) Vad skrivs ut nedan?

scala> val f = "Kim"
scala> val e = "Finkodare"

scala> println(s"Namnet '$f $e' har ${f.size + e.size} bokstaver.")

b) Skapa foljande utskrifter med hjidlp av stranginterpolatorn s och variablerna f
och e i foregidende deluppgift.

Kim har 3 bokstaver.
Finkodare har 9 bokstaver.

Uppgift 27. Tilldelningsoperatorer. Man kan forkorta en tilldelningssats som forénd-
rar en variabel, t.ex. x = x + 1, genom att anvinda sa kallade tilldelningsoperatorer
och skriva x += 1 som betyder samma sak. Rita en ny bild av datorns minne efter
varje rad nedan. Bilderna ska visa variablers namn, typ och virde.

scala>
scala>
scala>

scala>
scala>
scala>

Uppgift 28. Stora tal. Om vi vill berdkna 24 — 1 som ett exakt heltal” blir det storre
an Int.MaxValue, sa vi kan tyvérr inte anvinda snabba Int. Till var raddning: BigInt

a) Lasom BigInt och BigDecimal pa http://www.scala-lang.org/api/current/
Notera vad de kan anvéindas till.

b) Du skapar ett BigInt-heltal med BigInt(2) och kan anropa funktionen pow pa
en BigInt med punktnotation. Berdkna 264 — 1 som ett exakt heltal.

7https ://en.wikipedia.org/wiki/Wheat_and_chessboard_problem

http://www.scala-lang.org/api/current/
https://en.wikipedia.org/wiki/Wheat_and_chessboard_problem

54 KAPITEL 1. INTRODUKTION

¢) Vilka nackdelar finns med BigInt och BigDecimal?
Uppgift 29. Precedensregler Evalueringsordningen kan styras med parenteser. Vilket
varde och vilken typ har foljande uttryck?

a) 23 +2 %2+ (23 +2) x 2
b) (-(2 -42)) / (1 +1+1)
c) (-(2-42)) /7 (-1)/(L +1+1)

Uppgift 30. Dokumentation av paket i Java och Scala.

a) Genom att trycka pa tab tangenten kan man se vad som finns i olika paket. Vad
heter konstanten 7 i java.lang.Math (notera stort M) respektive scala.math.?

scala> java.lang.Math. //tryck TAB efter punkten

scala> scala.math. //tryck TAB efter punkten

b) Jamfor dokumentationen for klassen java.lang.Math har:
https://docs.oracle.com/javase/8/docs/api/

med dokumentationen for paketet scala.math héar:
http://www.scala-lang.org/api

Ge exempel pa vad man kan gora pa webbsidan med Scala-dokumentationen som man
inte kan gora i motsvarande webbsida Java-dokumentation.

¢) Vad gor metoden hypot? Vad ar det som ir bra med att anvanda hypot i stéllet
for att sjalv implementera berdkningen med hjilp av kvadratrot, multiplikation och
addition?

Uppgift 31. Noggrannhet och undantag i aritmetiska uttryck. Vad blir resultatet av
uttrycken nedan? Notera undantag (eng. exceptions) och noggrannhetsproblem.
a) Int.MaxValue + 1

b) 1/0

¢) 1E8 + 1E-8

d) 1E9 + 1E-9

e) math.pow(math.hypot(3,6), 2)

D 1.0/0

g) (1.0 / 0).toInt

h) math.sqrt(-1)

i) math.sqrt(Double.NaN)

j) throw new Exception("PANG!!!")

Uppgift 32. Modulo-rdkning med negativa tal. Las om modulorikning har:
en.wikipedia.org/wiki/Modulo_operation

och undersok hur det blir med olika tecken (positivt resp. negativt) pA modulorakning
med dividend%divisor i Scala.

Uppgift 33. Bokstavliga identifierare. Las om identifierare i Scala och speciellt literal
identifiers har: http://www.artima.com/pinsled/functional-objects.html#6.10.
a) Forklara vad som hinder nedan:

scala> val “bokstavlig val® = 42

scala> println(bokstavlig val’)

b R i i o

>*

*

https://docs.oracle.com/javase/8/docs/api/
http://www.scala-lang.org/api
https://en.wikipedia.org/wiki/Modulo_operation
http://www.artima.com/pins1ed/functional-objects.html#6.10

1.2. OVNING EXPRESSIONS 55

b) Scala och Java har olika uppsattningar med reserverade ord. Pa vilket sétt kan
“backticks” vara anvianbart med anledning av detta?

* Uppgift 34. java. lang. Integer, hexadecimala litteraler, BigDecimal.

a) Sok upp dokumentationen for java.lang.Integer.
Anvind metoderna toBinaryString och toHexString for att fylla i tabellen nedan.

decimalt heltal ‘ binart varde ‘ hexadecimalt varde
33
42
64

b) Hur anger man det hexadecimala heltalsvirdet 10c (motsvarar 268 decimalt) som
en litteral i Scala?

¢) Vad blir 0x10 upphdjt till ¢ = ljusets hastighet i m/s? Tips: Anvand BigDecimal.

* Uppgift 35. Strangformatering. Lis om f-interpolatorn hir:
http://docs.scala-lang.org/overviews/core/string-interpolation.html
Hur kan du anvinda f-interpolatorn for att gora féljande utskrift i REPL? Andra rad

2 vid 7?77 sa att flyttalet g avrundas till tre decimaler innan utskrift sker.
[

scala> val g =2 / 3.0
scala> val str = f"Jattegurkan ar $g??? meter lang"

scala> println(str)
Jattegurkan &r 0.667 meter lang

AW N R

Uppgift 36. Multiplikationsvarning. Sok upp dokumentationtionen for
java.lang.Math.multiplyExact och l4s om vad den metoden gor.

a) Vad hiander har?

scala> Math.multiplyExact(1l, 2)
scala> Int.MaxValue * 2

scala> Math.multiplyExact(Int.MaxValue, 2)

b) Varfor kan man vilja anvénda java.lang.Math.multiplyExact i stallet for "van-
lig” multiplikation?

* Uppgift 37. Extra operatorer for exakt multiplikation. Kim Kodmagiker tycker att
Math.multiplyExact ar for krangligt att skriva och utokar darfor typen Int med en
extra operator:

extension (i: Int) def =x!(j: Int) = Math.multiplyExact(i,j)

a) Klistra in koden ovan i REPL och prova den extra operatorn.

b) Hjilp Kim Kodmagiker att ldgga till fler operatorer pa viarden av typen Int, som
gor att det dven gar att anvianda Math.subtractExact och Math.addExact smidigt.
c¢) Testa ett sammansatt uttryck som anvinder alla extrametoder pa Int. Tycker du
det blev mer lattlast eller mer kryptiskt med de nya operatorerna?

http://docs.scala-lang.org/overviews/core/string-interpolation.html

56 KAPITEL 1. INTRODUKTION

1.3 Laboration: kojo
Mal
0 Kunna tillampa och kombinera principerna sekvens, alternativ, repetition, och
abstraktion i skapandet av egna program om minst 20 rader kod.
] Kunna forklara vad ett program gor i termer av sekvens, alternativ, repetition,
och abstraktion.
[Kunna formatera egna program sa att de blir ldtta att 14sa och forsta.
[0 Kunna férklara vad en variabel ar och kunna deklarera oféranderliga och for-
adndringsbara variabler, samt gora tilldelningar.

[J Kunna genomfora upprepade varv i cykeln editera-exekvera-felsoka / forbdtira
for att stegvis bygga upp allt mer utvecklade program.

Forberedelser

[0 Repetera veckans foreldsningsmaterial.

[Gor ovning expressions i avsnitt 1.2

[Las om Kojo i appendix ??.

[J Las igenom hela laborationen nedan. Fundera pa mojliga losningar till de upp-
gifter som 4r markerade med en penna i marginalen.

(] Hamta given kod via kursen github-plats.

1.3.1 Obligatoriska uppgifter
Om det forekommer en penna i marginalen ska du anteckna nagot infor redovisningen.
Uppgift 1. Installera och starta Kojo. Oppna terminalen och skriv in foljande kom-

mandon for att ladda ned filen kojo.scala fran internet, spara den i katalogen
~/w01-kojo, och starta Kojo.

mkdir ~/w01l-kojo
cd ~/w0l-kojo

curl -sLO https://fileadmin.cs.lth.se/kojo.scala
scala repl ~/w0l-kojo/kojo.scala

Nu borde du kunna skriva activateCanvas () i terminalen, trycka pa ENTER, och
se ett fonster dyka upp pa skidrmen.

Welcome to Scala 3.7.3 (21.0.8, Java Open]DK 64-Bit Server VM).
Type in expressions for evaluation. Or try :help.

scala> activateCanvas()

scala>

Uppgift 2. Sekvens och repetition. Rita en kvadrat med hjalp av upprepa(n){ ??? }
dar du ersitter n med antalet repetitioner och ??? med de satser som ska repeteras.

Uppgift 3. Variabel och repetition.

a) Funktionen System.currentTimeMillis ingar i Javas standardbibliotek och ger
ett heltal av typen Long med det nuvarande antalet millisekunder sedan midnatt den
forsta januari 1970. Med Kojo-proceduren sakta(0) blir det ingen fordréjning nar

https://github.com/lunduniversity/introprog/tree/master/workspace/

1.3. LABORATION: K030 57

paddan ritar och utritningen sker sa snabbt som mojligt. Skriv in nedan program i
REPL och forklara vad som hidnder. OBS: hall in ESC nédr du trycker pa ENTER for att
gora ett radbryt utan att kéra programmet.

sudda
sakta(0)
val n = 800 x 4
val tl = System.currentTimeMillis
upprepa(n):
upprepa(4):

fram

hoger
val t2 = System.currentTimeMillis
println(s"$n kvadratvarv tog ${t2 - t1} millisekunder")

b) Anteckna ungefir hur manga kvadratvarv per sekund som paddan kan rita
néir den ir som snabbast. Kor flera ganger eftersom den virtuella maskinen behover
“varmas upp” for att maskinkoden ska optimeras. Vissa korningar kan ga langsammare
om skriapsamlaren behover ldgga tid pa att frigora minne.

¢) Vad har variablerna i koden ovan fér namn? Vad har variablerna for virden?

d) Rita en kvadrat igen, men nu med hjilp av en while-sats och en loopvariabel.

sakta(100)
var i = 0
while ??? do
fram
hdger
i=7???

e) Vad ar det for skillnad pa variabler som deklareras med val respektive var?

f) Rita en kvadrat igen, men nu med hjilp av en for-sats. Skriv ut vardet pa den
lokala variabeln i i varie loon-runda.

for 1 <- 1 to ??? do
???

g) Gar det att tilldela variabeln i ett nytt varde i loopen?
h) Gar det att referera till namnet i utanfor loopen?

i) Rita en kvadrat igen, men nu med hjilp av foreach. Skriv ut loopvariabelns viarde
i varje runda.

(1 to ??7).foreach: i =>
7?7

Uppgift 4. Abstraktion.

a) Anviand en repetition for att abstrahera nedan sekvens, sa att programmet blir
kortare:

fram; hoger; hoppa; fram; vanster; hoppa; fram; héger;
hoppa; fram; vanster; hoppa; fram; hdéger; hoppa; fram;

58 KAPITEL 1. INTRODUKTION

def kvadrat =
for ?7? do
7?7

for 7?7 do
7?7

LITTTTTTT Tge

Figur 1.1: En kvadratstapel.

vanster; hoppa; fram; hoger; hoppa; fram; vanster; hoppa;
fram; hoger; hoppa; fram; vanster; hoppa

b) Definiera en egen procedur som heter kvadrat med hjilp av nyckelordet def som
vid anrop ritar en kvadrat med hjilp av en for-loop.

def kvadrat =
for ??? do
7?7

¢) Anropa din abstraktion efter att den deklarerats och efter att du exekverat:
sakta(100)

d) Anropa din abstraktion inuti en for-loop sa att paddan ritar en stapel som dr 10
kvadrater hog enligt bilden nedan.

e) Studera hur anrop av proceduren kvadrat paverkar exekveringssekvensen av
dina satser genom att gora lampliga utskrifter sa att du kan se nér olika delar av
koden exekveras. Vid vilka punkter i programmet sker ett "hopp” i sekvensen i stillet
for att efterfoljande sats exekveras? Anvand lampligt argument till sakta for att du
ska hinna studera exekveringen.

f) Rita samma bild med 10 staplade kvadrater (se bild 1.1 pa sidan 58), men nu utan
att anvianda abstraktionen kvadrat — anvénd i stillet en néstlad repetition (alltsa en
upprepning inuti en upprepning). Vilket av de tva sidtten (med och utan abstraktionen
kvadrat) ar lattast att lasa?

g) Generalisera din abstraktion kvadrat genom att ge den en parameter sida: Double
som anger kvadratens storlek. Rita flera kvadrater i likhet med bild 1.2 pa sidan 59).

v @

1.3. LABORATION: K030 59

Figur 1.2: Olika stora kvadrater.

Uppgift 5. Alternativ.

a) Kor programmet nedan. Forklara vad som héinder.

sakta(5000)

def move(key: Int): Unit =
println("key: " + key)
if key == 87 then fram(10)
else if key == 83 then fram(-10)

move(87); move('W'); move('W")
move(83); move('S'); move('S'); move('S")

b) Kor programmet nedan. Notera activateCanvas() for att du ska slippa klicka
i ritfonstret innan du kan styra paddan. Anropet onKeyPress (move) gor sa att move
kommer att anropas da en tangent trycks ned. Léagg till kod i move som gor att
tangenten A ger en vridning moturs med 5 grader medan tangenten D ger en vridning
medurs 5 grader. Med onKeyPress bestdmmer man vilken procedur som ska kéras vid
tangenttryck.

sakta(0)
activateCanvas()

def move(key: Int): Unit =
println("key: " + key)
if key == 'W' then fram(10)
else if key == 'S' then fram(-10)

onKeyPress (move)

1.3.2 Kontrolifragor

Repetera teorin for denna vecka och var beredd pa att kunna svara pa dessa fragor
nér det blir din tur att redovisa vad du gjort under laborationen:

1. Vad innebéar sekventiell exekvering av satser?
2. Vad ar skillnaden mellan en sats och ett uttryck?

3. Vad ar skillnaden mellan en procedur och en funktion?

60 KAPITEL 1. INTRODUKTION

4. Spelar ordningen mellan argument nagon roll vid anrop av en funktion med
flera parametrar?

5. Vad ar en variabel? Ge exempel pa deklaration, initialisering och tilldelning av
variabler, samt anvindning av variabler i uttryck.

6. Vad ar ett logiskt uttryck? Ge exempel pa anviandning av logiska uttryck.

7. Vad ar abstraktion? Ge exempel pa anvindning av abstraktion.

8. Vad ar nyttan med abstraktion?

9. Hur deklareras och initialiseras en variabel vars virde &r forandringsbart?
10. Hur deklareras och initialiseras en variabel vars virde ar oféranderligt?

11. Ar det ett kortidsfel eller kompileringsfel att tilldela en oférénderlig variabel ett
nytt varde?

12. Ange vilken av for och while som &r lampligast i dessa fall:

A. Summera de hundra forsta heltalen.

B. Rikna antal tecken i en strang innan foérsta blanktecken.

C. Dra 100 slumptal mellan 1 och 6 och summera de tal som 4r mindre &n 3.
D. Summera de forsta heltalen fran 1 och uppat tills summan &ar minst 100.

1.3.3 Frivilliga extrauppgifter

Gor i man intresse och traningsbehov nedan uppgifter i valfri ordning.

Uppgift 6. Abstraktion och generalisering.

a) Skapa en abstraktion def stapel = ??? som anvéinder din abstraktion kvadrat.
b) Du ska nu generalisera din procedur sa att den inte bara kan rita exakt 10

kvadrater i en stapel. Ge proceduren stapel en parameter n som styr hur manga
kvadrater som ritas.

def kvadrat = 7?77
def stapel(n: Int) = ??7?

sakta(100)
stapel (42)

¢) Rita nedan bild med hjilp av abstraktionen stapel. Det dr totalt 100 kvadrater
och varje kvadrat har sidan 25. Tips: Med ett negativt argument till proceduren hoppa
kan du fa skoldpaddan att hoppa baklidnges utan att rita, t.ex. hoppa(-10%25)

1.3. LABORATION: K030 61

d) Generalisera dina abstraktioner kvadrat och stapel sa att man kan paverka
storleken pa kvadraterna som ritas ut.

e) Skapa en abstraktion rutnat med lampliga parametrar som gor att man kan rita
rutnit med olika stora kvadrater och olika manga kvadrater i bade x- och y-led.

f) Generalisera dina abstraktioner kvadrat och stapel sa att man kan paverka
fyllfargen och pennfirgen fér kvadraterna som ritas ut.

Fargerna i Kojo dr av typen java.awt.Color. Typen ér tillgdnglig under namnet
Color eftersom namnet gjorts direkt tillgingligt med export java.awt.Color i filen
kojo.scala (mer om nyckelorden export och import i ldsvecka 4).

Uppgift 7. Vixling med booleska virden.

a) Bygg vidare pa programmet i uppgift 5 och lagg till nedan kod i bérjan av pro-
grammet. Lagg dven till kod som gor sa att om man trycker pa tangenten G sa satts
rutnitet omvaxlande pa och av. Observera att det 4r exakt en procedur som anropas
vid onKeyPress.

var isGridOn = false

def toggleGrid =
if isGridOn then

gridoff

isGridOn = false
else

gridOn

isGridOn = true

b) Gor sa att niar man trycker pa tangenten X sa sédtter man omvéixlande pa och
av koordinataxlarna. Anvidnd en variabel isAxesOn och definiera en abstraktion
toggleAxes som anropar axesOn och axesOff pa liknande satt som i foregidende

uppgift.

Uppgift 8. Repetition. Skriv en procedur randomWalk med detta huvud:

def randomWalk(n: Int, maxStep: Int, maxAngle: Int): Unit

som gor sa att paddan tar n steg av slumpmaéssig ldngd mellan 0 och maxStep, samt
efter varje steg vrider sig at vanster en slumpmaéssig vinkel mellan 0 och maxAngle.
Anropa din procedur med olika argument och undersok hur dess viarden paverkar
bildens utseende. Tips: Uttrycket math.random() * 100 ger ett tal fran 0 till (néstan)
100. Du kan styra hur langsamt paddan ritar genom anrop av sakta(???) (prova dig
fram till ndgot lampligt heltalsargument i stillet for 7?77?).

il Ritfonster (Canvas) [] skripteditor - o
' b ke ¥ & = (%)

4}

sudda; sakta(5); farg(blue); breddil)

randomWalk(10000,15,90)

ey,

Uppgift 9. Variabler, namngivning och formatering.

62 KAPITEL 1. INTRODUKTION

a) Klistra in nedan konstigt formatterade program exakt som det star med blanktec-
ken, indragningar och radbrytningar. Kér programmet och forklara vad som hénder.

// Ett konstigt formaterat program med en del konstiga namn.

def gurka(x: Double,

y: Double, namn: String,

typ: String,

varde:String) = {

val tomat = 15

val h = 30

hoppaTill(x,y)

norr

skriv(namn+": "+typ)
hoppaTill(x+tomatx(namn.size+typ.size),y)
skriv(varde); soder; fram(h); vanster
fram(tomat * varde.size); vanster
fram(h); vanster

fram(tomat * varde.size); vanster }
sudda; farg(svart); val s = 130

val h = 40
var x = 42; gurka(l0, s-hx0, "x","Int", x.toString)
var y = x; gurka(10, s-hxl, "y","Int", y.toString)

X =X + 1; gurka(1l0, s-hx2, "x","Int", x.toString)
gurka(10, s-hx3, "y","Int", y.toString); osynlig

b) Skriv ner namnet pa alla variabler som forekommer i programmet.
¢) Vilka av dessa variabler dr lokala?
d) Vilka av dessa variabler kan fordndras efter initialisering?

e) Foresla tre forandringar av programmet ovan (till exempel namnbyten) som gor
att det blir lattare att 1dsa och forsta.

f) Gor sok-ersatt av gurka till ett battre namn.

g) Gor automatisk formatering av koden med hjalp av lampligt kortkommando.
Notera skillnaderna. Vilka autoformateringar gor programmet liattare att lasa? Vilka
manuella formateringar tycker du bor goras for att 6ka lasbarheten? Ge funktionen
gurka ett battre namn. Diskutera ldsbarheten med en handledare.

Uppgift 10. Tidmdtning. Hur snabb &r din dator?

a) Skrivin koden nedan i REPL och kor upprepade ganger genom att skriva main.
Tar det lika lang tid varje gang? Varfor?

object timer:
def now: Long = System.currentTimeMillis
var saved: Long = now
def elapsedMillis: Long = now - saved
def elapsedSeconds: Double = elapsedMillis / 1000.0
def reset: Unit =
saved = now

1.3. LABORATION: K030 63

// HUVUDPROGRAM:
def main =
timer.reset
var i = 0L
while i < 1le8.tolLong do
i+=1
val t = timer.elapsedSeconds
println("Raknade till " + i + " pd " + t + " sekunder.")

b) Andra iloopen i uppgift a) sa att den rdknar till 4.4 miljarder. Hur lang tid tar
det for din dator att rikna s& 1angt?®

¢) Om du kor pa en Linux-maskin: Kér nedan Linux-kommando upprepade ganger
i ett terminalfonster. Med hur manga MHz kor din dators klocka for tillfallet? Hur
forhaller sig klockfrekvensen till antalet rundor i while-loopen i foregaende uppgift?
(Det kan hianda att din dator kan variera centralprocessorns klockfrekvens. Prova
bade medan du kor tidmétningen i Kojo och da din dator "vilar”. Vad ar det for podng
med att en processor kan variera sin klockfrekvens?)

- _____________________________
> lscpu | grep MHz
L

d) Andraikoden i uppgift a) sa att while-loopen bara kor 5 ganger.

e) Lagg till koden nedan i ditt program och forsék ta reda pa ungefiar hur langt
din dator hinner ridkna till pa en sekund fér Long- respektive Int-variabler. Skriv
raknaSnabbt terminalen for att kéra huvudprogrammet.

def timelLong(n: Long): Double =
timer.reset
var i = 0L
while i < n do
i+4=1
end while
timer.elapsedSeconds

def timeInt(n: Int): Double =
timer.reset
var i = 0
while i < n do
i+=1
end while
timer.elapsedSeconds

def show(msg: String, sec: Double): Unit =
print(msg + ": ")
println(sec + " seconds")

def report(n: Long): Unit =
show("Long " + n, timelLong(n))
if n <= Int.MaxValue then
show("Int " + n, timeInt(n.toInt))

// HUVUDPROGRAM, matningar:

8Det gar att gora ungefir en heltalsaddition per klockcykel per kérna. Den forsta elektroniska datorn
Eniac hade en klockfrekvens motsvarande 5 kHz. Den dator pa vilken denna 6vningsuppgift skapades
hade en i7-4790K turboklockad upp till 4.4 GHz.

https://sv.wikipedia.org/wiki/ENIAC

© 00 N O U A W N =

e e e =
o U A WN R OO

64 KAPITEL 1. INTRODUKTION

def raknaSnabbt =
report(Int.MaxValue)
for i <- 1 to 10 do
report(4.26e9.tolLong)

f) Hur mycket snabbare gar det att rdkna med Int-variabler jamfort med Long-
variabler? Diskutera géarna svaret med en handledare.

Uppgift 11. Lek med farg i Kojo. S6k pa internet efter dokumentationen for klassen
java.awt.Color och studera vilka heltalsparametrar den sista konstruktorn i listan
med konstruktorer tar for att skapa sRGB-farger. Om du skriver selectColor() i
REPL 6ppnas ett nytt fonster dar man kan vilja en farg. Om du sedan trycker pa OK
eller ENTER-tangenten kommer firgen som du valde att bli ett virde i REPL. Testa
detta i REPL:

scala> val valdFarg = selectColor() // valj en farg
val valdFarg: java.awt.Color = java.awt.Color[r=0,g=255,b=226]

scala> val ¢ = new java.awt.Color(124,10,78,100)
val c: java.awt.Color = java.awt.Color[r=124,9=10,b=78]

scala> c. // tryck pa TAB

asInstanceOf getColorComponents getRGBComponents
brighter getColorSpace getRed
createContext getComponents getTransparency
darker getGreen isInstanceOf
getAlpha getRGB toString

getBlue getRGBColorComponents

scala> c.getAlpha
val res3: Int = 100

Skriv ett program som ritar manga figurer med olika farger, till exempel cirklar som
nedan. Om du anvinder alfakanalen blir fargerna genomskinliga.

1.3. LABORATION: K030 65

Uppgift 12. Ladda ner "Uppdrag med Kojo” fran Ith.se/programmera/uppdrag och gor
nagra uppgifter som du tycker verkar intressanta.

Uppgift 13. Om du vill jobba med att hjilpa skolbarn att lidra sig programmera med

Kojo, kontakta http://www.vattenhallen.lth.se och anmal ditt intresse att vara
handledare.

http://lth.se/programmera/uppdrag
http://www.vattenhallen.lth.se

66

KAPITEL 1. INTRODUKTION

Kapitel 2

Program och kontrolistrukturer

Begrepp som ingar i denna veckas studier:

huvudprogram
program-argument
indata
scala.io.StdIn.readLine
kontrollstruktur
iterera over element i samling
for-uttryck

yield

map

foreach

samling

sekvens

indexering

Array

Vector

intervall

Range

algoritm
implementation
pseudokod
algoritmexempel: SWAP
SUM

MIN-MAX
MIN-INDEX

dod: versionshantering

Oooooooopooooooonoogoogooogoo

67

68

KAPITEL 2. PROGRAM OCH KONTROLLSTRUKTURER

2.1 Teori

Ett program innehaller satser och uttryck. En kontrollstruktur, t.ex. while, styr i
vilken ordning satser och uttryck exekveras. Data kan placeras i en datastruktur,
t.ex. en Vector, sa att man senare kan komma at data igen.

2.1.1 Vad dar en datastruktur?

¢ En datastruktur &r en struktur for organisering av data som...

- kan innehéalla manga element,
- kan refereras till som en helhet, och
- ger mojlighet att komma at enskilda element.

¢ En samling (eng. collection) ar en datastruktur som kan innehalla manga
element av samma typ.
¢ Exempel pa olika samlingar dar elementen &r organiserade pa olika vis:

Sekvens © > > >3 3 33

Trad 5{?%)
Graf @E

Mer om sekvenser & trad i pfk. Mer om triad, grafer i Diskreta strukturer.

2.1.2 Ndagra samlingar i scala.collection

¢ En samling (eng. collection) ar en datastruktur som kan innehalla manga
element av samma typ.

¢ En sekvens (eng. sequence) ar en samling dér alla element dr ordnade.

¢ Exempel pa fardiga samlingar i Scalas standardbibliotek dir elementen &r
organiserade internt pa olika vis sa att samlingen far olika egenskaper som
passar olika anviandningsomraden:

scala.collection.immutable.Vector, sekvens med snabb access 6ver-
allt.

scala.collection.immutable.List, sekvens med snabb access i borjan.
scala.collection.immutable.Set, scala.collection.mutable.Set, miangd
med unika element; ej i sekvens men snabb innehallstest.
scala.collection.immutable.Map, scala.collection.mutable.Map, miangd
med par av nyckel & tillhérande varde, snabb access via nyckel.
scala.collection.mutable.ArrayBuffer, fordndringsbar sekvens kan
dndra storlek.

scala.Array, forandringsbar sekvens som inte kan é#ndra storlek. Alla ele-
ment dr lagrade efter varandra i minnet: snabbast access av alla samlingar,
men har speciella begriansningar.

https://sv.wikipedia.org/wiki/Datastruktur

O 00 N O Ul A W N =

o e
N ~ ©

2.1. TEORI 69

2.1.3 Olika strukturer for at hantera data

¢ Tupel (eng. tuple)

- samla flera datavirden t.ex. (1, "hej", true)ielement_1,_2,_3
- elementen kan vara av olika typ

¢ Enumeration (dven kallad upprikning) (eng. enumeration)

— Namnge uppriaknade varden t.ex. enum Color { case Red, Black }
— Virdena har ordningsnummer och dr alla av samma typ (hér Color)

Klass (eng. class)

— samlar data i attribut med (vil valda!) namn

— attributen kan vara av olika typ

— definierar 4ven metoder som anvinder attributen
(kallas aven operationer pa data)

Fardig samling

- speciella klasser som samlar data i element av samma typ
- exempel: scala.collection.immutable.Vector
- har ofta mdanga firdiga bra-att-ha-metoder,
se snabbreferensen https://fileadmin.cs.lth.se/pgk/quickref.pdf

* Egenimplementerade samlingar — fordjupningskursen pfk

2.1.4 Vad dr en vektor?

En vektor! (eng. vector) 4r en sekvens som &r snabb att indexera i. Atkomst av
element i en sekvens som t.ex. heter xs sker i Scala med xs.apply(platsnummer):

scala> val heltal = Vector(42, 13, -1, 0, 1)
val heltal: scala.collection.immutable.Vector[Int] = Vector(42, 13, -1, 0, 1)

scala> heltal.apply(0) // platsnummer réknas fran noll
val res0: Int = 42

scala> heltal(1l) // man kan i Scala skippa .apply fére (
val resl: Int = 13

scala> heltal(5) // ger kértidsfel dd sjatte platsen inte finns
java.lang.IndexOutOfBoundsException: 5
at scala.collection.immutable.Vector.checkRangeConvert(Vector.scala:132)

Utelamnar du .apply sa skapar kompilatorn automatiskt ett anrop av apply.

2.1.5 En konceptuell bild av en vektor

1Vektor kallas ibland p4 svenska &ven filt, men det skapar stor forvirring eftersom det engelska
ordet field ofta anvénds for attribut (forklaras senare).

https://fileadmin.cs.lth.se/pgk/quickref.pdf
https://sv.wikipedia.org/wiki/F%C3%A4lt_%28datastruktur%29

O 00 N O U1l A W N P

70 KAPITEL 2. PROGRAM OCH KONTROLLSTRUKTURER

scala> val heltal = Vector(42, 13,

scala> heltal(0)
val res0: Int = 42

heltal| O<| plats
\\\\\‘ 0 42
1 13
2 -1
3 0
4 1

2.1.6 En samling strangar

¢ En vektor kan lagra manga virden av samma typ.
¢ Elementen kan vara till exempel heltal eller strangar.
¢ Eller faktiskt vad som helst. (En s.k. generisk samling.)

scala> val gronsaker = Vector("gurka","tomat", "paprika", "selleri")
gronsaker: scala.collection.immutable.Vector[String] =
Vector(gurka, tomat, paprika, selleri)

scala> val g = grdonsaker(1)
val g: String = tomat

scala> val xs = Vector(42, "gurka", true, 42.0)
val xs: Vector[Matchable] = Vector(42, gurka, true, 42.0)

Notera typen Matchable som betyder "niastan vilken typ som helst”
(Mer om Matchable senare.)

2.1.7 Vad dr en kontrollstruktur?
¢ En kontrollstruktur paverkar i vilken ordning (sekvens) satser exekveras och
uttryck evalueras.

Exempel pa inbyggda kontrollstrukturer:
if-then—else-uttryck
for—yield-uttryck

for—do—sats

while-do—sats

* | Scala kan man definiera egna kontrollstrukturer.

Exempel: upprepa som du anvint i Kojo
upprepa(4){fram; hoéger}

N O U W N

u A W N

2.1. TEORI 71

2.1.8 Loopa genom elementen i en vektor

En for-do-sats som skriver ut alla element i en vektor:

scala> val gronsaker = Vector("gurka", "tomat", "paprika","selleri")

scala> for g <- gronsaker do println(g)
gurka

tomat

paprika

selleri

for ... do ... gorsa att foljande héander:

* Plocka ut varje element ur samlingen.
¢ Namnet fore pilen (hir g) refererar till ett nytt viarde for varje runda i loopen.
¢ Detta namn motsvarar en lokal val-variabel.

2.1.9 Bygg ny samling fran befintlig med for-yield-uttryck
Ett for-yield-uttryck som skapar en ny samling.

for g <- gronsaker yield s"god $g"

scala> val gronsaker = Vector("gurka", "tomat", "paprika","selleri")

scala> val asikter = for g <- groénsaker yield s"god $g"
val asikter: Vector[String] =
Vector(god gurka, god tomat, god paprika, god selleri)

2.1.10 Samlingen Range hdller reda pd intervall

¢ Med en Range(start, slut) kan du skapa ett intervall:
fran och med start till (men inte med) slut

scala> Range(0, 42)
val res0@: Range =
Range(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,

15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28,
29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41)

® Men alla viarden ddremellan skapas inte forrian de behovs:

0 N O U B~ W N

72 KAPITEL 2. PROGRAM OCH KONTROLLSTRUKTURER

scala> val jattestortIntervall = Range(0, Int.MaxValue)
val jattestortIntervall: Range.Exclusive = Range 0 until 2147483647

scala> jattestortIntervall.end
val resl: Int = 2147483647

scala> jattestortIntervall.toVector
java.lang.OutOfMemoryError: Java heap space

2.1.11 Loopa med Range

Range anvéinds i for-loopar for att halla reda pa antalet rundor.

scala> for i <- Range(0, 6) do print(s" gurka $i")
gurka 0 gurka 1 gurka 2 gurka 3 gurka 4 gurka 5

Du kan skapa en Range med until efter ett heltal:

scala> 1 until 7
val resl: Range =
Range(1, 2, 3, 4, 5, 6)

scala> for i <- 1 until 7 do print(s" tomat $i")
tomat 1 tomat 2 tomat 3 tomat 4 tomat 5 tomat 6

Med metoden indices pa kan du f4 en Range med alla index:

scala> val xs = Vector("gurkal", "gurka2", "tomatl")
val xs: Vector[String] = Vector(gurkal, gurka2, tomatl)

scala> xs.indices
val resO: Range = Range 0 until 3

2.1.12 Loopa med Range skapad med to
Med to efter ett heltal far du en Range till och med sista:

scala> 1 to 6
res2: Range.Inclusive =
Range(1l, 2, 3, 4, 5, 6)

+ i)

scala> for i <- 1 to 6 do print(" gurka
gurka 1 gurka 2 gurka 3 gurka 4 gurka 5 gurka 6

2.1.13 Loopa genom en samling med en while-sats

2.1. TEORI 73

scala> val xs = Vector("Hej","pa","dej","!!!")
val xs: Vector[String] =
Vector(Hej, pa, dej, !!'!)

scala> xs.size
val res0: Int = 4
scala> var i = 0
val i: Int = 0

scala> while i < xs.size do { println(xs(i)); i =1+ 1 }
Hej
pa
dej
11

2.1.14 Vad dér en Array?

¢ En Array liknar en Vector men har en sirstillning i JVM:

- Lagras som en sekvens i minnet pa efterféljande adresser.
— Fordel: snabbaste samlingen for element-access i JVM.
— Men det finns en hel del nackdelar som vi ska se senare.

scala> val heltal = Array(42, 13, -1, 0 , 1)

heltal| ® plats
1 13
2 1
3 0
4 1

2.1.15 Nagra likheter & skillnader mellan Vector och Array

scala> val xs = Vector(1,2,3) scala> val xs = Array(1,2,3)
I I

Nagra likheter mellan Vector och Array

* Bada ar samlingar som kan innehalla manga element.
e Med bada kan man snabbt accessa vilket element som helst: xs(2)

Nagra viktiga skillnader:

https://en.wikipedia.org/wiki/Array_data_structure

74 KAPITEL 2. PROGRAM OCH KONTROLLSTRUKTURER

Vector Array

e Aroféranderlig: du kan lita pa
att elementreferenserna aldrig * Ar forianderlig: xs(2) = 42
nagonsin kommer att &ndras. * Ar snabb om man bara vill lisa

e Ar snabb pa att skapa en eller skriva pa befintliga platser.
delvis forandrad kopia, t.ex. ¢ Kan ej dndra storlek: tillagg el-
tillagg/borttagning/uppdate- ler borttagning mitt i kraver
ring mitt i sekvensen. langsam kopiering av resten.

2.1.16 Ett minimailt fristdende program i Scala

Spara nedan Scala-kod i filen hej.scala:

@main def run = println("Hej Scala!")

Kompilera och kor i terminalen:

> scala run hej.scala
Compiling project (Scala 3.7.2, JVM (21))

Compiled project (Scala 3.7.2, JVM (21))
Hej Scala!

Innan korning kompileras dina kodfiler automatiskt vid behov. Du kan se maskin-
koden i en underkatalog i till katalogen .scala-build:

il > 1s .scala-build/*/classes/main
yMl 'hej$package.class' ‘'hej$package$.class' ‘'hej$package.tasty' run.class r

2.1.17 Typsdkra argument till ett program med @main

Skriv och spara nedan kod i filen helloargs2.scala

@main def hej(heltal: Int, resten: Stringx): Unit = // notera * efter String
for i <- 0 until heltal do println(resten(i))

Kompilera och kér med programargument efter - -

> scala run helloargs2.scala -- 2 morot gurka tomat
morot
gurka

> scala run helloargs2.scala -- aj morot gurka tomat
Illegal command line: java.lang.NumberFormatException: For input string: "aj"

u A W N -

Med @main genereras automatiskt en primitiv main som kollar att argumenten har
ratt typ.

2.1. TEORI 75

2.1.18 Vad ér en algoritm?

En algoritm &r en sekvens av instruktioner som beskriver hur man léser ett problem.

Exempel:

* baka en kaka

* rikna ut din pensionsprognos
* kora bil

¢ kolla om highscore i ett spel

2.1.19 Algoritmexempel: N-FAKULTET

Indata :heltalet n
Utdata:produkten av de forsta n positiva heltalen

prod —1

i—2

while i <n do
prod — prod %1
i—i+1

end

prod

®W I AW N =

Vad hinder om n ar noll?
Vad hinder om n ar ett?
Vad hiander om n ar tva?
Vad hinder om »n ar tre?

2.1.20 Algoritmexempel: MIN

Indata : Array args med strdngar som alla innehaller heltal
Utdata: minsta heltalet

min — det storsta heltalet som kan uppkomma
n — antalet heltal
i1<—0
while i <n do

x —args(i).tolnt

if (x < min) then

‘ min —x
end
i—i+1

© 0 O AW N =

[
(=)

end
min

=
-

-
N

https://sv.wikipedia.org/wiki/Algoritm

76 KAPITEL 2. PROGRAM OCH KONTROLLSTRUKTURER

Testa med indata: args = Array("2", "42", "1", "2")

En program delas ofta upp i manga olika funktioner. En funktion kan ha parametrar
och ge ett returviarde. Om du delar upp ditt program i manga enkla funktioner med bra
namn, sa blir ditt program lattare att 14sa och begripa. Om en viltestad och buggfri
funktion anvindas pa flera stéllen, sa kan risken for buggar minskas.

2.1.21 Mall for funktionsdefinitioner

def funktionsnamn(parameterdeklarationer): returtyp = uttryck

Exempel:

def oka(i: Int): Int =1 + 1

Returtypen kan hirledas av kompilatorn:

def dka(i: Int) =1+ 1

Men for att fa hjilp av kompilatorn 4r det bra att ange returtyp!
Om flera parametrar anvind kommatecken. Om flera satser anvind indentering
(och eventuell valfria klammerparenteser).

def isHighscore(points: Int, high: Int): Boolean = {
val highscore: Boolean = points > high
if highscore then println(":)") else println(": (")
highscore

}

Ovan funktion har sidoeffekten att skriva ut en smiley.

2.1.22 Bdattre mdanga sma abstraktioner som gér en sak var

def isHighscore(points: Int, high: Int): Boolean = points > high

def printSmiley(isHappy: Boolean): Unit =
if isHappy then println(":)") else print(": (")

printSmiley(isHighscore(113,99))

¢ Denna bittre isHighscore &dr nu en dkta funktion som alltid ger samma svar
for samma inparametrar och saknar sidoeffekter; dessa funktioner &r ofta
lattare att forsta.

¢ Funktioner som ger ett booleskt virde kallas for predikat.

2.1.23 Vad dr ett block?

¢ Ett block kapslar in flera satser/uttryck och ser "utifran” ut som en enda
sats/uttryck.
¢ Ett block skapas med hjilp av klammerparenteser ("krullparenteser”)

© 00 N O Ul A W N =

el el
w N =

2.1. TEORI 77

{ uttryckl; uttryck2; ... uttryckN }

e | Scala (till skillnad fran manga andra sprak) har ett block ett viarde och ar
alltsa ett uttryck.
* Virdet ges av sista uttrycket i blocket.

scala> val x = { println(l + 1); println(2 + 2); 3 + 3 }

2.1.24 Namn i block blir lokala
Synlighetsregler:

1. Identifierare deklarerade inuti ett block blir lokala.
2. Lokala namn overskuggar namn i yttre block om samma.
3. Namn syns i ndstlade underblock.

scala> def a = { val lokaltNamn = 42; println(lokaltNamn) }
scala> a
42

scala> println(lokaltNamn)
1 |println(lokaltNamn)

| AAAAAAAAAA

| Not found: lokaltNamn

scala> def b { val x = 42; { val x = 76; println(x) }; println(x) }
scala> def ¢ = { val x = 42; { val b X + 1; println(b) } }

scala> b // vad hander?

scala> ¢ // vad hander?

2.1.25 Parameter och argument

Skilj pa parameter och argument!

¢ En parameter ir det deklarerade namnet som anvénds lokalt i en funktion for
att referera till...

¢ argumentet som ir viardet som skickas med vid anrop och binds till det lokala
parameternamnet.

scala> val ettArgument = 42

scala> def Oka(minParameter: Int) = minParameter + 1

scala> Oka(ettArgument)

78 KAPITEL 2. PROGRAM OCH KONTROLLSTRUKTURER

Speciell syntax: anrop med s.k. namngivet argument

scala> Oka(minParameter = ettArgument)

Namngivna argument kan ges i valfri ordning; da riskerar man inte fel ordning.

2.1.26 Procedurer

¢ En procedur ir en funktion som gor nagot intressant, men som inte lamnar
nagot intressant returvirde.

¢ Exempel pa befintlig procedur: println("hej")

¢ Du deklarerar egna procedurer genom att ange Unit som returvirdestyp.
Da ges viardet () som betyder "inget”.

scala> def hej(x: String): Unit = println(s"Hej pa dej $x!")

scala> hej("Herr Gurka")
Hej pad dej Herr Gurka!

scala> val x = hej("Fru Tomat")

Hej pad dej Fru Tomat!

scala> :type x
Unit

scala> println(x) // vad hander?

¢ Det som gors kallas (sido)effekt. Ovan ar utskriften sjélva effekten.
¢ Funktioner kan ockséa ha sidoeffekter. De kallas da odkta funktioner.

2.1.27 ’Ingenting” dr faktiskt ndgonting i Scala

¢ I manga sprak (Java, C, C++, ...) 4r funktioner som saknar viarden speciella.
Java m.fl. har speciell syntax for procedurer med nyckelordet void, men inte
Scala.

¢ I Scala ar procedurer inte specialfall; de 4r vanliga funktioner som returnerar
ett virde som representerar ingenting, ndmligen () som &ar av typen Unit.

¢ P3 sa sétt blir procedurer inget undantag utan f6ljer vanlig syntax och semantik
precis som for alla andra funktioner.

* Detta ar typiskt for Scala: generalisera koncepten och vi slipper besvirliga
undantag!
(Men vi maste forsta generaliseringen...)
https://en.wikipedia.org/wiki/Void_type https://en.wikipedia.org/wiki/
Unit_type

https://en.wikipedia.org/wiki/Void_type
https://en.wikipedia.org/wiki/Unit_type
https://en.wikipedia.org/wiki/Unit_type

2.1. TEORI 79

2.1.28 Problemlésning: nedbrytning i abstraktioner som sen kombi-

neras

En av de allra viktigaste principerna inom programmering &ar funktionell ned-
brytning dir underprogram i form av funktioner och procedurer skapas for
att bli byggstenar som kombineras till mer avancerade funktioner och procedu-
rer.

Genom de namn som definieras skapas ateranvandbara abstraktioner som
kapslar in det funktionen gor.

Problemet blir med bra byggblock liattare att l6sa.

Abstraktioner som berdknar eller gér en enda, vialdefinierad sak dr enklare
att anvinda, jamfort med de som goér manga, helt olika saker.

Abstraktioner med vilgenomtinkta namn &r enklare att anvianda, jimfort
med kryptiska eller missvisande namn.

2.1.29 Exempel pa funktionell nedbrytning

Kojo-labben gav exempel pa funktionell nedbrytning dar ett antal abstraktioner
skapas och ateranvinds.

// skapa abstraktioner som bygger pa varandra

def kvadrat = upprepa(4){fram; hoger}

def stapel =
upprepa(10){kvadrat; hoppa}
hoppa (-10x%25)

def rutnat = upprepa(1l0){stapel; hdger; fram; vanster}

@main def huvudprogram =
sudda; sakta(200)
rutnat

2.1.30 Varfor abstraktion?

Stora program behover delas upp annars blir det mycket svart att forsta och
bygga vidare pa programmet.

Vi behover kunna vilja namn pa saker i koden lokalt, utan att det krockar med
samma namn i andra delar av koden.

Abstraktioner hjélper till att hantera och kapsla in komplexa delar sa att de blir
enklare att anvanda om och om igen.

Exempel pa abstraktionsmekanismer i Scala:

- Klasser ar "byggblock” med kod som anvénds for att skapa objekt, innehal-
lande delar som hor ihop.
Nyckelord: class och object

https://sv.wikipedia.org/wiki/Klass_%28programmering%29
https://sv.wikipedia.org/wiki/Objektorienterad_programmering#Objekt

80 KAPITEL 2. PROGRAM OCH KONTROLLSTRUKTURER

— Metoder ar funktioner som finns i klasser/objekt och anvinds for att 16sa
specifika uppgifter. Nyckelord: def

— Paket anvinds for att skapa namnrymder och organisera maskinkod i en
hierarkisk katalogstruktur.
Nyckelord: package

2.1.31 Frdn kdllkod till maskinkod med JVM

hello.scala ’ Kallkodsfil

Kompilatorn skapar abstrakt maskinkod
(s.k. bytekod)

. s ’ .class-fil med bytekod

l Java Virtual Machine

VM Oversitter bytekod till konkret
maskinkod som passar din specifika CPU

under korning (s.k. interpretering)

2.1.32 Paket
package greeting

@main def run = println("Hello world!")

Paket (eng. package) skapar namnrymder och i en hierarkisk struktur.
Paket kan vara nistlade: ofta finns paket i paket i paket.

Paket ar speciellt bra om man har mycket kod i manga kodfiler.
Kompilatorn placerar maskinkoden i kataloger enligt paketstrukturen.
Ar du nyfiken, kolla underkataloger i .scala-build:

2

1s -R .scala-build

2.1.33 Import

Med hjalp av punktnotation kommer man at innehall i ett paket.

2Katalogstrukturen for kéllkoden mdste i manga andra sprak, t.ex. Java, exakt motsvara paketstruk-
turen, men detta dr inte nodvandigt i Scala — alla Scala-kodfiler kan ligga i samma katalog pa toppniva
eller i underkatalog med valfritt namn, oavsett hur din kod anviander package.

https://en.wikipedia.org/wiki/Method_%28computer_programming%29
https://en.wikipedia.org/wiki/Java_package

2.1. TEORI 81

val age = scala.io.StdIn.readlLine("Ange din alder:")

En import-sats...

import scala.io.StdIn.readlLine

...gor sa att namnet syns direkt, och man slipper skriva hela viagen till namnet:

val age = readLine("Ange din alder:")

Det importerade namnet blir direkt synligt i den aktuella namnrymden (eng. in
scope).

2.1.34 Jar-filer

¢ jar-filer liknar zip-filer och anvinds for att sammanféra manga kompilerade
kodfiler i en komprimerad fil for enkel distribution och kérning.
® Du anvénder jar-filer med optionen --jar

scala run . --jar introprog.jar

* Du kan skapa egna jar-filer med scala package dir optionen --library gor
sa att endast den komilerade koden inkluderas. Utan optionen --library sa
gors jar-filen exekverbar. Med optionen --assembly tas allt med i jar-filen
som behovs for att kora jar-filen helt fristdende med ett dubbelklick eller
java -jar myapp.jar

scala package . --library --output myapp.jar
scala run --jar myapp.jar

scala package . --assembly --output my-fat-jar-app.jar
java -jar my-fat-jar-app.jar

Optionen - -assembly kraver power-ldge enl. instruktioner i varning.
Lis mer om jar-filer i Appendix F.

82

2.2 Ovning programs

Mal

Qo

Ooogo

innehaller heltal.

OoOooo

och en while-sats.

Forberedelser

[Studera begreppen i kapitel 2

KAPITEL 2. PROGRAM OCH KONTROLLSTRUKTURER

Kunna skapa, kompilera och kéra en enkel applikation i terminalen.

Kunna skapa samlingarna Range, Array och Vector med heltal och stréingar.
Kunna indexera i en indexerbar samling, t.ex. Array och Vector.

Kunna anropa operationerna size, mkString, sum, min, max pa samlingar som

Kinna till skillnader och likheter mellan samlingarna Range, Array och Vector.
Forsta skillnaden mellan en while-sats och ett for-uttryck.

Kunna skapa samlingar med heltalsviarden som resultat av enkla for-uttryck.
Forsta skillnaden mellan en algoritm i pseudo-kod och dess implementation.
Kunna implementera algoritmerna SUM, MIN, MAX med en indexerbar samling

[Bekanta dig med grundldggande terminalkommandon, se appendix ??.
(] Bekanta dig med VS Code, se appendix ??.
] Hamta given kod via kursen github-plats.

2.2.1 Grunduppgifter

Uppgift 1. Para ithop begrepp med beskrivning.

Koppla varje begrepp med den (forenklade) beskrivning som passar bast:

kompilera
skript

objekt

@main
programargument
datastruktur
samling
sekvenssamling
Array

Vector

Range

yield

algoritm

implementation

© 00 3 O O B~ W N -

o S Sy S
=W N = O

ZE-RNuou-~mIDoHEHDOQW®

anviands i for-uttryck for att skapa ny samling
en oférinderlig, indexerbar sekvenssamling
maskinkod skapas ur en eller flera killkodsfiler
en forandringsbar, indexerbar sekvenssamling
dér exekveringen av kompilerat program startar
datastruktur med element i en viss ordning
ensam kodfil, huvudprogram behovs ej

stegvis beskrivning av en l6sning pa ett problem
en specifik realisering av en algoritm

manga olika element i en helhet; elementvis atkomst
datastruktur med element av samma typ

kan 6verforas via parametern args till main
samlar variabler och funktioner

en samling som representerar ett intervall av heltal

Uppgift 2. Anvdnda terminalen. Las om terminalen i appendix ??.

a) Vilka tre kommando ska du kora for att 1) skapa en katalog med namnet hello
och 2) navigera till katalogen och 3) visa namnet pa ut aktuell katalog? Oppna ett
teminalfonster och koér dessa tre kommando.

https://github.com/lunduniversity/introprog/tree/master/workspace/

1

2.2. OVNING PROGRAMS 83

b) Vilka tva kommando ska du koéra for att 1) navigera tillbaka "upp” ett steg i
filtradet och 2) lista alla filer och kataloger pa denna plats? Kor dessa tva kommando i
terminalen.

Uppgift 3. Skapa och kora ett Scala-skript.

a) Skapa en fil med namn sum.sc i katalogen hello som du skapade i féoregaende
uppgift med hjialp av en editor, t.ex. VS code.

> cd hello

> code sum.sc

Filen ska innehalla f6ljande rader:

val n = 1000
val summa = (1 to n).sum
println(s"Summan av de $n fdérsta talen ar: $summa")

Spara filen och kér kommandot scala run sum.sc iterminalen:

> scala run sum.sc

Vad blir summan av de 1000 foérsta talen?

b) Andra ifilen sum.sc sa att hogerparentesen pa sista raden saknas. Spara filen
(Ctrl+S) och kor skriptfilen igen i terminalen (pil-upp). Hur lyder felmeddelandet? Ar
det ett kortidsfel eller ett kompileringsfel?

¢) Andraisum.sc sa att det i stéllet for 1000 star args(0) .toInt efter val n =och
spara och kor om ditt program med argumentet 5001 sa har:

> scala run sum.sc -- 5001

Vad blir summan av de 5001 forsta talen?

d) Vad blir det for felmeddelande om du glommer att ge skriptet ett argument? Ar
det ett kortidsfel eller ett kompileringsfel?

Uppgift 4. Scala-applikation med @main. Skapa med hjilp av en editor en fil med
namn hello.scala.

> code hello.scala

Skriv nedan kod i filen:

@main def run(): Unit = {
val message = "Hello world!"
println(message)

}

a) Kompilera med scala compile hello.scala. Vad heter filerna som kompilatorn
skapar? Leta efter filer som slutar med .class i mapparna som ligger under mappen
som bérjar med project...

> scala compile hello.scala

> ls .scala-build/projectx/classes/main/

84 KAPITEL 2. PROGRAM OCH KONTROLLSTRUKTURER

b) Hur ska du 4ndra i din kod sa att kompilatorn ger féljande felmeddelande:
Syntax Error: '}’ expected, but eof found?

¢) IScala ar klammerparenteser valfria (eng. optional braces) och koden struktureras
istallet i sammanhéngande block med hjalp av indenteringar®. Det gar bra att byta
mellan stilarna i samma fil om du tycker detta gor koden mer lattlést.

Ovan kod kan skrivas:

@main def run(): Unit =
val message = "Hello world!"
println(message)

Vad hander om du tar bort indenteringen pa den sista raden?

d) Vad betyder @main-annoteringen?

Uppgift 5. Skapa och anvinda samlingar. 1 Scalas standardbibliotek finns manga
olika samlingar som gar att anvinda pa ett enhetligt séatt (med vissa undantag for
Array). Para ihop uttrycken som skapar eller anvéinder samlingar med férklaringarna,
sa att alla kopplingar blir korrekta (minst en forklaring passar med mer &n ett uttryck,
men det finns bara en 16sning dér alla kopplingar blir parvis korrekta):

val xs = Vector(2) 1 A | ny samling med en nolla tillagd pa slutet
val ys = Array.fill(9)(0) | 2 B | ny samling, elementen omgjorda till heltal
Vector.fill(9)(' ") 3 C | ny referens till fordndringsbar sekvens
xs(0) 4 D | ny samling, elementen omgjorda till stringar
xs.apply(0) 5 E | forkortad skrivning av apply(0)

Xs :+ 0 6 F | indexering, ger forsta elementet

0 +: Xs 7 G | ny strang med komma mellan elementen
ys.mkString 8 H | ny samling med en nolla tillagd i bérjan
ys.mkString(",") 9 I | ny referens till sekvens av ldngd 1
xs.map(_.toString) 10 J | ny oforénderlig sekvens med blanktecken
xs.map(_.toInt) 11 K | ny strdng med alla element intill varandra

Triana med dina egna varianter i REPL tills du lart dig anvidnda uttryck som ovan
utantill. D4 har du ldttare att komma igang med kommande laborationer.

Uppgift 6. Jamfor Array och Vector. Para ihop varje samlingstyp med den beskriv-
ning som passar béist:

a) Vad giller angaende fordnderlighet (eng. mutability)?

1 A
2 B

Vector forandringsbar

Array oféranderlig

b) Vad giller vid tilldgg av element i borjan (eng. prepend) och slutet (eng. append),
eller forandring av delsekvens pa godtycklig plats (eng. to patch, dven pa svenska: att
patcha)?

3Valfria klammerparenteser och signifikant indentering kom med nya Scala 3. I gamla Scala 2
var klammerparenteser nédviandiga om flera satser ska kombineras och indenteringen paverkade inte
betydelsen.

4

2.2. OVNING PROGRAMS 85

1 A
2 B

Vector langsam vid &ndring av storlek (kopiering av rubbet kravs)

Array varianter med fler/andra element skapas snabbt ur befintlig

¢) Vad géller vid likhetstest (eng. equality test).

1 A
2 B

Vector Xs == ys dr true om alla element lika

Array olikt andra Scala-samlingar kollar == ¢j innehallslikhet

Uppgift 7. Rikna ut summa, min och max i args. Skriv ett program som skriver ut
summa, min och max for en sekvens av heltal i args. Du kan forutsétta att programmet
bara kors med heltal som programparametrar. Tips: Med uttrycken args.sum och
args.min och args.max ges summan, minsta resp. storsta virde.

Exempel pa korning i terminalen:

> code sum-min-max.scala

> scala run sum-min-max.scala -- 1 2 42 3 4
52 1 42

Vad blir det for felmeddelande om du ger argumentet hej nar ett heltal forvantas?

Uppgift 8. Algoritm: SWAP. Det ar vanligt ndr man arbetar med forandringsbara
datastrukturer att man kan behéva byta plats mellan element och da behovs algorit-
men SWAP, som har illustreras genom platsbyte mellan virden:

Problem: Byta plats pa tva variablers virden.

Losningsidé: Anvand temporar variabel for mellanlagring.

a) Skriv med pseudo-kod (steg for steg pa vanlig svenska) algoritmen SWAP nedan.
Indata: tva heltalsvariabler x och y
7?
Utdata: variablerna x och y vars viarden har bytt plats.
b) Implementerar algoritmen SWAP. Ersitt ??? nedan med kod som byter plats pa
véardena i variablerna x och y:

scala> var x = 42; var y = 43

scala> 777
scala> println(s"x ar $x, y ar $y")
X ar 43, y ar 42

Uppgift 9. Indexering och tilldelning i Array med SWAP. Skriv ett program som byter
plats pa forsta och sista elementet i parametern args. Bytet ska bara ske om det ar
minst tva element i args. Oavsett om fordndring skedde eller ej ska args sedan skrivas
ut med blanktecken mellan argumenten. Tips: Du kan komma at sista elementet med
args(args.length - 1)

Exempel pa korning i terminalen:

> code swap-args.scala

> scala run swap-args.scala -- hej alla barn
barn alla hej

Uppgift 10. for-uttryck och map-uttryck. Variabeln xs nedan refererar till samlingen
Vector(1l, 2, 3).Para ihop uttrycken till vinster med ratt viarde till hoger.

86 KAPITEL 2. PROGRAM OCH KONTROLLSTRUKTURER

for x <- xs yield x * 2 1 A | Vector(2, 4, 6)
for i <- xs.indices yield i | 2 B | Vector(1, 2)
Xs.map(x => x + 1) 3 C | Vector(1, 2, 3)
for i <- 0 to 1 yield xs(i) | 4 D | Vector(2, 3, 4)
(1 to 3).map(i => i) 5 E | Vector(o, 1, 2)
(1 until 3).map(i => xs(i)) | 6 F | Vector(2, 3)

Trana med dina egna varianter i REPL tills du lart dig anvidnda uttryck som ovan
utantill. Da har du lattare att komma igdng med kommande laborationer.

Uppgift 11. Algoritm: SUMBUG . Nedan aterfinns pseudo-koden for SUMBUG.

Indata :heltalet n
Utdata:summan av de positiva heltalen 1 till och med n
sum —0
11
while i <n do
‘ sum —sum+1
end
sum

S A WD =

a) Kor algoritmen steg for steg med penna och papper, diar du skriver upp hur
virdena for respektive variabel dndras. Det finns tva buggar i algoritmen. Vilka?
Ratta buggarna och testa igen genom att "kéra” algoritmen med penna pa papper
och kontrollera sa att algoritmen fungerar for n =0, n =1, och n =5. Vad hinder om
n=-1?

b) Skapa med hjilp av en editor filen sumn.scala. Implementera algoritmen SUM
enligt den riattade pseudokoden och placera implementationen i en @main-annoterad
metod med namnet sumn. Du kan skapa indata n till algoritmen med denna deklaration
i bérjan av din metod:

val n = args(0).toInt

eller direkt ha n som parameter till metoden.

Vad ger applikationen for utskrift om du kér den med argumentet 88887

scala sumn.scala -- 8888

Kontrollera att din implementation riaknar rétt genom att jamfora svaret med detta
uttrycks véirde, evaluerat i Scala REPL:

scala> (1 to 8888).sum

2.2. OVNING PROGRAMS 87

2.2.2 Extrauppgifter; trdna mer

Uppgift 12. Algoritm: MAXBUG . Nedan aterfinns pseudo-koden for MAXBUG.

Indata : Array args med strangar som alla innehaller heltal
Utdata:storsta heltalet
max — det minsta heltalet som kan uppkomma
n — antalet heltal
i<—0
while i <n do

x —args(i).tolnt

if (x > max) then

‘ max «—x

end
end
max

© W O WD =

[
=)

a) Kor med penna och papper. Det finns en bugg i algoritmen ovan. Vilken? Ratta
buggen.
b) Implementera algoritmen MAX (utan bugg) som en Scala-applikation. Tips:

¢ Det minsta Int-virdet som nagonsin kan uppkomma: Int.MinValue
¢ Antalet element i args ges av: args.length eller args.size

> code maxn.scala

> scala maxn.scala -- 7 421 -5 9
42

¢) Skriv om algoritmen sa att variabeln max initialiseras med det forsta talet i
sekvensen.

d) Implementera den nya algoritmvarianten fran uppgift ¢ och prova programmet.
Se till att programmet fungerar dven om args ar tom.

Uppgift 13. Algoritm MIN-INDEX. Implementera algoritmen MIN-INDEX som séker
index for minsta heltalet i en sekvens. Pseudokod for algoritmen MIN-INDEX:

Indata :Sekvens xs med n st heltal.
Utdata:Index for det minsta talet eller —1 om xs ar tom.
minPos — 0
11
while i <n do
if xs(i) < xs(minPos) then
‘ minPos —1
end
i—i+1
end
if n >0 then
‘ minPos
else
| -1
end

© ® 9 AW N -

- e e
W N = O

88 KAPITEL 2. PROGRAM OCH KONTROLLSTRUKTURER

a) Prova algoritmen med penna och papper pa sekvensen (1,2,—1,4) och rita minnes-
situationen efter varje runda i loopen. Vad blir skillnaden i exekveringsférloppet om
loopvariablen i initialiserats till O i stéllet for 1?

b) Implementera algoritmen MIN-INDEX i ett Scala-program med nedan funktion:

def indexOfMin(xs: Array[Int]): Int = ??7?

¢ Lat programmet ha en main-funktion som ur args skapar en ny array med heltal
som skickas till index0fMin och sedan goér en utskrift av resultatet.

e Testa for olika fall:

— tom sekvenser
- sekvens med endast ett tal

- lang sekvens med det minsta talet forst, nagonstans mitt i, samt sist.

Uppgift 14. Datastrukturen Range. Evaluera nedan uttryck i Scala REPL. Vad har
respektive uttryck for varde och typ?

a) Range(1l, 10)

b) Range(l, 10).inclusive

¢) Range(0, 50, 5)

d) Range(0, 50, 5).size

e) Range(0, 50, 5).inclusive

f) Range(0, 50, 5).inclusive.size

g) 0.until(10)

h) 0 until (10)

i) 0 until 10

j) 0.to(10)

k) 0 to 10

) 0.until(50).by(5)

m) 0 to 50 by 5
n) (0 to 50 by 5).size
0) (1 to 1000).sum

2.2. OVNING PROGRAMS 89
2.2.3 Foérdjupningsuppagifter; utmaningar

Uppgift 15. Sten-Sax-Pdse-spel. Bygg vidare pa koden nedan och gor ett Sten-Sax-
Pase-spel*. Koden fungerar som den ska, fsrutom funktionen winner som fuskar till
datorns fordel. Lagg dven till en main-funktion sa att programmet kan kompileras och
koras i terminalen. Spelet blir roligare om du raknar antalet vinster och foérluster. Du
kan ocksa gora sa att datorn inte viljer med jadmn fordelning.

object Game:
val choices = Vector("Sten", "Pase", "Sax")

def printChoices(): Unit =
for i <- 1 to choices.size do println(s"$i: ${choices(i - 1)}")

def userChoice(): Int =
printChoices()
scala.io.StdIn.readLine("Vad valjer du? [1|2|3]<ENTER>:").toInt - 1

def computerChoice(): Int = (math.random() * 3).toInt

/**x Ska returnera "Du", "Datorn", eller "Ingen" x/
def winner(user: Int, computer: Int): String = "Datorn"

def play(): Unit =
val u = userChoice()
val c = computerChoice()
println(s"Du valde ${choices(u)}")
println(s"Datorn valde ${choices(c)}")
val w = winner(u, c)
println(s"$w ar vinnare!")
if w == "Ingen" then play()

* Uppgift 16. Jamfor exekveringstiden for storleksforindring mellan Array och Vector.
Klistra in nedan kod i REPL:

def time(block: => Unit): Double =
val t = System.nanoTime
block
(System.nanoTime-t)/1e6 // ger millisekunder

a) Skriv kod som gor detta i tur och ordning:
1. deklarerar en val as som ar en Array fylld med en miljon heltalsnollor,
2. deklarerar en val vs som dr en Vector fylld med en miljon heltalsnollor,
3. kor time(as :+ 0) 10 ganger och ridknar ut medelvardet av tidmétningarna,
4. kor time(vs :+ 0) 10 ganger och riknar ut medelvirdet av tidmétningarna.

b) Vilken av Array och Vector dr snabbast vid tillagg av element? Varfor ar det sa?

4https://sv.wikipedia.org/wiki/Sten, _sax,_p&se

https://sv.wikipedia.org/wiki/Sten,_sax,_p�se

90 KAPITEL 2. PROGRAM OCH KONTROLLSTRUKTURER

Uppgift 17. Minnesdtgdang for Range. Datastrukturen Range héaller reda pa start- *
och slutvarde, samt stegstorleken for en upprikning, men alla talen i upprikningen
genereras inte forran pa begidran. En Int tar 4 bytes i minnet. Ungefir hur mycket
plats i minnet tar de objekt som variablerna (a) intervall respektive (b) sekvens
refererar till nedan?

scala> val intervall = (1 to Int.MaxValue by 2)

scala> val sekvens = intervall.toArray

Tips: Anvand uttrycket BigInt(Int.MaxValue) * 2 idina berdkningar.

Uppgift 18. Undersok den genererade byte-koden. Kompilatorn genererar byte-kod, *
uttalas "bajtkod” (eng. byte code), som den virtuella maskinen tolkar och 6versatter
till maskinkod medan programmet kor.

Skapa en fil plusxy.scala med:

@main def plusxy(x: Int, y: Int) = x + vy

Kompilera programmet med

scala compile plusxy.scala

Navigeramed cd .scala-build/ och vidare ner med 1s och cd sa djupt du kan komma
i katalogstrukturen tills du befinner dig i katalogen main. Notera vilka filer kompila-
torn har skapat med 1s. Med kommandot javap -v 'plusxy$package$.class' kan
du undersoka byte-koden direkt i terminalen.

javap -v 'plusxy$package$.class'

a) Leta upp raden public int plusxy(int, int); och studera koden efter Code:
och forsok gissa vilken instruktion som utfor sjilva additionen.

b) Vad hiander om vi lagger till en parameter?
Skapa en ny fil plusxyz.scala:

@main def plusxyz(x: Int, y: Int, z: Int) =X +y + 2z

Kompilera och studera darefter byte-koden med javap -v 'plusxyz$package$.class'.
Vad skiljer byte-koden mellan plusxy och plusxyz?

¢) Léas om byte-kod hir: en.wikipedia.org/wiki/Java_bytecode. Vad betyder den inle-
dande bokstaven i additionsinstruktionen?

https://en.wikipedia.org/wiki/Java_bytecode

Kapitel 3

Funktioner och abstraktion

Begrepp som ingar i denna veckas studier:

oooooogogog

oogood

abstraktion

funktion

parameter

argument

returtyp

default-argument
namngivna argument
parameterlista
funktionshuvud
funktionskropp

applicera funktion pa alla element
i en samling

uppdelad parameterlista
skapa egen kontrollstruktur
funktionsvarde
funktionstyp

akta funktion

91

Ooooogoooogoo

ooogoo

stegad funktion
apply

anonyma funktioner
lambda

predikat
aktiveringspost
anropsstacken
objektheapen

stack trace
viardeandrop
namnanrop
klammerparentes och kolon vid en-
sam parameter
rekursion
scala.util. Random
slumptalsfro

dod: typsattning

92

3.1
3.1

KAPITEL 3. FUNKTIONER OCH ABSTRAKTION

Teori

1 Vad ar abstraktion?

Abstraktion innebér att skapa en forenklad modell ur konkreta detaljer

Vi ”hittar pd” nya begrepp som ger oss ateranviandbara "byggblock” for vara
tankar och var kommunikation

Vi far ett abstrakt namn som kan anvéndas i stéllet for en massa konkreta
detaljer

Skilj pa abstraktionens namn (begrepp, koncept), dess anvandning (anrop)
och dess detaljerade beskrivning (definition, implementation)

Funktioner (som du redan kidnner fran matematiken) ar en av vara viktigaste
abstraktionsmekanismer

https://sv.wikipedia.org/wiki/Abstraktion https://en.wikipedia.org/wiki/

Abst

raction

3.1.2 Exempel pd abstraktionsmekanismer inom datavetenskapen

Vi kommer att behandla flera olika, alltmer kraftfulla abstraktionsmekanismer i
denna kurs:

Funktioner

Objekt

Klasser

Arv

Generiska strukturer
Kontextuella abstraktioner

Dessa abstraktionsmekanismer blir extra kraftfulla om de kombineras!

3.1.3 Funktion: deklaration och anrop

def funktionsnamn(parameterdeklarationer): returtyp = uttryck

En funktion har ett huvud och efter = kommer dess kropp.

En namngiven funktion deklareras med nyckelordet def

En funktion kan ha parametrar som deklareras i huvudet.
Kroppen ska vara ett uttryck (ev. ett block med flera uttryck).
Parametrar binds till argument vid anrop.

Uttrycket i funktionens kropp evalueras vid varje anrop.
Vardet av uttrycket blir funktionens returvarde.

Exempel:

def

oka(a: Int, b: Int): Int =a + b

scala> oka(42, 1)

val

res0: Int = 43

https://sv.wikipedia.org/wiki/Abstraktion
https://en.wikipedia.org/wiki/Abstraction
https://en.wikipedia.org/wiki/Abstraction

3.1. TEORI 93

3.1.4 Deklarera funktioner, éverlagring

¢ Overlagrade funktioner i samma namnrymd:

© 0 N o U W N

scala> object matte:
def oka(a: Int): Int = a + 1
def oka(a: Int, b: Int): Int =a + b

scala> matte.dka(1l)
val res0: Int = 2

scala> matte.dka(1l, 2)
val resl: Int = 3

Bada funktionerna ovan kan finnas samtidigt! Trots att de har samma namn
ar de olika funktioner; kompilatorn kan skilja dem at med hjélp av de olika
parameterlistorna.

Detta kallas overlagring (eng. overloading) av funktioner.

Overlagring ger flexibilitet i anvindningen; vi slipper hitta pa nytt namn sa
som 6ka2 vid 2 parametrar.

3.1.5 Funktioner med defaultargument

* Vi kan ofta astadkomma samma flexibilitet som vid 6verlagring, men med en

enda funktion, om vi i stillet anvinder defaultargument:

scala> def inc(a: Int, b: Int = 1)

scala> inc(42, 2)
val res0: Int = 44

scala> inc(42, 1)
val resl: Int = 43

scala> inc(42)
val res2: Int = 43

Om ett argument utelamnas och parametern deklarerats med defaultargument
sa appliceras detta. Kompilatorn fyller alltsa i argumentet at oss, om det ar
entydigt vilken parameter som avses.

3.1.6 Funktioner med namngivna argument

* Genom att anvidnda namngivna argument behéver man inte halla reda pa

ordningen pa parametrarna, bara man kénner till parameternamnen.

¢ Namngivna argument gar fint att kombinera med defaultargument.

scala> def namn(

fornamn: String,
efternamn: String,

94 KAPITEL 3. FUNKTIONER OCH ABSTRAKTION

fornamnForst: Boolean = true,
ledtext: String = "Namn:"

: String =

if fornamnForst

then s"$ledtext $fornamn $efternamn"

else s"$ledtext $efternamn, $fornamn"

scala> namn(ledtext = "Name:", efternamn = "Coder", fornamn = "Kim'
val res0: String = Name: Kim Coder

3.1.7 Enhetlig access

¢ Om en funktion deklareras med tom parameterlista () sa ska den anropas
med tom parameterlista. (Undantag: Java-metoder)

scala> def tomParameterlista() = 42

scala> tomParameterlista()
val resl: Int = 42

scala> tomParameterlista
1 |tomParameterlista

|AAAAAAAAAAAAAAAAA

|[method tomParameterlista must be called with () argument

¢ En parameterlos funktion deklarerad utan () ska anropas utan ().

scala> def ingenParameterlista = 42
scala> ingenParameterlista()
1 |ingenParameterlistal()

|AAAAAAAAAAAAAAAAAAA

|[method ingenParameterlista does not take parameters

¢ Deklaration utan () mojliggér enhetlig access: implementationen kan dndras
fran val till def eller tvartom, utan att anvindandet paverkas.

3.1.8 Anropsstacken och objektheapen

Minnet som innehaller ett programs data &ar uppdelat i tva delar:

* Anropsstacken:

- Pa anropsstacken liggs en aktiveringspost (eng. stack frame?, activation
record) for varje funktionsanrop med plats for parametrar och lokala
variabler.

— Aktiveringsposten raderas nir returvirdet har levererats.

- Stacken vaxer vid nistlade funktionsanrop, da en funktion i sin tur
anropar en annan funktion.

1 en.wikipedia.org/wiki/Call_stack

https://en.wikipedia.org/wiki/Call_stack

3.1. TEORI 95

* Objektheapen: I objektheapen?? sparas alla objekt (data) som allokeras under
korning. Heapen stddas da och da av skrapsamlaren (eng. garbage collector),
och minne som inte anvéands ldngre frigors.

3.1.9 Anropsstacken och aktiveringsposter

Nastlade anrop ger viaxande anropsstack. Vid varje anrop allokeras en s.k. aktive-
ringspost (eng. activation record) med plats i minnet for parametrar, lokala variabler
och ev. returvirde. Nar funktionen &r klar sa raderas aktiveringsposten och stacken
krymper.

scala> def h(x: Int, y: Int): Unit { val z = x + y; println(z) }
def g(a: Int, b: Int): Unit {val x=1; h(x +1, a +b) }
def f(): Unit { val n=5; g(n, 2 xn) }

scala> f()

Stacken med 3 aktiveringsposter da f anropar g som anropar h:
’ variabel \ varde \ Anrop av... \

5 f
5 g
10
1
2 h
15
17

=}

N < M| X T o

3.1.10 Vad dr en stack trace?

Nar du letar buggar vid kortidsfel har du nytta av att noga studera utskriften av
anropsstacken (eng. stack trace):

// Program i filen bmi.scala

@main

def bmi(heightCm: Int, weightKg: Int) =
safeDiv(weightKg, heightCm * heightCm)

def safeDiv(numerator: Int, denominator: Int): (Int, String) =

if denominator == 0 then (numerator / denominator, "") // ser du buggen?

else (0, "division by zero")

> scala run bmi.scala -- 0 42

Exception in thread "main" java.lang.ArithmeticException: / by zero
// HAR KOMMER STACK TRACE pga kértidsfel - se ndsta bild

2 en.wikipedia.org/wiki/Memory_management

3Ej att forviaxlas med datastrukturen heap sv.wikipedia.org/wiki/Heap

https://en.wikipedia.org/wiki/Memory_management
https://sv.wikipedia.org/wiki/Heap

96 KAPITEL 3. FUNKTIONER OCH ABSTRAKTION

3.1.11 Hur ldasa en stack trace?

Exception in thread "main" java.lang.ArithmeticException: / by zero
at bmi$package$.safeDiv(bmi.scala:8)

at bmi$package$.bmi(bmi.scala:5)
at bmi.main(bmi.scala:3)

* En stack trace skrivs ut efter en krasch p.g.a. kortidsfel.

¢ Kortidsfel kdnns igen med ordet Exception.

¢ Forst kommer en beskrivning av felet som orsakat kraschen, har:
java.lang.ArithmeticException: / by zero

¢ Direfter visas anropsstacken.

¢ For varje funktionsanrop anges: klass.metod (kodfil: radnummer)

* Main-funktioner laggs i ett singelobjekt i ett speciellt paket

* Singelobjekt i Scala kodas som en Java-klass med dollar-tecken efter namnet,
eftersom det inte finns singelobjekt i JVM.

3.1.12 Lokala funktioner
Med lokala funktioner kan delproblem losas med néstlade abstraktioner.

def gissaTalet(max: Int, min: Int = 1): Unit =
def gissat = io.StdIn.readLine(s"Gissa talet mellan $min och $max: ").toInt

val hemlis = (math.random() * (max - min) + min).toInt
def skriviLedtradOmEjRatt(gissning: Int): Unit =

if gissning > hemlis then println(s"$gissning &r for stort :(")

else if gissning < hemlis then println(s"$gissning ar for litet :(")
def inteRatt(gissning: Int): Boolean =

skrivLedtradOmEjRatt (gissning)

gissning != hemlis

def loop: Int = { var i = 1; while inteRatt(gissat) do i +=1; i }

println(s"Du hittade talet $hemlis pad $loop gissningar :)")

Lokala, nistlade funktionsdeklarationer ar tyvarr inte tilldtna i manga andra
sprak, t.ex. Java.*

4s’cackoverﬂow.com/ques‘cions/5388584/does-java-suppor‘c-inner-local-sub-methods

http://stackoverflow.com/questions/5388584/does-java-support-inner-local-sub-methods

O 00 N O U A W N =

e
= ©

3.1. TEORI 97

3.1.13 Funktioner ar dkta varden i Scala

¢ En funktion ar ett dkta virde.

¢ Vi kan till exempel tilldela en variabel ett funktionsvirde.

¢ Med hjilp enbart funktionsnamnet far vi funktionen som har ett varde (inga
argument har applicerats 4n):

scala> def add(a: Int, b: Int) =a + b

scala> val f = add
val f: (Int, Int) => Int = Lambda7210/0x0000000841e4e040@1ce2db23

scala> f(21, 21)
val res0: Int = 42

¢ Ett funktionsvarde har en typ precis som alla varden:
f: (Int, Int) => Int

¢ Ett funktionsvirde har till skillnad fran en funktionsdeklaration inget namn
(variabeln f har ett namn, men inte sjdalva funktionen). Den kallas darfor en
anonym funktion eller lambda (mer om detta snart).

3.1.14 Funktionsvérden kan vara argument
Funktioner kan ha funktioner som parametrar:

scala> def tvaGanger(x: Int, f: Int => Int) = f(f(x))
scala> def oka(x: Int)

scala> def minska(x: Int)

scala> tvaGanger(42, oka)
val resl: Int = 44

scala> tvaGanger(42, minska)
val resl: Int = 40

En funktion som har funktionsvirden som indata (eller utdata) kallas en
hogre ordningens funktion (eng. higher-order function).

3.1.15 Applicera funktioner pd element i samlingar med map

def oka(x: Int) = x + 1
def minska(x: Int) = x - 1

val xs = Vector(1l, 2, 3)

u A W N P

u A W NP

98 KAPITEL 3. FUNKTIONER OCH ABSTRAKTION

Metoden map fungerar pa alla Scala-samlingar och tar en funktion som argument
och applicerar denna funktion pa alla element och skapar en ny samling med
resultaten:

scala> xs.map(oka)
val res0: ?77? // vad blir resultatet?

scala> xs.map(minska)
val resl: 2?27 // vad blir resultatet?

3.1.16 Applicera funktioner pd element i samlingar med map

def oka(x: Int) = x + 1
def minska(x: Int) = x - 1
val xs = Vector(1l, 2, 3)

Metoden map fungerar pa alla Scala-samlingar och tar en funktion som argument
och applicerar denna funktion pa alla element och skapar en ny samling med
resultaten:

scala> xs.map(oka)
val res0: scala.collection.immutable.Vector[Int] Vector(2, 3, 4)

scala> xs.map(minska)
val resl: scala.collection.immutable.Vector[Int] Vector(0, 1, 2)

Metoden map &r en smidig och ofta anvind hogre ordningens funktion.

3.1.17 Akta funktioner

¢ En dkta (eng. pure) funktion ar en funktion som ger ett resultat som enbart
beror av dess argument. Alltsa som funktioner i matematiken.

* En dkta (matematisk) funktion ar referentiellt transparent (eng. referenti-
ally transparent). Det innebéir att varje anrop kan bytas ut mot virdet av
funktionskroppen dir parametrarna ersatts med motsvarande argument fore
evaluering.

¢ En dkta funktion har inga sidoeffekter, t.ex. utskrift, skriva/liasa filer, eller
uppdateringar av variabler synliga utanfér funktionen.

¢ Exempel:

def add(x: Int, y: Int): Int = x + vy // akta funktion
def rnd(n: Int): Int = (math.random() * n).toInt // oakta funktion

— Uttrycket add (41, 1) kan ersidttas med 41 +1 som i sin tur kan ersittas
med 42 utan att det paverkar resultatet. Resultatet av add (41, 1) blir
samma varje gang funktionen appliceras med dessa argument

3.1. TEORI 99

— Uttrycket rnd(42) kan inte bytas ut mot ett specifikt virde.
Alltsa: ej referentiellt transparent.

3.1.18 Exempel pd odkta funktioner: slumptal

¢ Funktioner vars viarden pa nagot sitt beror av slumpen &r inte dkta funktioner.

* Aven om samma argument ges vid upprepad applicering, sa kan ju resultatet bli
olika.

¢ Studera dokumentationen for scala.util.Random har:
https://www.scala-lang.org/api/current/scala/util/Random.html

¢ Du har nytta av funktionen Random.nextInt och slumptalsfré (eng. random
seed) 1 veckans uppgifter.

3.1.19 Slumptalsfré: fd samma slumptal varje géing

¢ Om man anvander slumptal kan det vara svart att leta buggar, eftersom det
blir olika varje gang man kor programmet och buggen kanske bara uppstar
ibland.

* Med klassen scala.util.Random kan man skapa pseudo-slumptalssekvenser.

* Om man ger ett s.k. fro (eng. seed), av heltalstyp, som argument till konstruktorn
nir man skapar en instans av klassen scala.util.Random, fir man samma
“slumpméssiga” sekvens varje gang man kér programmet.

val seed = 42
val rnd = util.Random(seed) // skapa ny slumpgenerator med fro 42
val r = rnd.nextInt(6) // nagot av heltalen 0, 1, 2, 3, 4, 5

* Om man inte ger ett fro sa sitts froet till “a value very likely to be distinct from
any other invocation of this constructor”. Da vet vi inte vilket froet blir och det
blir olika varje gang man kor programmet.

val rnd = util.Random() // OLIKA frdé vid varje programkérning
val r = rnd.nextInt(6)

3.1.20 Anonyma funktioner

* Man behover inte ge funktioner namn. De kan i stillet skapas med hjalp av
funktionslitteraler.?
¢ En funktionslitteral har ...

1. en parameterlista (utan funktionsnamn, utan returtyp),

5Aven kallat ”lambda-virde” eller bara ”lambda” efter den sk. lambdakalkylen.
en.wikipedia.org/wiki/Anonymous_function

https://www.scala-lang.org/api/current/scala/util/Random.html
https://en.wikipedia.org/wiki/Anonymous_function

100 KAPITEL 3. FUNKTIONER OCH ABSTRAKTION

2. sedan den reserverade teckenkombinationen =>
3. och sedan ett uttryck (eller ett block).

¢ Exempel:

(x: Int, y: Int) => x + vy

Vilken typ har denna funktionslitteral? (Int, Int) => Int
¢ Om kompilatorn kan gissa typerna fran sammanhanget sa behéver parameter-
typerna inte anges i sjalva funktionslitteralen:

val f: (Int, Int) => Int = (X, y) => X + Yy

3.1.21 Applicera anonyma funktioner pé& element i samlingar

Anonym funktion skapad med funktionslitteral direkt i anropet:

scala> val xs = Vector(1l, 2, 3)

scala> xs.map((x: Int) => x + 1)
res@: scala.collection.immutable.Vector[Int] = Vector(2, 3, 4)

Eftersom kompilatorn hir kan hérleda typen Int sa beh6vs den inte:

scala> xs.map(x => x + 1)
resl: scala.collection.immutable.Vector[Int] = Vector(2, 3, 4)

Om man bara anvinder parametern en enda gang i funktionen sa kan man byta ut
parameternamnet mot ett understreck.

scala> xs.map(_ + 1)

res2: scala.collection.immutable.Vector[Int] = Vector(2, 3, 4)

3.1.22 Platshdllarsyntax fér anonyma funktioner

Understreck i funktionslitteraler kallas platshallare (eng. placeholder) och medger
ett forkortat skrivsitt om den parameter som understrecket representerar anviands
endast en gang.

_+1

Ovan expanderas av kompilatorn till féljande funktionslitteral

(dar namnet pa parametern dr godtyckligt):

X =X+ 1

Det kan féorekomma flera understreck; det forsta avser forsta parametern, det andra

avser andra parametern etc.

+

O 00 N O U A~ W N =

e I el el
U A W N R

3.1. TEORI 101

... expanderas till:

(x, y) =>x+y

3.1.23 Exempel pd platshdllarsyntax med reduceLeft

Metoden reducelLeft applicerar en funktion pa de tva forsta elementen i en sekvens
och tar sedan resultatet som férsta argument och nista element som andra argument
och upprepar detta genom hela samlingen.

scala> def summa(x: Int, y: Int) = x + y
scala> val xs = Vector(1l, 2, 3, 4, 5)

scala> xs.reducelLeft(summa)
res20: Int = 15

scala> xs.reduceLeft((x, y) => x + y)

res2l: Int = 15

scala> xs.reducelLeft(_ + _)
res22: Int = 15

scala> xs.reducelLeft(_ * _)
res23: Int = 120

3.1.24 Predikat, med och utan namn

* En funktion som har Boolean som returtyp kallas for ett predikat.
¢ Exempel:

def isToolLong(name: String): Boolean = name.length > 10

def isTall(heightInMeters: Double, limit: Double = 1.78): Boolean
heightInMeters > limit

* Predikat ges ofta ett namn som bérjar pa is eller has sa att man latt kan se att
det dr ett predikat nidr man ldaser kod som anropar funktionen.

* Manga av samlingsmetoderna i Scalas standardbibliotek tar predikat som funk-
tionsargument. Exempel med predikat som anonym funktion:

scala> val parts = Vector(3, 1, 0, 5).partition(_ > 1)
val parts: (Vector[Int], Vector[Int]) =

(Vector(3, 5),Vector(1l, 0))

* Studera snabbreferensen och forsok hitta samlingsmetoder som tar predikat
som funktionsargument. https://fileadmin.cs.lth.se/pgk/quickref.pdf
I anropsexempel med predikat-argument anvéinds bokstaven p.

https://fileadmin.cs.lth.se/pgk/quickref.pdf

102 KAPITEL 3. FUNKTIONER OCH ABSTRAKTION

3.1.25 Funktionsvdérde vid fom parametetlista: anvéand "thunk”

* Vi har tidigare sett:
Vill du ha funktionen som virde — skriv bara namnet och inte parameterlistan:

scala> val f = add // inget anrop av add sker

val f: (Int, Int) => Int = Lambda7210/0x0000000841e4e040@1lce2db23

¢ MEN: Vid tom parameterlista behovs anonym funktion som féordrojer anrop
for att fa motsvarande funktionsvéirde:

scala> def a() = 42

scala> val b = a
1 |val b = a
| ~

| method a must be called with () argument

scala> val b = () => a() // anonym funktion, fordréjd evaluering
val b: () == Int = Lambda7214/0x0000000841e50440@565d794

* Notera typen: () => Int Ett sadant funktionsvirde kallas thunk
https://en.wikipedia.org/wiki/Thunk
¢ Forslag pa svenskt namn: tank (eftersom thunk ar en ordvits pa think = tank)

3.1.26 Hur fungerar egentligen upprepa i Kojo?

upprepa(10) {
println("hej")
}

Vi ska nu se hur vi, genom att kombinera ett antal koncept, kan skapa egna
kontrollstrukturer likt upprepa ovan:

¢ klammerparentes vid ensam paramenter
¢ multipla parameterlistor
¢ namnanrop (fordrojd evaluering)

3.1.27 Multipla parameterlistor

Vi har tidigare sett att man kan ha mer &n en parameter:

scala> def add(a: Int, b: Int) = a + b

scala> add (21, 21)
res0: Int = 42

Man kan 4ven ha mer 4n en parameterlista:

https://en.wikipedia.org/wiki/Thunk

3.1. TEORI 103

scala> def add(a: Int)(b: Int) =a + b

scala> add(21) (21)
resl: Int = 42

(eng. multiple parameter lists)
docs.scala-lang.org/style/declarations.html#multiple-parameter-lists

3.1.28 Vardeanrop och namnanrop

Det vi sett hittills &r vardeanrop: argumentet evalueras forst innan dess varde
sedan appliceras:

scala> def byValue(n: Int): Unit = for i <- 1 to n do print(+ n)

scala> byValue(21 + 21)
42 42

scala> byValue({print(" hej"); 21 + 21})
hej 42 4

N O U W N

Men man kan med => fére parametertypen dstadkomma namnanrop: argumentet
”klistras in” i stillet for namnet och evalueras varje gang (kallas dven fordrojd
evaluering):

scala> def byName(n: => Int): Unit = for i <- 1 to n do print(" " + n)

scala> byName({print(" hej"); 21 + 21})
hej hej 42 hej 42 hej 42 hej 42 hej 42 hej 42 hej 42 hej 42 hej 42 hej 42 hej

Kluring: Varfor skrivs "hej” ut en extra gang i borjan? ledtrad: 1 to n

3.1.29 Klammerparenteser vid ensam parameter
Sa héar har vi sett nyss att man man gora:

scala> def twice(action: => Unit): Unit = { action; action }

scala> twice({ print("hej"); print("san ") })
hejsan hejsan

Det ser ritt klyddigt ut med ({ och }) eller vad tycker du? Men... For alla funktio-
ner f galler att:
det ar helt ok att byta ut vanliga parenteser: f(uttryck)
mot krullparenteser: f{uttryck}
om parameterlistan har exakt en parameter.

Man kan alltsa skippa yttre parentesparet for battre lasbarhet:

scala> twice { print("hej"); print("san ") }

http://docs.scala-lang.org/style/declarations.html#multiple-parameter-lists

104 KAPITEL 3. FUNKTIONER OCH ABSTRAKTION

3.1.30 Skapa din egen kontrollstruktur

¢ Genom att kombinera multipla parameterlistor med namnanrop med
klammerparentes vid ensam parameter kan vi skapa var egen kontroll-
struktur: upprepa

upprepa(42){
if math.random() < 0.5 then print(" gurka")
else print(" tomat")

}

Hur da? Till exempel sa hér:

def upprepa(n: Int)(block: => Unit) = for i <- 0 until n do block

gurka gurka gurka tomat tomat gurka gurka gurka gurka tomat tomat tomat t

3.1.31 Kolon vid ensam parameter

Du kan i Scala 3 i stallet for klammerparentes vid ensam parameter anvinda kolon
for att fa farre "krullisar” (eng. fewer braces).

upprepa(42):
if math.random() < 0.5
then print(" gurka")
else print(" tomat")

Denna forenklade syntax foregicks av langa diskussioner innan den till slut acceptera-
des.®

3.1.32 Stegade funktioner, ”Curry-funktioner”

Om en funktion har multipla parameterlistor kan man skapa stegade funktioner,
aven kallat partiellt applicerade funktioner (eng. partially applied functions) eller
?Curry”-funktioner.

scala> def add(x: Int)(y: Int) = x + vy

scala> val o6ka = add(1)
val Oka: Int => Int = Lambda7339/0x0000000841eb7040@19c8add7

scala> Vector(1,2,3).map(6ka)
val res0: Vector[Int] = Vector(2, 3, 4)

scala> Vector(1,2,3).map(add(2))
val resl: Vector[Int] = Vector(3, 4, 5)

8Den nyfikne kan ldsa forslaget fore omréstning hér:
https://docs.scala-lang.org/sips/fewer-braces.html

https://docs.scala-lang.org/sips/fewer-braces.html

3.1. TEORI 105

3.1.33 Funktion med fangad variabelrymd: closure

def f(x: Int): Int => Int =
val a = 42 + X
def g(y: Int): Int =y + a
g

Funktionen g fangar den lokala variabeln a i ett funktionsobjekt.

scala> val funkis = f(1)
val funkis: Int => Int = Lambda7356/0x0000000841ed2840@1lbda26bc

scala> funkis(2)
val res0: Int = 45

Ett funktionsobjekt med "fangade” variabler kallas closure.
(Mer om funktioner som objekt senare.)

3.1.34 Rekursiva funktioner
* Funktioner som anropar sig sjalv kallas rekursiva.

scala> def fakultet(n: Int): Int =
if n < 2 then 1 else n x fakultet(n - 1)

scala> fakultet(5)
val res0: Int = 120

¢ For varje nytt anrop l4ggs en ny aktiveringspost pa stacken.

¢ T aktiveringsposten sparas varje returvirde som goér att5 * (4 * (3 * (2 * 1)))
kan beriknas.

¢ Rekursionen avbryts nidr man nar basfallet, harn < 2

¢ En rekursiv funktion maste ha en returtyp.

3.1.35 Loopa med rekursion

def gissaTalet(max: Int, min: Int = 1): Unit =
def gissat =
i0.StdIn.readLine(s"Gissa talet mellan [$min, $max]: ").tolInt

val hemlis = (math.random() * (max - min) + min).toInt

def skrivLedtradOmEjRatt(gissning: Int): Unit =
if gissning > hemlis then println(s"$gissning ar for stort : (")
else if (gissning < hemlis) println(s"$gissning ar for litet : (")

def arRatt(gissning: Int): Boolean =
skrivLedtradOmEjRatt (gissning)
gissning == hemlis

106 KAPITEL 3. FUNKTIONER OCH ABSTRAKTION

def loop(n: Int = 1): Int = if arRatt(gissat) then n else loop(n + 1)

println(s"Du hittade talet $hemlis pd ${loop()} gissningar :)")

3.1.36 Rekursiva datastrukturer

¢ Datastrukturena Lista och Trad ar exempel pa datastrukturer som passar bra
ihop med rekursion.
* Bada dessa datastrukturer kan beskrivas rekursivt:

— En lista bestar av ett huvud och en lista, som 1 sin tur bestar av ett huvud
och en lista, som i sin tur...

— Ett trad bestar av grenar till trad som i sin tur bestar av grenar till trad
som i sin tur, ...

* Dessa datastrukturer bearbetas med fordel med rekursiva algoritmer.

¢] denna kursen ingar rekursion endast "for kinnedom”:
du ska veta vad det a4r och kunna skapa en enkel rekursiv funktion, t.ex.
fakultets-berdkning. Du kommer jobba mer med rekursion och rekursiva data-
strukturer i fortsdttningskursen.

3.1.37 Kompilera om det som &ndrats vid varje sparning

* Den kreativa programmeringsprocessen innehaller ménga korta cykler av koda,
dndra, testa.

¢ Vid varje liten dndring vill man kompilera om det som #ndrats och se om
det fortfarande kompilerar utan fel.

¢ Detta gors automatiskt i vscode och du far réda understrykningar vid fel.

¢ Men du kan ocksé anvinda terminalen:
scala compile . --watch
Andringar bevakas och du kan tydligt se ev. felmeddelande i en kompilator-
utskrift som sker forst nir du sparar din dndring med Ctrl+S.

¢ Du slipper felmeddelande som beror pa att du d4nnu inte skrivit klart...

3.2. OVNING FUNCTIONS 107

3.2 Ovning functions

[0 Kunna skapa och anvanda funktioner med en eller flera parametrar, default-
argument, och namngivna argument.

[0 Kunna férklara nastlade funktionsanrop med aktiveringsposter pa stacken.

[J Kunna forklara skillnaden mellan dkta och "oékta” funktioner.

[0 Kunna applicera en funktion pa alla element i en samling.

[0 Kunna anvinda funktioner som &kta vérden.

[0 Kunna skapa och anvinda anonyma funktioner (4.k. lambda-funktioner).

[0 Kénna till att funktioner kan ha uppdelad parameterlista.

[0 Kénna till att det gar att partiellt applicera argument pa funktioner med uppde-
lad parameterlista for att skapa s.k. stegade funktioner (4.k. curry-funktioner).

[] Kénna till rekursion och kunna beskriva vad som kannetecknar en rekursiv
funktion.

[] Kéanna till att det gar att skapa egna kontrollstrukturer med hjilp av namnan-
rop.

[0 Kéinna till skillnaden mellan vardeanrop och namnanrop.

[J Kunna tolka en stack trace.

Forberedelser

[0 Studera begreppen i kapitel 3

3.2.1 Grunduppgifter; forberedelse infér laboration

Uppgift 1. Para ihop begrepp med beskrivning. Koppla varje begrepp med den (for-
enklade) beskrivning som passar bést:

funktionshuvud 1 A | beskriver namn och typ pa parametrar
funktionskropp 2 B | argumentet evalueras innan anrop

parameterlista 3 C | har parameterlista och eventuellt en returtyp

block 4 D | fordr6jd evaluering av argument

namngivna argument | 5 E | funktion utan namn; kallas dven lambda
defaultargument 6 F | applicerar en funktion pa varje element i en samling
vardeanrop 7 G | en funktion som ger ett booleskt varde

namnanrop 8 H | gor att argument kan ges i valfri ordning

map 9 I | ger alltid samma resultat om samma argument
dkta funktion 10 J | lista anropskedja vid kortidsfel

predikat 11 K | en funktion som anropar sig sjalv

slumptalsfro 12 L | gor att argument kan utelimnas

anonym funktion 13 M | ger aterupprepningsbar sekvens av pseudoslumptal
rekursiv funktion 14 N | koden som exekveras vid funktionsanrop

stack trace 15 O | kan ha lokala namn; sista raden ger virdet

Uppgift 2. Definiera och anropa funktioner. En funktion med en parameter definieras
med foljande syntax i Scala:

© 00 1O U W N

N DD DNDNDNDNDDNDDNDNDDNRKEREFRERKRKMEKEJEBRFzRFR 3 <4
© 00 30 U WNHOWOW=-1OO0U bk WNhHO

108 KAPITEL 3. FUNKTIONER OCH ABSTRAKTION

def namn(parameter: Typ = defaultArgument): Returtyp = returvéarde

a) Definiera funktionen 6ka som har en heltalsparameter x och vars returvirde ar
argumentet plus 1. Defaultargument ska vara 1. Ange returtypen explicit.

b) Vad har uttrycket dka(odka(6ka(6ka()))) for varde?

c¢) Definiera funktionen minska som har en heltalsparameter x och vars returvirde
ar argumentet minus 1. Defaultargument ska vara 1. Ange returtypen explicit.

d) Vad ar virdet av uttrycket 6ka(minska(6ka(6ka(minska(minska())))))

e) Vad ar det for skillnad mellan parameter och argument?

Uppgift 3. Implementera funktion pd olika sdtt. Skapa en funktion som kan summera
de forsta n positiva heltalen.

a) Skriv forst funktionshuvudet med ??? som funktionskropp. Ge funktionen ett bra
namn. Ange returtyp. Kontrollera att din funktion kompilerar utan kompileringsfel
innan du gar vidare.

b) Implementera funktionen med hjilp av ett intervall och metoden sum. Testa sa
att funktionen fungerar. Vad hinder om du ger ett negativt argument?

¢) Implementera funktionen med hjilp av while-do. Vad hénder om du ger ett
negativt argument?

Uppgift 4. Textspelet AliensOnEarth. Ladda ner spelet nedan 7 och studera koden.

object AliensOnEarth:
def readChoice(msg: String, options: Vector[String]): String =
options.indices.foreach(i => println(s"$i: ${options(i)}"))
val selected = scala.io.StdIn.readLine(msg).toInt
options(selected)

def isAnswerYes(msg: String): Boolean =
scala.io.StdIn.readLine(s"$msg (Y/n)").toLowerCase.startsWith("y")

def randomChoice(options: Vector[String]): String =
val selected = scala.util.Random.nextInt(options.size)
options(selected)

def playGame(alien: String, maxPoints: Int = 1000): Int =
val xs = Vector("penguin", "window", "apple")
val correct = if math.random() < 0.5 then xs(0) else randomChoice(xs)
val cheatCode = (xs.indexOf(correct) + 1) * math.Pi
println(s"""|Hello $alien!
|You are an alien on Earth.
|Your encrypted password is $cheatCode.

|You see three strange Earth objects.""".stripMargin)
val choice = readChoice(s"$alien wants? ", Xs)
if choice == correct then maxPoints else 0

def main(args: Array[String]): Unit =
try
val name = if args.size > 0 then args(0) else "Captain Zoom"
val points = playGame(alien = name)
if points > 0 then println(s"Congratulations $name! :)")

7https://raw.githubusercontent.com/lunduniversity/introprog/master/compendium/
examples/AliensOnEarth.scala

https://raw.githubusercontent.com/lunduniversity/introprog/master/compendium/examples/AliensOnEarth.scala
https://raw.githubusercontent.com/lunduniversity/introprog/master/compendium/examples/AliensOnEarth.scala

3.2. OVNING FUNCTIONS 109

30 println(s"You got $points points.")

31 catch case e: Exception =>

32 println(s"Game over. The Earth was hit by an asteroid. : (")
33 if isAnswerYes("Do you want to trace the asteroid?") then
34 e.printStackTrace()

a) Medan du laser koden, forsok lista ut vilket som &r bésta strategin for att fa sa
mycket poang som mojligt. Kompilera och kor spelet i terminalen med ditt favoritnamn
som argument. Vilket av de tre objekten pa planeten jorden har stérst sannolikhet att
vara béasta alternativet?

b) Para ihop kodsnuttarna nedan med bésta beskrivningen.®

options.indices A | gor om en striang till sma bokstéaver

"1X2".toLowercase heltalssekvens med alla index i en sekvens
Random.nextInt(n)

try { } catch { }

slumptal i intervallet @ until n
tar bort marginal till och med vertikalstreck
fangar undantag for att forhindra krasch

s.stripMargin striang som kan stricka sig over flera kodrader

PSS I N
QO HHOOQW®W

e.printStackTrace skriver ut information om ett undantag

Tips: Med hjalp av REPL kan du ta reda pa hur olika delar fungerar, t.ex.:

scala> val xs = Vector("p", "w", "a")
scala> xs.indices
scala> xs.indices.foreach(i => println(i))

scala> xs.indexOf("w")

scala> xs.indexOf("gurka")

scala> Vector("hej", "hejsan", "hej").indexOf("hej")
scala> try 1 / 0 catch case e: Exception => println(e)

N O U W N

Tips infor fortsdttningen:

¢ Nir jag hittade pa AliensOnEarth borjade jag med ett mycket litet program med
en enkel main-funktion som bara skrev ut nagot kul. Sedan byggde jag vidare pa
programmet steg for steg och kompilerade och testade efter varje liten dndring.

* Nir jag kodar har jag REPL igang i ett eget terminalfonster och min kodeditor
i ett annat fonster. I ett tredje fonster har jag en terminal med kompilering i
watch mode, se appendix ??. Fraga en handledare om hur du kan arbeta effektivt
med stegvisa experimentering i REPL for att bygga upp ett allt stérre program i
sma steg.

* Detta arbetssétt tar ett tag att komma in i, men &r ett bra sitt att uppfinna
allt storre och béattre program. Ett stort program byggs ldattast i sméa steg och
felsokning blir mycket l4ttare om man bara gor sma tillagg at gangen.

* Du far ocksa det mycket lattare att forsta ditt program om du delar upp koden
i manga korta funktioner med bra namn. Du kan sedan lattare hitta p4 mer
avancerade funktioner genom att ateranvinda befintliga.

* Under veckans laboration ska du utveckla ditt eget textspel. Da har du nytta av
att ateranvidnda funktionerna for indata och slumpdragning fran exempelpro-
grammet AliensOnEarth.

8Gér sé gott du kan dven om allt inte &r solklart. Vissa saker kommer vi att ga igenom i detalj forst
under senare kursmoduler.

110 KAPITEL 3. FUNKTIONER OCH ABSTRAKTION

Uppgift 5. Akta funktioner. En dkta funktion® (eng. pure function) ger alltid samma
resultat med samma argument (sa som vi 4r vana vid inom matematiken) och har
inga externt observerbara sidoeffekter (till exempel utskrifter).

Vilka funktioner nedan ir dkta funktioner?

var x = 0
val y

def inc(i: Int) =i + 1

def néff(i: Int)

X =X+ 1

"noff " x x
end noff
def addX(i: Int) = x + 1
def addY(i: Int) =y + 1

S == Ss.reverse

def isPalindrome(s: String)

def rnd(min: Int, max: Int) math.random() *x max + min

Tips: Skriv av och testa funktionerna i REPL en och en, sa att du forstar exakt vad
som hénder.

Uppgift 6. Applicera funktion pd varje element i en samling. Funktion som argument.
Deklarera funktionen dka och variabeln xs enligt nedan i REPL:

scala> def Ooka(x: Int) = x + 1

scala> val xs = Vector(3, 4, 5)

Para ihop nedan uttryck till vinster med det uttryck till hoger som har samma vérde.
Om du undrar nagot, testa uttrycken och olika varianter av dem i REPL.

for i <- 1 to 3 yield dka(i) 1 A | xs
Vector(2, 3, 4).map(i => oka(i)) | 2 B | Vector(4, 5, 6)
xs.map (6ka) 3 C| ()
xs.map(o6ka) .map(6ka) 4 D | Vector(5, 6, 7)
xs.foreach(6ka) 5 E | Vector(2, 3, 4)

Uppgift 7. Anonyma funktioner. Vi har flera ganger sett syntaxen 1 => i + 1, till
exempelienloop (1 to 10).map(i => i + 1) dérfunktioneni => i + 1 appliceras
pa alla heltal fran 1 till och med 10 och resultatet blir en ny sekvenssamling.

Syntaxen (i: Int) => i + 1arenlitteral for att skapa ett funktionsvdarde (kallas
aven anonym funktion eller lambda-uttryck). Syntaxen liknar den for funktionsdekla-
rationer, men nyckelordet def saknas i funktionshuvudet och i stéllet for likhetstecken
anvands => for att avskilja parameterlistan fran funktionskroppen. Om kompilatorn
kan hirleda typen ur sammanhanget kan kortformen i => i + 1 anvéndas.

9 Akta funktioner uppfyller per definition referentiell transparens (eng. referential transparency) som
du kan ldsa mer om har: simple.wikipedia.org/wiki/Referential_transparency

https://simple.wikipedia.org/wiki/Referential_transparency

3.2. OVNING FUNCTIONS 111

Det finns ett dnnu kortare satt att skriva en anonym funktion om typen kan hérle-
das och den bara anvinder sin parameter en enda gang; da gar funktionslitteraler att
skriva med s.k. platshdllarsyntax som anvinder understreck, till exempel _ + 1 och
som automatiskt expanderas av kompilatorn till ngtnamn => ngtnamn + 1 (namnet
pa parametern spelar ingen roll; kompilatorn valjer nagot eget, internt namn).

Para ihop uttryck till vinster med uttryck till héger som har samma vérde:

A | Vector(9.0, 16.0, 25.0)
(2 to 4).map(i =>1i - 1)
Vector(2.0, 2.5, 3.0)
Vector(2, 3, 4)
Vector(4.0, 8.0, 16.0)

(0 to 2).map(i =>1i + 1)

(1 to 3).map(_ + 1)

(2 to 4).map(math.pow(2, _))

(3 to 5).map(math.pow(_, 2))

(4 to 6).map(_.toDouble).map(_ / 2)

Ot & W N -

H O aw

Funktionslitteraler kallas anonyma funktioner, eftersom de inte har nagot namn, till
skillnad fran t.ex. def O6ka(i: Int): Int = i + 1, som ju heter dka. Ett annat van-
ligt namn ar lambda-uttryck efter det datalogiska matematikverktyget lambdakalkyl.

Uppgift 8. Skapa din egen kontrollstruktur med hjilp av namnanrop. Namnanrop
skrivs med en raket efter kolon fore parametertypen och innebéar att argumentet
evalueras pa plats varje gang.

a) Anvind namnanrop i kombination med en uppdelad parameterlista och skapa din
egen kontrollstruktur enligt nedan.'®

def upprepa(n: Int)(block: => Unit): Unit =
var i = 0
while i < n do
?777?

end while

b) Testa din kontrollstruktur i REPL. Lat upprepa 100 ganger att ett slumptal mellan
1 och 6 dras och sedan skrivs ut. Prova dven att anvidnda fiarre klammerparenteser
med hjalp av kolon.

¢) Varfor beh6vs namnanrop héar?

Uppgift 9. Lar dig ldsa en stack trace. Skriv ett program i filen fel.scala som orsakar
ett kortidsfel och kor igang det i terminalen med scala run fel.scala. Studera den
stack trace som skrivs ut. Vad innehéaller en stack trace? Diskutera med handledare
hur du kan ha nytta av en stack trace nar du felséker.

3.2.2 Extrauppgifter; trdna mer

Uppgift 10. Funktion med flera parametrar.

a) Definiera i REPL tva funktioner sum och diff med tva heltalsparametrar som
returnerar summan respektive differensen av argumenten:

def sum(x: Int, y: Int): Int = ?7?7

def diff(x: Int, y: Int): Int = 277

10Det 4r sa loopen upprepa i Kojo ar definierad.

https://sv.wikipedia.org/wiki/Lambdakalkyl

112 KAPITEL 3. FUNKTIONER OCH ABSTRAKTION

Vad har nedan uttryck for virden? Forklara vad som hénder.
b) diff(e, 100)

c) diff(100, sum(42, 43))

d) sum(sum(42, 43), diff(100, sum(0, 0)))

e) sum(diff(Byte.MaxValue, Byte.MinValue), 1)

Uppgift 11. Medelvdrde. Skriv och testa en funktion avg som riknar ut medelvardet
mellan tva heltal och returnerar en Double.

Uppgift 12. Funktionsanrop med namngivna argument.

scala> def skrivNamn(efternamn: String, férnamn: String) =
println(s"Namn: $efternamn, $fornamn")

scala> skrivNamn(férnamn = "Stina", efternamn = "Triangelsson")

o U~ W N =

scala> skrivNamn(efternamn = "Oval", "Viktor")

a) Vad skrivs ut efter rad 3 resp. rad 4 ovan?

b) Niamn tre fordelar med namngivna argument.

Uppgift 13. Funktion som dkta virde. Funktioner ar akta vdirden i Scala. Det betyder
att variabler kan ha funktioner som varden och funktionsviarden kan vara argument
till funktioner som har funktionsparametrar. Funktioner som tar funktioner som
argument kallas hogre ordningens funktioner.

En funktion som har en heltalsparameter och ett heltalsresultat dr av funktionsty-
pen Int => Int (uttalas int-till-int) och virdet av funktionen utgér ett objekt som har
en metod som heter apply med motsvarande funktionstyp.

a) Deklarera nedan funktioner och variabler i REPL. Para sedan ihop nedan uttryck
till vanster med det uttryck till hoger som skapar samma utskrift. Om du undrar
nagot, testa uttrycken och olika varianter av dem i REPL.

scala> def halsa(): Unit = println("Hej!")
scala> def fleraAnrop(antal: Int, f: () => Unit): Unit =
for _ <- 1 to antal do f()

scala> val fl = () => halsa()
scala> var f2 = (s: String) => println(s)
scala> val f3 () = f2("Thunk")

fleraAnrop(1l, halsa) 1 A f2("Hej!'\nHej!")
fleraAnrop(3, halsa) 2 B fleraAnrop(3, f1)
fleraAnrop(2, f1) 3 C 3()
fleraAnrop(l, f3) 4 D f2("Hej!")

b) Vilka typer har variablerna f1, f2 och f3?
¢) Funkar detta? Varfor? f2 = f1
d) Funkar detta? Varfor? val f4
e) Funkar detta? Varfor? val f4 = halsa

f) Funkar detta? Varfor? val f4: () => Unit = halsa

fleraAnrop

3.2. OVNING FUNCTIONS 113

Uppgift 14. Bortkastade resultatvirden och returtypen Unit. Undersok nedan kod i
REPL och forklara vad som héinder.

a)

scala> def tom = println("")

scala> println(tom)

b)

[

scala> def bortkastad: Unit =1 + 1
scala> println(bortkastad)

c)

scala> def bortkastad2 = { val x =1+ 1 }
scala> println(bortkastad2)

d) Varfor éar det bra att explicit ange Unit som returtyp for procedurer?

Uppgift 15. Namnanrop.
Deklarera denna procedur i REPL:

def gérDettaTvaGanger(b: => Unit): Unit = { b; b }

Anropa gorDettaTvaGanger med ett block som parameter. Blocket ska innehalla
en utskriftssats. Forklara vad som hénder.

114 KAPITEL 3. FUNKTIONER OCH ABSTRAKTION
3.2.3 Foérdjupningsuppgifter; utmaningar

Uppgift 16. Fordnderlighet av parametrar. Vad tror du om detta: Ar en parameter
forandringsbar i funktionskroppen ...

a) ...1Scala? (Ja/Nej)

b) ...idava? (Ja/Nej)

¢) ...1iPython? (Ja/Nej)

Uppgift 17. Virdeanrop och namnanrop. Normalt sker i Scala (och i Java) s.k. virde-
anrop vid anrop av funktioner, vilket innebéar att argumentuttrycket evalueras fore
bindningen till parameternamnet sker.

Man kan ocksé i Scala (men inte i Java) med syntaxen => framfor parametertypen
deklarera att namnanrop ska ske, vilket innebér att evalueringen av argumentuttryc-
ket fordraojs och sker varje gang namnet anviands i metodkroppen.

Deklarera nedan funktioner i REPL.

def snark: Int = { print("snark "); Thread.sleep(1000); 42 }
def callByValue(x: Int): Int = x + x

def callByName(x: => Int): Int = x + X

lazy val zzz = snark

Forklara vad som hénder nir nedan uttryck evalueras.

a) snark + snark

b) callByValue(snark)
¢) callByName(snark)
d) callByName(zzz)

Uppgift 18. Skapa egen kontrollstruktur for iteration med loop-variabel.

a) Fordelen med upprepa i uppgift 7 ar att den ar koncis och ldttanvand. Men den ar
inte lika l4tt att anvdnda om man behover tillgang till en loopvariabel. Implementera
darfor nedan kontrollstruktur.

def repeat(n: Int)(p: Int => Unit): Unit =

var i = 0
while i < n do
?7?7?

b) Anvind repeat for att 100 ganger skriva ut loopvariabeln och ett slumpdecimaltal
mellan 0 och 1.

Uppgift 19. Uppdelad parameterlista och stegade funktioner. Man kan dela upp
parametrarna till en funktion i flera parameterlistor. Funktionen add1l nedan har
en parameterlista med tva parametrar medan add2 har tva parameterlistor med en
parameter vardera:

def addl(a: Int, b: Int) =
def add2(a: Int)(b: Int) =

| |
Q
T T

a) Nar man anropar funktionen add2 ska argumenten skrivas inom tvéa olika paren-
tespar. Hur kan du anvinda add2 for att raknaut 1 + 1?

3.2. OVNING FUNCTIONS 115

b) En fordel med uppdelade parameterlistor dr att man kan skapa s.k. stegade funk-
tioner'! dir argumenten #r partiellt applicerade. Prova det stegade funktionsvirdet
singlLa nedan. Vad skrivs ut pa efter raderna 3 och 5?

scala> def repeat(s: String)(n: Int): String = s * n
scala> val song = repeat("doremi ")(3)

scala> println(song)
scala> val singlLa = repeat("la")
scala> println(singlLa(7))

U A W N =

* Uppgift 20. Rekursion. En rekursiv funktion anropar sig sjélv.

a) Forklara vad som hiander nedan.

scala> def countdown(x: Int): Unit =
if x > 0 then {println(x); countdown(x - 1)}
scala> countdown(10)
scala> countdown(-1)
scala> def finalCountdown(x: Byte): Unit =
{println(x); Thread.sleep(100); finalCountdown((x-1).toByte); 1 / x}
scala> finalCountdown(Byte.MaxValue)

N O U W N

b) Vad hidnder om du gor satsen som riskerar division med noll fore det rekursiva
anropet i funktionen finalCountdown ovan?

¢) Forklara vad som hinder nedan. Varfor tar sista raden ldngre tid dn néist sista
raden?

scala> def signum(a: Int): Int = if a >= 0 then 1 else -1
scala> def add(x: Int, y: Int): Int =

if y == 0 then x else add(x + 1, y - signum(y))
scala> add (100, 100)
scala> add(Int.MaxValue, 0)
scala> add(0, Int.MaxValue)

o Ul A W N =

* Uppgift 21. Undersiok svansrekursion genom att kasta undantag. Forklara vad som
hinder. Kan du hitta bevis for att kompilatorn kan optimera rekursionen till en vanlig
loop?

scala> def explode = throw Exception("BANG!!!")
scala> explode
scala> def countdown(n: Int): Unit =

if n == 0 then explode else countdown(n-1)
scala> countdown(10)

scala> countdown(10000)
scala> def countdown2(n: Int): Unit =
if n == 0 then explode else {countdown2(n-1); print("no tailrec")}
scala> countdown2(10)
scala> countdown2(10000)

O 00 N O Ul A W N =

=
(<]

>*

Uppgift 22. @tailrec-annotering. Du kan be kompilatorn att ge felmeddelande om
den inte kan optimera koden till en motsvarande while-loop. Detta kan anvéindas
i de fall man vill vara helt sdker pa att kompilatorn kan optimera koden och det

L1Kallas dven Curry-funktioner efter matematikern och logikern Haskell Brooks Curry.

©O© 00 N O Ul A W N -

o e
N R ©

116 KAPITEL 3. FUNKTIONER OCH ABSTRAKTION

inte kan finnas risk for en 6verfull stack (eng. stack overflow) pa grund av for djup
anropsnéstling.
Prova nedan rader i REPL och forklara vad som héinder.

scala> def countNoTailrec(n: Long): Unit =
if n <= OL then println("Klar! " + n) else {countNoTailrec(n-1L); ()}
scala> countNoTailrec(1000L)
scala> countNoTailrec(100000L)
scala> import scala.annotation.tailrec
scala> @tailrec def countNoTailrec(n: Long): Unit =

if n <= OL then println("Klar! " + n) else {countNoTailrec(n-1L); ()}
scala> @tailrec def countTailrec(n: Long): Unit =
if n <= OL then println("Klar! " + n) else countTailrec(n-1L)
scala> countTailrec(1000L)
scala> countTailrec(100000L)
scala> countTailrec(Int.MaxValue.toLong * 2L)

3.3. LABORATION: IRRITEXT 117

3.3 Laboration: irritext
Mal

[0 Kunna skapa ett storre program med din egen kod efter dina egna idéer.

[0 Kunna anvinda en editor och terminalen for att iterativt editera, kompilera, och

testa din kod.

Kunna anvinda variabler i kombination med alternativ och repetetition i flera

nivaer.

[J Kunna stegvis forbéattra din kod for att underlatta forandring och 6ka ldasbarhe-
ten.

[0 Kunna skapa och anvinda abstraktioner for att generalisera och mdéjliggéra
ateranviandning av kod.

O

Forberedelser

(] Gor 6vning functions och repetera 6vning programs innan du pabérjar labora-
tionen.

[Lé&s appendix ?? och ??.

[0 Hamta given kod via kursen github-plats.

[0 Utveckla en forsta, spelbar version av ditt textspel, som du kan jobba vidare pa
under laborationen.

[] Hitta nagon som spelar en tidig version av ditt spel och ldser din kod och ger
aterkoppling pa kodens ldasbarhet. Skriv ner den aterkoppling du far.

[Spela nagon annans textspel och ge aterkoppling pa kodens ldsbarhet.

3.3.1 Krav

* Du ska skapa ett lagom irriterande textspel med hjilp av en editor, till exempel
VS code (se appendix ??). Spelet ska koras i terminalen.

* Under redovisningen av laborationen ska du redogora for vilka programme-
ringskoncept du trianat pa under utvecklingen av ditt textspel. Du ska ocksa for
handledaren beskriva hur du har férbattrat din kod genom den aterkoppling du
fatt fran nagon som spelat ditt spel och 14st koden.

¢ Ditt textspel ska vara lagom irriterande om den som spelar har last koden,
medan spelet gidrna far vara orimligt irriterande fér den som inte last koden.
Det ska ga att klara spelet (du véljer sjalv vad det innebér) och darmed avsluta
programmet inom rimlig tid med kédnnedom om koden.

¢ Forsok gora din kod ldtt att ldsa och forstd, dven om sjdlva spelet stundtals kan
vara mer eller mindre obegripligt, knasigt, eller besvarligt, for den spelare som
inte har tillgang till koden... Observera att din kod inte behé6ver vara "perfekt”
fran borjan. Borja fritt och forbattra efterhand.

¢ Allteftersom ditt program blir ldngre ska du omforma och dela upp din kod i
manga, korta abstraktioner med val valda namn for att 6ka lasbarheten.

* Din kod ska anvinda de viktiga begrepp som kursen hittills har behandlat, med
speciellt fokus pa det som just du behéver triana mest pa.

https://github.com/lunduniversity/introprog/tree/master/workspace/

118

KAPITEL 3. FUNKTIONER OCH ABSTRAKTION

3.3.2 Tips for att komma igding

3.3.3

Skapa en katalog som innehaller en scala-kodfil med valfritt namn.

Skriv en enkel @main-metod i den nyskapade kodfilen som endast skriver ut
strdngen "Hello World!".

Kompilera och kor, ratta eventuella fel tills programmet fungerar korrekt.

Nar programmet fungerar, borja utoka @main-metoden i din kodfil och imple-
mentera mer funktionalitet, ta en titt under inspiration nedan.

Borja enkelt och forsok formulera vad ditt program ska gora med psuedokod som
kommentarer innan du skriver koden.

Kompilera och kor vid varje tillagg och hall varje tillagg sa litet som mojligt,
sa slipper du reda ut en massa svara f6ljdfel vid kompilering och eventuella
kortidsfel blir mer begripliga.

Fortsétt utoka tills kraven for labben har uppnatts.

Inspiration

Har foljer en lista med olika forslag pa funktioner som du kan vélja bland, kombinera
och variera pé olika vis. Du kan ocksa lata helt andra funktioner ingé i ditt spel. Det
viktigaste ar att du kombinerar kodglddje med liarorika utmaningar :)

Be anvindaren logga in. Ge knasiga felmeddelande om anvindaren inte kan
losenordet.

Lat anviandaren hamna i en irriterande odndlig loop av meningslésa fragor om
den gor "fel”.

Beskriv en lidskig fantasiplats diar anviandaren befinner sig, till exempel en grotta
| en killare | ett rymdskepp | Kemicentrum.

Lat anviandaren vilja mellan faniga vapen, till exempel golvmopp | érontops |
foliehatt | forgiftad kexchoklad.

Lat anviandaren vélja mellan olika véigar | dorrar | tunnlar | sektionscaféer.
Lat valet styra vilka monster som patriffas. Lat anvidndaren bekdmpa monstret
med olika vapen.

Infor nagon slags poiang som redovisas under spelets gang och i slutet.
Infor olika sorters poéng for hilsa, stridskraft, uppnadd skicklighetsniva, etc.

Fraga anviandaren om mer eller mindre relevanta detaljer: namn | skonum-
mer | favorithusdjur. Ge knasiga kommentarer dir dessa detaljer ingar som
delstrangar.

Spela sten | sax | pase med anviandaren.
Spela "gissa talet” och ge ledtradar om talet &r for litet eller for stort.

Mait hur lang tid det tar for anvindaren att klara ditt spel och ge podng déarefter.

3.3. LABORATION: IRRITEXT 119

* Kolla reaktionstiden hos anvdndaren genom att méta tiden det tar att trycka
Enter efter att man fatt vinta en slumpmaéssig tid pa att strangen "NU!" skrivs
ut. Om man trycker Enter innan startutskriften ges blir den uppmétta tiden 0
och pa sa sitt kan ditt program detektera att anviandaren har tryckt for tidigt.
Mait reaktionstiden upprepade ganger och ge poing efter medelvirdet.

¢ Lat anvidndaren pa tid sa snabbt som mgjligt skriva olika ord bakléinges.
¢ Be anvindaren skriva en palindrom. Ge podng efter langd.

* Triana anvandaren i multiplikationstabellen pa tid.

¢ Lat anviandaren svara pa flervalsfragor om din favoritfilm.

* Gor det mojligt att ge ett extra argument med en "fuskkod” som ger anvindaren
speciella formagor eller pa annat sétt underlattar for anvindaren under spelets
gang.

120 KAPITEL 3. FUNKTIONER OCH ABSTRAKTION

Kapitel 4

Objekt och inkapsling

Begrepp som ingar i denna veckas studier:

oo oooooogoogo

modul

singelobjekt
punktnotation
tillstand

medlem

attribut

metod

paket

filstruktur

jar

classpath
dokumentation

JDK

import

selektiv import
namnbyte vid import
export

tupel

multipla returviarden

121

oDogooo

Ooooooooogoo

block

lokal variabel

skuggning

lokal funktion

funktioner ar objekt med apply-
metod

namnrymd

synlighet

privat medlem

inkapsling

getter och setter

principen om enhetlig access
overlagring av metoder
introprog.Pixel Window
initialisering

lazy val

typalias

dod: maskinkod

122 KAPITEL 4. OBJEKT OCH INKAPSLING

4.1 Teori

4.1.1 Vad rymmer skéldpaddan i Kojo i sitt tillstdnd?

Arkiv Exempel Demo Fonster ™= Sprik verktyg Hjalp

(] Mattevarlden (Math World) (ﬂ Ritfénster (Canvas) 24 i =

z

5 y o

v |

P

a

w: B

gl Lk BE &2 @O

[1:]

3 A

a0 sudda A

s> fram

7| = hdger

g+ fram I,
5 R

M [« J >

Mouse Position: (29,9, -26,6) 415

position, riktning, farg, bredd, penna uppe/nere, fyll-farg

4.1.2 Vad dr ett objekt?

¢ Ett objekt ar en abstraktion som...

- kan innehalla data som objektet "haller reda pa” och
- kan erbjuda operationer som gor nagot eller ger ett vdrde

o
Sl
¢ Exempel: Skoldpaddan i Kojo
- Vilken data sparas av skéldpaddan?
position, rikting, pennfirg, ...
- Vilka operationer kan man be skéldpaddan att utféra?
fram, hoger, vanster, ...

* Terminologi:

objektets data sparas i variabler som kallas attribut

alla variablers varden utgor tillsammans objektets tillstand
operationerna ir funktioner i objektet och kallas metoder
objektets delar (attribut, metoder, etc.) kallas medlemmar

4.1.3 Deklarera, allokera, referera

Olika saker man kan gora med objekt:

¢ deklarera: att skriva kod som beskriver objekt;
finns flera sétt: singelobjekt, klass, tupel, ...

4.1. TEORI 123

¢ allokera: att skapa plats i minnet for objektet vid kortid
¢ referera: att anvinda objektet via ett namn;

man kommer at innehallet i ett objekt med punktnotation:

ref.medlem

(avallokera): att frigéora minne for objekt som inte lingre anvinds; detta sker
automatiskt i Scala, Java, C#, m.fl tack vare skriapsamlaren, men i manga
andra sprak, t.ex. C++, far man sjilv halla reda pa avallokering, vilket ar knepigt
och det blir 14tt svara buggar.

4.1.4 Olika sétt ait allokera objekt

1.

3.

4.

Anvinda en fardig funktion som skapar ett objekt at oss, t.ex. apply:

Vector(1,2,3) // skapa Vector-objekt med apply-metod
Vector.apply(1,2,3) // explicit apply

En funktion som skapar objekt kallas fabriksmetod (eng. factory method).

. Gora new pa en klass (mer om klasser senare):

new introprog.PixelWindow() // skapa ett fonsterobjekt

Med new kan man skapa manga upplagor av samma typ av objekt.
I Scala 3 kan new ofta uteldmnas: introprog.PixelWindow()
Deklarera ett singelobjekt med nyckelordet object

¢ Ett singelobjekt finns i exakt en upplaga.
¢ Allokeras automatiskt forsta gangen man refererar objektet;
man behover inte, och kan inte, skriva new.

Anvinda en tupel, exempel: val p = (200, 300)

4.1.5 Vad dr ett singelobjekt?

Ett singelobjekt (eng. singelton) deklareras med nyckelordet object och anvinds
for att samla medlemmar (eng. members) som hor ihop.

Ett singelobjekt kallas ocksd modul (eng. module).

Medlemmarna kan t.ex. vara variabler (val, var) och metoder (def).

En metod ir en funktion som finns i ett objekt. Metoder kallas 4ven opera-
tioner.

Exempel: singelobjekt/modul som hanterar highscore:

object Highscore {
var highscore = 0
def isHighscore(points: Int): Boolean = points > highscore

}

Krullparenteser ar valfria i Scala 3:
du kan anvinda kolon och indentering i stillet.

124 KAPITEL 4. OBJEKT OCH INKAPSLING

¢ Tanken ir ofta att abstraktioner ska vara anvindbar i annan kod, for att under-

latta ndr man bygger applikationer, och kallas da ett API (Application Program-
ming Interface). Exempel: ett highscore-API.

4.1.6 Allokering: minne reserveras med plats for data
object Highscore:

var highscore = 0
def isHighscore(points: Int): Boolean = points > highscore

Highscore E\

highscore Ij|

4.1.7 Punktnotation, tillstdndsféréndring med tilldelning

scala> Highscore.isHighscore(5)
res®: Boolean = true

scala> Highscore.highscore = 42

Highscore E\

highscore

4.1.8 Punktnotation och operatornotation

Punktnotation dar metodanropet har ett enda argument:
objekt.metod(argument)
kan dven skrivas med infix operatornotation:

objekt metod argument

4.1. TEORI 125

Exempel:
1+ 2 1.+(2)
1 to 42 1.to(42)

Highscore isHighscore 1000
Metoder vars namn borjar med bokstiaver ger varning vid anrop med operator-

notation om ej deklarerad med infix fore def, detta for att uppmuntra konsekvent
anviandning av punktnotation.

4.1.9 Namnrymd och skuggning

e En namnrymd’ (eng. namespace) dr en omgivning (kontext) i vilken alla namn
ar unika. Genom att skapa flera olika namnrymder kan man undvika "krockar”
mellan lika namn med olika betydelser (homonymer).

Exempel: mejladresser kim@fdretagl.se # kim@fdoretag2.se

* Medlemmarna i ett singelobjekt finns i en egen namnrymd, déir alla namn maste
vara unika pa4 samma niva. De "krockar” inte med namn "utanfor” objektet. Dock
kan det forekomma skuggning (eng. shadowing):

object Game:
val highscore = 42 // ett annat varde an Game.Highscore.highscore
object Highscore:

var highscore = 0 // ett annat varde an Game.highscore
def isHighscore(points: Int): Boolean = points > highscore

4.1.10 Inkapsling: att ddlja interna delar

Med nyckelordet private doljs interna delar for omvérlden. Privata medlemmar kan
bara refereras inifrdn objektet. Denna princip kallas inkapsling (eng. encapsulation).

object Highscore:
private var myHighscore = 0 // namnet myHighscore syns ej utat
def highscore: Int = myHighscore // en s.k. getter ger ett attributvarde
def isHighscore(points: Int): Boolean = points > myHighscore

def update(points: Int): Unit = if isHighscore(points) then myHighscore = points

Varfor har man nytta av detta?

Forhindra att man av misstag dndrar objekts tillstand pa fel sétt.
Foérhindra anvandning av kod som i framtiden kan komma att dndras.
Erbjuder en enklare "utsida” genom délja komplexitet "pa insidan”.
Inte “skriapa ner” namnrymden med “onodiga” namn.

Nackdelar?

1https ://sv.wikipedia.org/wiki/Namnrymd

https://sv.wikipedia.org/wiki/Namnrymd

126 KAPITEL 4. OBJEKT OCH INKAPSLING

* Begransar anvidndningen, har ej tillgang till alla delar.
* Svarare att experimentera med ett API medan man forsoker forsta det.

4.1.11 Idiom: Privata variabler med understreck vid "krock”
Idiom: (d.v.s. ett typiskt, allmént accepterat siatt att skriva kod)

* Om namnet pa en privat variabel krockar med namnet pa en getter brukar man
borja det privata namnet med ett understreck:

object Highscore:
private var _highscore = 0
def highscore: Int = _highscore
def isHighscore(points: Int): Boolean = points > _highscore
def update(points: Int): Unit = if isHighscore(points) then _highscore = points

Namnkrock mellan metoder och variabler uppkommer inte i Java m.fl. sprak, dar
dessa finns i olika namnrymder. Men i Scala har man valt att principen om enhetlig
access ska gilla och alla medlemmar (bade metoder och variabler) finns ddrmed i en
gemensam namnrymd.

4.1.12 Principen om enhetlig access

*] Scala sa ser access av attribut och anrop av metoder, som dr deklarerade utan
parameterlista, likadana ut.

object Al { val a
object A2 { def a

scala> Al.a
scala> A2.a

* Manga andra sprak har olika syntax for access av attribut och anrop av metoder
(t.ex. Java m.fl., dir alla metodanrop méaste ha parenteser).

¢ Fordel: Det gar lidtt att d&ndra i implementationen och vixla mellan att anvianda
attribut och anvinda metoder utan att den kod som anviander din implementa-
tion behéver dndras.

¢ Nackdel: Det kan bli namnkrockar mellan metoder och attribut eftersom de
finns i samma namnrymd.

42 }
(41 + math.random()).round.toInt }

4.1.13 Exempel: singelobjektet med féréindringsbart tillstdnd

object mittBankkonto:

val kontonr: Long = 123456789L
var saldo: Int = 1000
def arSkuldsatt: Boolean = saldo < 0

4.1. TEORI 127

scala> mittBankkonto.saldo -= 25000

scala> mittBankkonto.arSkuldsatt
res@: Boolean = true

(Vi ska i nasta vecka se hur man med s.k. klasser kan skapa manga upplagor av
samma typ av objekt, sa att vi kan ha flera olika bankkonto.)

4.1.14 Exempel: tillstand, attribut

Ett objekts tillstand &4r den samlade uppsittningen av varden av alla de attribut som
finns i objektet.

object mittBankkonto:

val kontonr: Long = 123456789L
var saldo: Int = 1000
def arSkuldsatt: Boolean = saldo < 0

mittBankkonto E\

kontonr | 123456789L |

saldo |[1000

4.1.15 Tillstdndséndring

Nir en variabel tilldelas ett nytt virde sker en tillstandsindring. Ett forandrings-
bart objekt (eng. mutable object) har ett forandringsbart tillstand (eng. mutable
state).

scala> mittBankkonto.saldo -= 25000

scala> mittBankkonto.saldo
resl: Int = -24000

mittBankkonto n

kontonr | 123456789 |

saldo [-24000

v A W N =

128 KAPITEL 4. OBJEKT OCH INKAPSLING

4.1.16 Modul

¢ En modul samlar kod som utgor en sammanhaéllen, avgriansad uppsattning ab-
straktioner som kan anvidndas av annan kod for att 16sa ett specifikt (del)problem.
e I Scala finns tva sitt att skapa moduler:?

singelobjekt med nyckelordet object och

paket med nyckelordet package

Liknar varandra; t.ex. kan man anvinda punktnotation och géra import

pa medlemmar i bade singelobjekt och paket.

Skillnader:
* for varje paket skapar kompilatorn underkataloger for maskinkoden
* paket kan delas upp i flera kodfiler — ett objekt maste vara i en kodfil
* objekt kan drva medlemmar fran klasser & traits (mer sen om detta)

4.1.17 Deklarera paket

Med nyckelordet package forst i en kodfil ges alla deklarationer en gemensam namn-
rymd.
Denna kod ligger i filen f1.scala:

package mittpaket

object A:
def halsa: Unit = println(B.halsning)

Denna kod ligger i filen f2.scala:

package mittpaket

object B:
def halsning: String = "hejsan"

Singelobjekten A och B finns bada i namnrymden mittpaket.

4.1.18 Kompilera paket

Paketdeklarationer medfor att kompilatorn placerar bytekodfiler i en katalog med
samma namn som paketet:

> scala compile . // samkompilering av filer i aktuell katalog
> 1ls .scala-build/x/classes/main/

mittpaket
> ls .scala-build/*/classes/main/mittpaket
'A$.class’ A.class A.tasty 'B$.class' B.class

Idiom, syntax och semantik:

¢ Paketnamn brukar besta av enbart sméa bokstéver.
2

en.wikipedia.org/wiki/Modular_programming

https://en.wikipedia.org/wiki/Modular_programming

4.1. TEORI 129

* Om paketnamn innehaller punkt(er), skapas nistlade underpaket, exempel:
pl.p2.p3 kompilerar kod till katalogen p1/p2/p3

¢ Du kan ha flera paket och dven nistlade paket i samma kodfil, genom att
anvanda klammerparentes (eller kolon+indentering):
package pl { object A; package p2 { object B }}
(men detta ar inte sa vanligt)

4.1.19 Paket i REPL
Paket funkar inte i REPL:

scala> package mittpaket { def hej = println("Hej") }
-- [E103] Syntax Error:
1 |package mittpaket { def hej = println("Hej") }

| AAAAAANA

|this kind of statement is not allowed here

4.1.20 Vad dr en tupel?

¢ En n-tupel ar ett objekt som samlar n st objekt i en enkel datastruktur med
koncis syntax; du behover bara parenteser och kommatecken for att skapa
tupel-objekt: (1,'a',"hej")

* Elementen kan alltsa vara av olika typ.

® (1,'a',"hej") ar en 3-tupel av typen: (Int, Char, String)

* Du kan komma at de enskilda elementen med _1, _2, ... _n

* Du kan dven anvédnda apply(0), apply(1), ... apply(n-1)

scala> val t = ("hej", 42, math.Pi)
t: (String, Int, Double) = (hej,42,3.141592653589793)

scala> t._1 // l-baserad access
res@: String = hej

scala> t(1) // 0-baserad indexering, implicit apply
resl: Int = 42

0 N o U~ W N

e Tupler dr praktiska nir man inte vill ta det lite stérre arbetet att skapa en egen
klass. (Men med klasser kan man gora mycket mer 4n med tupler.)

4.1.21 Tupler som parametrar och returvérde.

¢ Tupler dr smidiga som parametrar om man vill kombinera virden som hor
ihop, till exempel x- och y-véirdena i en punkt: (3, 4)

® Tupler dr smidiga nar man pa ett enkelt och typsdkert satt vill 1ata en funktion
returnera mer in ett varde.

O 00 N O Ul A W N

o e
N B ®

W 00 N O Ul A W N

130 KAPITEL 4. OBJEKT OCH INKAPSLING

scala> def langd(p: (Double, Double)): Double = math.hypot(p._1, p._2)

scala> def vinkel(p: (Double, Double)): Double = math.atan2(p._1, p._2)
scala> def polar(p: (Double, Double)): (Double, Double) = (langd(p), vinkel(p))

scala> polar((3,4))
res2: (Double, Double) = (5.0,0.6435011087932844)

¢ Om typerna passar kan man skippa dubbla parenteser vid ensamt tupel-
argument:

Ml scala> polar(3,4)
Pl res3: (Double, Double) = (5.0,0.6435011087932844)

https://sv.wikipedia.org/wiki/Polédra_koordinater

4.1.22 Ett smidigt sétt att skapa 2-tupler med metoden ->

Det finns en metod vid namn -> som kan anvéndas pa objekt av godtycklig typ for
att skapa par:

scala> ("Alder", 42)
res@: (String, Int) = (Alder,42)

scala> "Alder".->(42)
resl: (String, Int) = (Alder,42)

scala> "Alder" -> 42
res2: (String, Int) = (Alder,42)

scala> Vector("Alder" -> 42, "Laéngd" -> 178, "Vikt" -> 65)
res3: scala.collection.immutable.Vector[(String, Int)] =
Vector((Alder,42), (Langd,178), (Vikt,65))

4.1.23 Typadlias for att abstrahera typnamn

Med hjalp av nyckelordet type kan man deklarera ett typalias for att ge ett alterna-
tivt namn till en viss typ. Exempel:

scala> type Pt = (Int, Int) // typalias
scala> type Pts = Vector[Pt] // nastlat typalias

scala> def distToOrigo(pt: Pt): Double = math.hypot(pt._1, pt._2)

scala> val xs: Pts = Vector((1,1), (2,2), (3,4))
val xs: Pts = Vector((1,1), (2,2), (3,4))

scala> xs.head

https://sv.wikipedia.org/wiki/Pol%C3%A4ra_koordinater

4.1. TEORI 131

G val res0: Pt = (1,1)
11
iVl scala> xs.map(distToOrigo)

Kl val resl: Vector[Double] = Vector(1.4142135623730951, 2.8284271247461903, 5.0)

Typalias kan vara bra nér:

* man har en lang och kranglig typ och vill anvianda ett kortare namn,
¢ man vill kunna l4tt byta implementation senare
(t.ex. om man vill anvidnda en egen klass i stillet for en tupel).

4.1.24 Lata variabler med foérdrdjd initialisering

Med nyckelordet lazy fore val sker fordrojd (4.k. "1at”) evaluering av initialiserings-
uttrycket.
Motsatsen (det normala i Scala) kallas strikt evaluering.

scala> val strikt = Vector.fill(1000000) (math.random())
strikt: scala.collection.immutable.Vector[Double] =
Vector(0.7583305221813246, 0.9016192590993339, 0.770022134260162, 0.156677181§

scala> lazy val lat = Vector.fill(1000000) (math.random())

lat: scala.collection.immutable.Vector[Double] = <lazy>

scala> lat
res0: scala.collection.immutable.Vector[Double] =
Vector(0.5391685014341797, 0.14759775960530275, 0.722606095900537, 0.9025572

© 00 N O U A W N -

iy
(=]

En lazy val initialiseras inte vid deklarationen utan senare nir den refereras
forsta gangen.

4.1.25 Singelobjekt dr lata

¢ Singelobjekt allokeras inte direkt vid deklaration; allokeringen sker forst da
objektet refereras forsta gangen.
¢ Exempel:

object mittLataObjekt:
println("jag ar lat")
val storArray = { println("skapar stor Array"); Array.fill(10000)(42) }
lazy val annuStérreArray = Array.fill(Int.MaxValue) (42)

Nar sker utskrifterna?
Nar allokeras variablerna?

4.1.26 Vad dr skillnaden mellan val, var, def, lazy val?

o Ul A W N P

o Ul A W N =

132 KAPITEL 4. OBJEKT OCH INKAPSLING

object exempel:
println("hej exempel")

val forAlltidSammaReferens = {println("hej val"); math.random()}
var kanAndrasMedTilldelning = {println("hej var"); math.random()}
def evaluerasVidVarjeAnrop = {println("hej def"); math.random()}

lazy val fordrojdInit = {println("hej lazy val"); math.random()}
I vilken ordning sker utskrifterna?
Lat evaluering &r en viktig princip inom funktionsprogrammering som mojliggor

effektiva, oforanderliga datastrukturer dir element allokeras forst nir de behovs.
en.wikipedia.org/wiki/Lazy_evaluation

4.1.27 Fallgrop: initialiseringsordning och defaultvérden

scala> object X:
val a =b
val b = 42

scala> val test = X.a
val test: Int = 0 // AAAARGH!

Om du anvéinder en variabel i ett objekt innan den &r deklarerad far du ett defaultvér-
den (noll eller null). Mer om detta w05.
Lo6sning: byt ordning om det gar, annars gor a till en lazy val

scala> object Y:
lazy val a
val b = 42

scala> val funkar = Y.a
val funkar: Int = 42

4.1.28 Programmeringsparadigm

en.wikipedia.org/wiki/Programming_paradigm:

¢ Imperativ programmering: programmet ar uppbyggt av sekvenser av olika
satser som laser och andrar tillstand

¢ Objektorienterad programmering: en sorts imperativ programmering dér
programmet bestar av objekt som kapslar in tillstand och erbjuder operationer
som léaser och andrar tillstand.

¢ Funktionsprogrammering: programmet ar uppbyggt av samverkande (dkta)
funktioner som undviker forianderlig data och tillstidndséndringar. Oféranderli-
ga datastrukturer skapar effektiva program i kombination med lat evaluering
och rekursion.

https://en.wikipedia.org/wiki/Lazy_evaluation
https://en.wikipedia.org/wiki/Programming_paradigm

4.1. TEORI 133

4.1.29 Funktioner ar dkta objekt i Scala

Scala visar hur man kan forena (eng. unify)
objektorientering och funktionsprogrammering:

En funktion ar ett objekt som har en apply-metod.

scala> object oka:
def apply(x: Int)

scala> Oka.apply(1l)

res@: Int = 2

scala> oOka(1l

) // metoden apply behdver ej skrivas explicit
resl: Int = 2

4.1.30 Fdrdjupning: Akta funktionsobjekt &r av funktionstyp

Egentligen, mer precist:
En funktion ar ett objekt av funktionstyp som har en apply-metod.

scala> object dka extends (Int => Int):
def apply(x: Int) = x + 1

scala> oka(1l)
res2: Int = 2

scala> Vector(1,2,3).map(dka)
res3: scala.collection.immutable.Vector[Int] = Vector(2, 3, 4)

scala> oOka. // tryck TAB
. andThen apply compose ... toString ...

Mer om extends senare i kursen...

4.1.31 Vad &r en klass?
Singelobjekt finns bara i exakt EN upplaga:

object mittBankkonto:

val kontonr: Long = 123456789L
var saldo: Int = 1000
def arSkuldsatt: Boolean = saldo < 0

Om vi vill ha flera bankkonton behéver vi en klass (eng. class).

4.1.32 Vad dar en klass?

En klass kan anvéindas for att skapa manga objekt av samma typ. Varje upplaga har
sitt eget tillstand och kallas en instans av klassen (mer om detta nista vecka).

O 00 N O U1l A W N

e
= ©

U A W N =

134 KAPITEL 4. OBJEKT OCH INKAPSLING

class Bankkonto(val kontonr: Long, var saldo: Int): // klassbeskrivning
def arSkuldsatt: Boolean = saldo < 0

scala> val bkl new Bankkonto(123456789L, 1000) // instansiera en klass
bkl: Bankkonto = Bankkonto@5d7399f9

scala> val bk2 new Bankkonto(6789012L, -200)
bk2: Bankkonto = Bankkonto@286855ea

scala> bkl.saldo
res@: Int = 1000

scala> bk2.arSkuldsatt
resl: Boolean = true

4.1.33 Anvdnda klassen Color

¢ [JDK (Java Development Kit) finns hundratals paket (moduler) och tusentals
fardiga klasser. ®

¢ En av dessa klasser heter Color och ligger i paketet java.awt och anvinds for
att representera RGB-farger med ett tal som beskriver andelen Rott, Gront och
Blatt.

scala> val rod = java.awt.Color(255, 0, 0) // en maximalt roéd farg

scala> import java.awt.Color // namnet Color tillgangligt i aktuell namnrymd

scala> Color. // tryck TAB och se alla publika medlemmar

¢ Anvind klassen java.awt.Color pa veckans 6vning.
* Hur ska jag veta hur jag kan anvinda en fardig klass?

1. Las dokumentationen, visar “utsidan” som ar enklare (?) 4n ”insidan”
2. Experimentera med hjilp av REPL och/eller en IDE
3. Las koden, visar "insidan” med all sin komplexitet; kan vara knepigt...

4.1.34 Lagg till metoder i efterhand med extension

¢ Ofta vill man kunna légga till metoder pa godtyckliga typer i efterhand, speciellt
néir det giller typer som finns i kod som nagon annan skrivit.

* Detta gar att gora i Scala med nyckelordet extension:
extension (s: String) def skrikBaklanges = s.reverse.toUpperCase

* En extensionsmetod kan anropas med punktnotation som om den vore en
medlem av typen.

3https://stackoverflow.com/questions/3112882/

https://stackoverflow.com/questions/3112882/

0 N o U A W N

4.1. TEORI 135

* Det gar ocksa att anropa en extensionsmetod som en fristdende funktion utan
punktnotation.

scala> extension (s: String) def skrikBaklanges = s.reverse.toUpperCase
def skrikBaklanges(s: String): String

scala> "hejsan".skrikBaklanges
val resl: String = NASJEH

scala> skrikBaklanges("goddag")
val res2: String = GADDOG

4.1.35 Kollektiva extensionsmetoder

* Det gar bra att sammanfora flera funktioner under en och samma extension sa
har:

extension (s: String)
def baklanges = s.reverse
def skrik = s.toUpperCase

¢ Detta kallas kollektiva extensionsmetoder (eng. collective extension met-
hods).

* Notera att det inte ska vara nagot kolon efter extension-deklarationens forsta
rad.

4.1.36 Import av alla namn i en viss modul

* Man kan importera alla namn i en viss modul (singelobjekt eller paket). Detta
kallas pa engelska for wildcard import.

— Syntax: import pl.p2.x*
¢ Exempel:

il scala> import java.awt.* // importera ALLA namn i paketet awt

e Fordelar:

1. Slipper skriva import pa varje enskilt namn.
2. De abstraktioner som ir tdnkta att anvidndas tillsammans blir alla synliga
i aktuell namnrymd (eng. in scope).

e Nackdelar:

1. Kan ge namnkrockar och svara buggar vid namnskuggning.

2. Man "skréapar ner” sin namnrymd med namn som kanske inte ir tdnkta
att anvindas, men som vid misstag, t.ex. felstavning, &ndéa ger effekt.

3. Man kan inte genom att studera import-deklarationerna se exakt vilka
namn som anvinds, vilket kan gora det svarare att forsta vad koden gor.

136 KAPITEL 4. OBJEKT OCH INKAPSLING

4.1.37 Namnbyte vid import

* Man kan undvika namnkrockar med namnbyte vid import.
* Syntax: import pl.p2.befintligtNamn as nyttNamn
¢ Exempel:

scala> import java.awt.Color as JColor //importera och byt namn

scala> val gron = JColor(0, 255, @) //skapa instans med nya namnet
gron: java.awt.Color = java.awt.Color[r=0,g=255,b=0]

4.1.38 Exkludera (gémma) namn vid import

¢ Man kan undvika namnkrockar vid import genom att exkludera vissa namn
(eng. import hiding).

¢ Syntax: import pl.p2.exkluderaMig as _

¢ Exempel:

Wl scala> import java.awt.{Event as _, *x} // importera allt UTOM Event

¢ Kan kombineras med namnbyte och allimport:

Wl scala> import java.awt.{Event as _, Color as JColor, x*}

4.1.39 Lokal import-deklaration

* Man kan begrinsa "nedskripningen” av namnrymden genom att géra import-
deklarationer sa lokalt som mojligt, till exempel i ett objekt eller i en funktions-
kropp.

¢ Exempel:

object A:
def x =
import java.awt.Color.RED
/* ... namnet RED syns bara lokalt i denna funktion x/

4.1. TEORI 137

4.1.40 Export

e import ger direkt synlighet lokalt inuti en namnrymd
¢ Med export kan du gora motsatsen till import:
gora medlemmar direkt synliga utanfér en namnrymd.

object A:
import java.awt.Color.x // gor farger synliga direkt inuti detta objekt
def test = RED // fargen RED synlig direkt i lokala namnrymden
object B:

export java.awt.Color.*x // RED blir medlem som syns utdt via B.RED
export math.{sin, cos} // sin och cos blir metoder i B

scala> A.RED
- [EGO8] Not Found Error:
1 |A.RED

|AAAAA

|value RED is not a member of object A

scala> B.RED
val resQ: java.awt.Color = java.awt.Color[r=255,9=0,b=0]

scala> (B.cos(0), B.sin(0))
val resl: (Double, Double) = (1.0,0.0)

4.1.41 Anvdnda dokumentation for férdiga klasser.

¢ Dokumentation for standardbiblioteket i Scala finns hér:
https://www.scala-lang.org/api/
* Ovning: Leta upp dokumentationen fér metoden reducelLeft i klassen Vector.

* Dokumentation for standardbiblioteket i Java finns hér:
https://docs.oracle.com/en/java/javase/21/docs/api/index.html

e Ovning: Leta upp dokumentationen for java.awt.Color

¢ Lis mer i Appendix E om dokumentation.

4.1.42 Vad ar en jar-fil?

¢ Jar-filer anviands for att distribuera fardigkompilerad kod sa att andra kan
anvinda den enkelt

¢ Forkortningen jar kommer fran "Java Archive”

¢ En jar-fil foljer ett standardiserat filformat och anvinds for att paketera flera
filer i en och samma fil, exempelvis:

- .class-filer med bytekod
- resursfiler for en applikation t.ex. bilder .png, .jpg, etc
— information om vilken klass som innehaller main-funktionen

https://www.scala-lang.org/api/
https://docs.oracle.com/en/java/javase/21/docs/api/index.html

138 KAPITEL 4. OBJEKT OCH INKAPSLING

- etc.

¢ En .jar-fil komprimeras pa samma sitt som en .zip-fil.
¢ Fordjupning for den intresserade:
https://en.wikipedia.org/wiki/JAR_(file_format)

4.1.43 Oppen kdllkod p&d Maven Central

¢ Pa Maven Central som hanteras av foretaget Sonatype finns tusentals 6ppet
tillgdngliga kodbibliotek publicerade som jarfiler.

* Du kan s6ka bland alla Scala-bibliotek hér:
https://index.scala-1lang.org/

¢ Du kan soka bland alla bibliotek hér:
https://search.maven.org/

4.1.44 Vad dr classpath?

¢ Hur hittar kompilatorn fardiga moduler?

* Kompilatorerna scalac och javac och programmen scala och java som kor
igang JVM anvinder en lista med filsokvagar kallad classpath nar de soker
efter kompilerad kod.

* Scalas standardbibliotek ldggs automatiskt pa classpath.

* Med hjilp av optionen - -jar kan du ldgga till en jar-fil till classpath.

¢ Exempel: (punkt anvinds for att ange aktuell katalog)

scala run . --jar introprog.jar

4.1.45 Fardiga grafikmetoder i klassen PixelWindow

¢ Pa labben ska du anvinda en . jar-fil med kodbiblioteket introprog.

¢ Dair finns klassen PixelWindow som kan skapa ritfonster.

¢ Du kan starta REPL sa hir om du har laddat ner jar-filen manuellt fran
https://fileadmin.cs.lth.se/introprog.jar

> scala repl --jar introprog.jar

e Testa PixelWindow i REPL med:

scala> val w = introprog.PixelWindow (300, 200, "hejsan")

¢ Studera dokumentationen for introprog.PixelWindow hir:
https://fileadmin.cs.lth.se/pgk/api

https://en.wikipedia.org/wiki/JAR_(file_format)
https://index.scala-lang.org/
https://search.maven.org/
https://fileadmin.cs.lth.se/introprog.jar
https://fileadmin.cs.lth.se/pgk/api

4.1. TEORI 139

4.1.46 Automatiska beroenden med Scala CLI i REPL:

* Du kan istéllet lata scala-cli automatiskt ladda ner ett fardigt kodbibliotek
som &r publicerat pa Maven Central och 14gga det pa classpath med optionen
- -dep som &r en forkortning av dependency.

* Notera antalet kolon i adressen till kodbiblioteket:

> scala repl . --dep se.lth.cs::introprog:1.4.0
Welcome to Scala 3.7.3 (17.0.3, Java OpenJDK 64-Bit Server VM).

Type in expressions for evaluation. Or try :help.

scala> introprog.Dialog.show("hello introprog")

4.1.47 Koéra program + kodbiblitek med Scala CLI

® scala-cli kan inkludera kodbibliotek fran Maven Central om du skriver en
"magisk” kommentar i borjan av din .scala-filen:

//> using scala 3.7.3
//> using dep se.lth.cs::introprog:1.4.0

@main def run = introprog.Dialog.show("hello introprog")

Notera > efter //
® Nar du kor ditt program sahér sa kommer Scala CLI att ladda ner kodbiblioteket
om det inte redan ar gjort:

> scala run .

¢ Lé&s mer hir:
https://index.scala-lang.org/lunduniversity/introprog-scalalibochi
Appendix C, stycket om Scala CLI. Mer om //> using hér:
https://scala-cli.virtuslab.org/docs/reference/directives

4.1.48 Kompilera om vid varje éndring

Ange optionen - -watch sa kors kommandot om varje gang du sparar en scala-fil med
Ctrl+S.

[
> scala compile . --watch

Kan skrivas kortare:

> scala compile . -w

Fungerar ocksa for run-kommandot, men det &4r inte lika anvindbart om appen ar
interaktiv och vantar pa input fran anvidndaren innan den avslutas.

> scala run . -w

https://index.scala-lang.org/lunduniversity/introprog-scalalib
https://scala-cli.virtuslab.org/docs/reference/directives

140 KAPITEL 4. OBJEKT OCH INKAPSLING

Gor sa sma dndringar som majligt och kompilera och testa vid varje dndring!
Manga dndringar kan ge svarhittade foljdfel...

4.2. OVNING 0BJECTS 141

4.2 Ovning objects
Mal

Kunna skapa och anvéinda objekt som moduler.

Kunna férklara hur nistlade block paverkar namnsynlighet och namnéverskugg-
ning.

Kunna forklara begreppen synlighet, privat medlem, namnrymd och namnskugg-
ning.

Kunna skapa och anvinda tupler.

Kunna skapa funktioner som har multipla returvarden.

Kunna forklara den semantiska relationen mellan funktioner och objekt i Scala.
Kunna forklara kopplingen mellan paketstruktur och kodfilstruktur.

Kunna anvinda fardiga kodbibliotek i jar-filer.

Kunna anvinda import av medlemmar i objekt och paket.

Kunna byta namn vid import.

Kunna forklara skillnaden mellan import och export.

Kunna skapa och anvédnda variabler med fordrojd initialisering.

U
O

O

oooooogoog

Forberedelser

[Studera begreppen i kapitel 4
[0 Las om hur man fixar buggar i appendix ??.

4.2.1 Grunduppgifter; férberedelse infér laboration
Uppgift 1. Para ihop begrepp med beskrivning.

Koppla varje begrepp med den (forenklade) beskrivning som passar bast:

modul 1 A | funktion som dr medlem av ett objekt

singelobjekt 2 B | modul som kan ha tillstand; finns i en enda upplaga

paket 3 C | kodenhet med abstraktioner som kan ateranviandas
import 4 D | modul som skapar namnrymd; maskinkod far egen katalog
export 5 E | tillhor ett objekt; nds med punktnotation om synlig

lat initialisering | 6 F | gor namn tillgangligt lokalt utan att hela sokvigen behovs
medlem 7 G | allokering sker forst ndr namnet refereras

attribut 8 H | variabel som utgor (del av) ett objekts tillstand

metod 9 I | omgivning dér &ar alla namn &r unika

privat 10 J | metoder med samma namn men olika parametertyper
overlagring 11 K | modifierar synligheten av en objektmedlem
namnskuggning | 12 L | lokalt namn doljer samma namn i omgivande block
namnrymd 13 M | andring mellan def och val paverkar ej anviandning
enhetlig access 14 N | alternativt namn pa typ som ofta 6kar lasbarheten
punktnotation 15 O | anvéinds for att komma at icke-privata delar

typalias 16 P | gor namn synligt utat som medlem i detta objekt

o U~ W N =

142 KAPITEL 4. OBJEKT OCH INKAPSLING

Uppgift 2. Ndstlade singelobjekt, import, synlighet och punktnotation. I den tvadimen-
sionella Underjorden bor Mullvaden och Masken. Masken har gémt sig for Mullvaden
och befinner sig pa en plats langt bort. Masken har dven gjort delar av sin position
osynlig for omvirlden:

object Underjorden:
var x = 0
var y = 1

object Mullvaden:
var x = Underjorden.x + 10
var y = Underjorden.y + 9

object Masken:
private var x = Mullvaden.x
var y = Mullvaden.y + 190
def arMullvadsmat: Boolean = 7?77

a) Skapa ovan kod i filen Underjorden.scala med en editor och implementera
predikatet arMullvadsmat sa att det blir sant om mullvadens koordinater &r samma
som maskens.

b) Testa livet 1 Underjorden genom att klistra in din modul i REPL. Importera
Underjordens medlemmar med asterisk sa att du ser Mullvaden och Masken. Flytta
med hjalp av tilldelning Maskens y-koordinat s& att Masken hamnar p& samma plats
som Mullvaden. Kontrollera att predikatet arMullvadsmat fungerar som tankt.

¢) Importera darefter allt i Mullvaden och sedan allt i Masken och tilldela x ett nytt
varde enligt raderna 1-3 nedan. Vad ger uttrycken pa raderna 4—6 nedan for varde?

Forklara vad som hénder i termer av namnoéverskuggning och synlighet?

scala> import Mullvaden.x*
scala> import Masken.x*
scala> x = -1

scala> Mullvaden.x
scala> Masken.x
scala> Underjorden.x

Uppgift 3. Export.

a) Jamfor import och export genom att beskriva en likhet och en skillnad.

b) Skapa ett exempel i REPL som demonstrerar nyttan med export.

Uppgift 4. Tupler. Tupler sammanfor flera olika viarden i ett oféranderligt objekt.
Nedan anvinds tupler for att representera en 3D-punkt i underjorden med koordinater
(x, y, z) avtypen (Int, Int, Double), dir z-koordinaten anger hur djupt ner i
underjorden punkten ligger. P4 en hemlig plats finns uppgangen till 6verjorden.

object Underjorden3D:
private val hemlis = ("uppgangen till dverjorden", (0, 0, 0.0))

object Mullvaden:
var pos = (5, 3, math.random() * 10 + 1)
def djup = 7?77

4.2. OVNING 0BJECTS 143

object Masken:
private var pos = (0, 0, 10.0)
def arMullvadsmat: Boolean = 777
def &rRaktUnderUppgangen: Boolean = ???

a) Funktionen djup ska ge z-koordinaten fér Mullvaden. Vilken typ har djup?

b) Vilken typ har hemlis?

¢) Skriv in koden fér Underjorden3D i en editor och implementera de saknade delar-
na. Predikatet arMullvadsmat ska vara sant om Masken finns p4 samma plats som
Mullvaden. Predikatet drRaktUnderUppgangen ska vara sant om x- och y-koordinaterna
sammanfaller med den hemliga uppgangen till 6verjorden. Testa sa att dina imple-
mentationer fungerar i REPL.

d) En tupel med n viarden kallas n-tupel. Om man betraktar det tomma véardet ()
som en tupel, vad kan man da kalla detta varde?

Uppgift 5. Lat initialisering. Med lazy val kan man férdrgja initialiseringen.

a) Vad ger raderna 2 och 3 nedan for resultat?

scala> lazy val z = { println("nu!"); Array.fill(1lel.toInt)(0)}

scala> z
scala> z

b) Provaovanigen men med sa stor array att minnet blir fullt. Nar sker allokeringen?

¢) Singelobjekt ar lata. Initialiseringsordningen kan bli fel.

object test:
object zzz { val a = { println("nu!"); 42} }
object buggig { val a = b ; val b = 42 }
object funkar { lazy val a = b; val b = 42 }

Klistra in modulen test i REPL. Nar skrivs "nu!" ut?
d) Vad hinder i REPL om du refererar de tre olika a-variablerna?
e) Vad ar det for skillnad pa lazy val a = uttryck och def b = uttryck ?

Uppgift 6. Extensionsmetoder. Extensionsmetoder mojliggér punktnotation pa virden
av befintliga typer.

a) Skapa extensionsmetod pa heltal som mojliggér inkrementering.

scala> 42.inc
val res0: Int = 43

b) Skapa extensionsmetod pa heltal som mdjliggor dekrementering.

scala> 42.dec
val resl: Int = 41

¢) Sammanfor extensionsmetoderna sa att de blir kollektiva, alltsa under en och
samma extension. Anvind dven math.incrementExact och math.decrementExact
efter att du s6kt upp dokumentationen for dessa hiar: https://docs.oracle.com/en/
java/javase/17/docs/api/

https://docs.oracle.com/en/java/javase/17/docs/api/
https://docs.oracle.com/en/java/javase/17/docs/api/

u A W N P

144 KAPITEL 4. OBJEKT OCH INKAPSLING

d) Vad ar fordelen med math.incrementExact och math.decrementExact?

Uppgift 7. Jar-fil. Classpath. Paket. En jar-fil anvinds for att samla fardigkompilerade
program, kod, dokumentation, resursfiler, etc, i en enda fil. En jar-fil &r komprimerad
pa samma satt som en zip-fil. I kursen anvéinder vi ett paket med namnet introprog
som ligger i en jarfil som heter nagot i stil med introprog_3-1.4.0.jar (eller senare
version) dar forsta numret anger den Scala-version som biblioteket 4r kompilerat for
och andra numret anger bibliotekets version som &ndras vid varje ny utgava.

a) Pa veckans laboration ska vi anvidnda klassen PixelWindow som finns i paketet
introprog. Vilka parametrar har klassen PixelWindow och vilka defaultargument
finns? Hur skriver man om man vill skapa en PixelWindow-instans?

Tips: Se koden for PixelWindow hér (leta efter klassens parametrar):

https://github.com/lunduniversity/introprog-scalalib/blob/master/src/main/

scala/introprog/PixelWindow.scala

b) Ladda ner senaste utgavan av jar-filen med introprog-paketet har:
https://github.com/lunduniversity/introprog-scalalib/releases
Spara filen som heter introprog_3-1.4.0.jar (eller senare version) pa ldmplig plats.
c¢) Testa PixelWindow i REPL enligt nedan. Anvéand optionen -jar med jar-filens

namn som argumentet. Skriv kod som ritar en kvadrat med sidan 100 och som har
sitt vanstra, 6vre horn i punkten (100,100), genom att fortsdtta pa nedan paborjade

kod (anpassa namnet pa jar-filen efter den version som du laddat ned):

> scala repl --jar introprog_3-1.4.0.jar
scala> val w introprog.PixelWindow (400,300, "HEJ")

scala> w.line(100, 100, 200, 100)

scala> w.line(200, 100, 200, 200)
scala> // fortsatt sd att en hel kvadrat ritas

d) Skriv nedan program med en editor i filen hello-window.scala och fyll i de
saknade delarna sa att en réd kvadrat ritas ut, med ledning av dokumentationen:
https://fileadmin.cs.lth.se/pgk/api

package hello

object Main:
val w = new introprog.PixelWindow (400, 300, "HEJ")

var color = java.awt.Color.red

/** Kvadrat med 6vre hdrnet i punkten p och storleken side pixlar. x/
def square(p: (Int, Int))(side: Int): Unit =
if side > 0 then
// side == 1 ger en kvadrat som ar en enda pixel
val d = side - 1

w.line(p._1, p._2, p._.1+d, p._2, color)
w.line(p._1 + d, p._2, p._.1+d, p._.2 + d, color)
w.line(p._.1 +d, p._2 +d, p._1, p._.2 + d, color)
77?7

def main(args: Array[String]): Unit =

https://github.com/lunduniversity/introprog-scalalib/blob/master/src/main/scala/introprog/PixelWindow.scala
https://github.com/lunduniversity/introprog-scalalib/blob/master/src/main/scala/introprog/PixelWindow.scala
https://github.com/lunduniversity/introprog-scalalib/releases
https://fileadmin.cs.lth.se/pgk/api

4.2. OVNING 0BJECTS 145

println("Rita kvadrat:")
square(300,100) (50)

Kor programmet med

> scala run hello-window.scala --jar introprog_3-1.4.0.jar
Found several main classes. Which would you like to run?
[0] hello.Main

[1] introprog.examples.TestBlockGame
[2] introprog.examples.TestIO
[3] introprog.examples.TestPixelWindow

Det finns, forutom ditt eget huvudprogram vid namn hello.Main, flera exempel-
huvudprogram i paketet introprog.examples. Nar flera huvudprogram detekteras
far du fragan vilket du vill kéra. Vilj ditt eget huvudprogram.

e) Du kan slippa fragan om du explicit pekar ut huvudprogrammet genom att lagga
till optionen - -main-class. Prova det!

f) Du kan slippa sjédlv ladda ner introprog med hjélp av optionen - -dep vid kérning
i terminalen, vilket beskrivs i bibliotekets README.md pa github héar:
https://github.com/lunduniversity/introprog-scalalib

Prova det!

g) Du kan ocksa lagga in beroendet inne i din kodfil med en magisk kommentar,
vilket dven det beskrivs i ovan ndmna README . md. Prova det!

Uppgift 8. Fiarg. Det finns manga sitt att beskriva farger. I naturligt sprak har vi
olika namn pa fargerna, till exempel vitt, rosa och magenta. I bildminnen i datorer
ar det vanligt att beskriva farger som en blandning av rott, gront och bldtt i det sa
kallade RGB-systemet.

Pa veckans labb ska vi anvianda PixelWindow, som beskriver RGB-farger med
klassen java.awt.Color. Det finns nagra fordefinierade farger i java.awt.Color, till
exempel java.awt.Color.black for svart och java.awt.Color.green for gront, se
vidare dokumentationen for java.awt.Color i JDK*. Andra firger kan skapas genom
att du sjilv anger den specifika méngden rott, gront och blatt som behévs for att
blanda en viss fiarg. De tre parametrarna till new java.awt.Color(r, g, b) anger
hur mycket rott, gront respektive blatt som fargen ska innehéalla, och méngderna ska
vara i intervallet 0-255. Fargen (153,102,51) innebér ganska mycket rott, lite mindre
gront och 4nnu mindre blatt och det upplevs som brunt.

a) Pa laborationen behover du dessa tre brunaktiga farger och det 4r smidigt att
samla dem i en egen namnrymd via ett singelobjekt som heter Color enligt nedan.

object Color:
val mole new java.awt.Color(51, 51, 0)
val soil new java.awt.Color(153, 102, 51)
val tunnel = new java.awt.Color(204, 153, 102)

Men vi vill helst gora import pa java.awt.Color for att kunna anvinda klassens
namn utan att upprepa hela sékvigen, trots att namnet krockar med namnet pa vart
singelobjekt. Skriv om koden ovan med hjéilp av namnbyte vid import sa att firgerna
kan skapas med new JColor(...). Gor importen lokalt i singelobjektet Color.

4https://docs.oracle.com/en/java/javase/Zl/docs/api/

https://github.com/lunduniversity/introprog-scalalib
https://docs.oracle.com/en/java/javase/21/docs/api/

W 00 N O U A W N

e e e e
0 N O U A WN RO

146 KAPITEL 4. OBJEKT OCH INKAPSLING

b) Inspireras av REPL-experimenten nedan och éndra ditt program i
hello-window.scala sa att tre o6verlappande fargfyllda kvadrater ri-
tas enligt den 6vre bilden till hoger. I stéllet for att rita med den fardiga
metoden fill som finns i PixelWindow, ska du tréna pa iteration ge-
nom att sjalv implementera ritprocedurerna rak och fyll enligt nedan.
Proceduren rak ska rita en horisontell linje med véinstra punkten p och
med ldngden d pixlar. Proceduren fyll ska, med manga horisontell
linjer, rita en fylld kvadrat med 6vre vanstra hornet i punkten p och
sidan s pixlar. Det som ritas ut ska se ut som den 6vre bilden till hoger.
Om du t.ex. tar med en pixel for mycket i dina koordinatberdkningar
kan det bli som i den felaktiga undre bilden.

> scala repl --dep se.lth.cs::introprog:1.4.0

scala> val w = new introprog.PixelWindow(400,300,"Tre nyanser av brunt")
scala> type Pt = (Int, Int)

scala> var color = java.awt.Color.red

scala> def rak(p: Pt)(d: Int) = w.line(p._1, p._2, ???, ???, color)
scala> def fyll(p: Pt)(s: Int) = for i <- ??? do rak((p._1, ?2?))(s)

scala> object Color:
| 7?7

scala> color = Color.soil
scala> fyll(100,100)(75)

scala> color = Color.tunnel
scala> fyll(100,100)(50)

scala> color = Color.mole
scala> fyll(150,150) (25)

¢) Vid vilka anrop ovan utnyttjas att tupelparenteserna kan skippas?

Uppgift 9. Hindelser. Pa veckans laboration ska du implementera ett enkelt spel dar
anvandaren kan styra en blockmullvad med tangentbordet. Med introprog.PixelWindow
kan du hantera de héndelser som genereras nir anviandaren trycker ner eller slapper
en tangent eller en musknapp.

a) Studera dokumentationen for singelobjektet introprog.PixelWindow.Event. Vad
heter den oforanderliga heltalsvariabel som representerar att en nedtryckning av en
tangentbordsknapp har intraffat? Vad har variabeln for varde?

b) Via dokumentationen for av singelobjektet introprog.examples.TestPixelWindow
kan du komma &t koden som implementerar objektet genom att klicka pa ldnken
Source ovanfor s6krutan. Vilken rad i huvudprogrammet i main-metoden tar hand om
fallet att en knappnedtryckningshéndelse har intraffat?

¢) Kormed scala run . (dar punkten star for aktuell katalog) huvudprogrammet i
TestPixelWindow med optionerna
--main-class introprog.examples.TestPixelWindow och
--dep se.lth.cs::introprog:1.3.1

Ett testfonster 6ppnas ndr main-metoden kors. Klicka i fonstret pa olika stéllen
och tryck pa olika tangenter och observera vad som skrivs ut. Vad skrivs ut nar
pil-upp-tangenten trycks ned och sldapps upp?

d) Med inspiration fran implementationen av TestPixelWindow, skriv ett program

4.2. OVNING 0BJECTS 147

som ritar grona linjer mellan positionerna for varje musknapp-nedtryck och musknapp-
uppslapp som anvindaren gor.

Tips: Nar musknappen trycks ned si spara undan positionen i en variabel med
namnet start. Nar musknappen sldpps upp, rita linjen fran den sparade positionen
till w. lastMousePos.

148 KAPITEL 4. OBJEKT OCH INKAPSLING
4.2.2 Extrauppgifter; trdna mer

Uppgift 10. Funktioner dar objekt med en apply-metod.
Metoden apply ér speciell.

scala> object plus { def apply(x: Int, y: Int) = x + vy }

scala> plus.apply (42, 43)

Gar det att utelamna .apply och anropa plus som en funktion?

Uppgift 11. Skapa moduler med hjilp av singelobjekt.

a) Undersok i REPL vad uttrycket "paronisglass".split('i') har for virde.
b) Vad skrivs ut om du med Test () anropar apply-metoden nedan?

object stringUtils:
object split:
def sentences(s: String): Array[String] = s.split('.")
def words(s: String): Array[String] = s.split(' ').filter(_.nonEmpty)

object count:
def letters(s: String): Int
def words(s: String): Int
def sentences(s: String): Int

s.count(_.isLetter)
split.words(s).size
split.sentences(s).size

object statistics:

var history = ""

def printFreq(s: String = history): Unit =
println(s"\n--- FREKVENSANALYS AV:\n\$s")
println(s"# bokstaver: \${count.letters(s)}")
println(s"# ord : \${count.words(s)}")
println(s"# meningar : \${count.sentences(s)}")
history = (s"\$history \$s").trim

object Test:

import stringUtils.x*

def apply(): Unit =
val sl = "Fem myror &r fler &n fyra elefanter. At gurka."
val s2 = "Galaxer i mina braxer. Tomat ar gott. Paronsplitt."
statistics.printFreq(sl)
statistics.printFreq(s2)
statistics.printFreq()

¢) Vilket av objekten i modulen stringUtils har tillstand? Ar det forandringsbart?

d) Andra metoderna i singelobjektet count sa att de blir extensionsmetoder och kan
anropas sa har:

scala> import stringUtils.count

scala> val s "Hejsan hoppsan. Gurka ar gott."

val s: String Hejsan hoppsan. Gurka ar gott.

scala> (s.nbrOfLetters, s.nbrOfWords, s.nbrOfSentences)
val res0: (Int, Int, Int) = (24,5,2)

4.2. OVNING 0BJECTS 149

Uppgift 12. Tupler som parametrar. Implementera nedan olika varianter av berik-
ning av avstandet mellan tva punkter. Tips: Anvand math.hypot.

def distxy(x1l: Int, yl: Int, x2: Int, y2: Int): Double = 7?7
def distpt(pl: (Int, Int), p2: (Int, Int)): Double = 77?7
def distp(pl: (Int, Int))(p2: (Int, Int)): Double = 777

Uppgift 13. Tupler som funktionsresultat. Tupler mojliggér att en funktion kan retur-
nera flera olika virden pa samma gang. Implementera funktionen statistics nedan.
Den ska returnera en 3-tupel som innehaller antalet element i xs, medelvirdet av
elementen, samt en 2-tupel med variationsvidden (min,max). Ange returtypen ex-
plicit i din implementation. Testa sa att den fungerar i REPL. Tips: Du har nytta av
metoderna size, sum, min och max som fungerar pa nummersekvenser.

/** Returns the size, the mean, and the range of xs x/
def statistics(xs: Vector[Double]) = ??7?

Uppgift 14. Skapa moduler med hjilp av paket.

a) Koden nedan ligger i filen paket.scala. Rita en bild av katalogstrukturen som
skapas i aktuellt bibliotek i underkatalogen main i .scala-build nir nedan kod
kompileras med: scala compile paket.scala

package gurka.tomat.banan

package pl:
package pll:
object hello:
def hello = println("Hej paket pl.pll!'")
package pl2:
object hello:
def hello = println("Hej paket pl.pl2!'")

package p2:
package p21:
object hello:
def hello = println("Hej paket p2.p21!")

object Main:
def main(args: Array[String]): Unit =
import pl.x
pll.hello.hello
pl2.hello.hello
import p2.{p2l as apelsin}
apelsin.hello.hello

b) Vad skrivs ut néar programmet kors?

¢) Far paket ha tillstaindsvariabler utan att de placeras inuti ett singelobjekt eller
en klass?

150 KAPITEL 4. OBJEKT OCH INKAPSLING
4.2.3 Fordjupningsuppgifter; utmaningar

Uppgift 15. Hur klara sig utan do while i Scala 3? I manga sprak finns en konstruk-
tion med f6ljande syntax: do <satser> while <villkor> dér <satser> gors minst
en gang innan sanningsvirdet for <villkor> testas. Denna "bakvinda while” anviands
inte sa ofta, men kan vara smidig om man vill kéra en repetition minst en gang.

Denna konstruktion finns i Scala 2 men inte i Scala 3 eftersom nyckelordet do
i Scala 3 anvinds vid valfria klammerparenteser och indenteringssyntax i "vanliga
while”. Ett skél att det kan anses ok att ta bort do <satser> while <villkor> ar att
en "bakviand while” 4nda i Scala 3 gar att skriva om till en ”vanlig while” genom att
inkludera satserna som ska goras minst en gang i ett block pa villkorets plats och lata
satserna i loopen vara tomma vérdet, alltsa:

while
<satser>
<villkor>
do ()

a) Nedan funkar i Scala 2, men vad hander om du foérséker gora detta i Scala 3:

> scala repl --scala 2
Welcome to Scala 2.13.8 (Open]DK 64-Bit Server VM, Java 17.0.3).
Type in expressions for evaluation. Or try :help.

0

scala> var i =
var i: Int = 0

scala> do i += 1 while (i < 10)

scala> i
val res20: Int

b) Skriv om "bakvinda” do while till en motsvarande ”"vanlig” while do som funge-
rar i Scala 3.

Uppgift 16. Postfixa operatorer for inkrementering och dekrementering. I manga sprak,
t.ex. Java, C++, C, gar det att skriva i++ och i-- om man vill rdkna upp eller ner
heltalsvariabeln i. Anvind Scalas extensionsmetoder for att goéra sa att det gar att
anvianda operatorerna ++ och - - pa heltal, enligt nedan:

scala> 42.++
val res0: Int

scala> 42.--
val resl: Int 41

scala> import language.postfixOps // tillater postfix operatornotation

scala> 43 ++
val res2: Int

scala> 43 --
val res3: Int

4.2. OVNING 0BJECTS 151

scala> val i = 42
val i: Int = 42

scala> i++

val res4: Int

scala> i--
val res5: Int

Uppgift 17. Anvdnda fardigt paket: Fargudljare. Pa laborationen har du nytta av att
kunna blanda egna fiarger sa att du kan rita klarbla himmel och frodigt grias. Du kan
skapa en fargviljare med hjilp av introprog-paketet enligt nedan.

> scala repl --dep se.lth.cs::introprog:1.3.1

scala> introprog.Dialog.selectColor()

a) Vad hinder om du trycker efter att du valt en gron farg?

b) Vad hiander om du trycker ?
¢) Vad hinder om du trycker ?

d) Las dokumentationen for metoden selectColor i singelobjektet Dialog i paketet
introprog. Anropa selectColor med default-firgen java.awt.Color.green.

Uppgift 18. Anvdnda fardigt paket: anvandardialoger.

a) Las om dokumentationen for singelobjektet Dialog i paketet introprog.

b) Anvénd proceduren introprog.Dialog.show och ge ett meddelande till anvidnda-
ren att det 4r "Game over!".

¢) Anvind funktionen introprog.Dialog. input for att visa fragan "Vad heter du?"
och ta reda pa anvindarens namn. Vad hinder om anvindaren klickar Cancel?

d) Anvind funktionen introprog.Dialog.select for att be anviandaren vilja mel-
lan sten, sax och pase. Vad ar returtypen?

Uppgift 19. Skapa din egen jar-fil.

a) Skrivkommandot jariterminalen och undersok med jar --help vad det finns for
optioner. Vilka optioner ska du anvianda for skapa (eng. create) en jar i en namngiven
fil (eng. file) med utforlig (eng. verbose) utskrift om vad som héinder?

b) Skapa med en editorifilen hello.scala ett enkelt program som skriver ut "Hello
package!" eller liknande. Koden ska ligga i paketet hello och innehalla ett object
Main med en main-metod. Kompilera din fil med optionen - -destination . s att din
kod hamnar i aktuell katalog i stallet for i .scala-build.

¢) Skriv ett jar-kommando i terminalen som forpackar koden i en jar-fil med namnet
my.jar och kor igang REPL med jar-filen pa classpath. Anropa din main-funktion
i REPL genom att ange sékvigen paketnamn.objektnamn.metodnamn med en tom
array som argument.

d) Med vilket kommando kan du kora det kompilerade och jar-forpackade program-
met direkt i terminalen (alltsi utan att dra igang REPL)?

Uppgift 20. Hur stor dr JDK8? Ta med hjilp av http://stackoverflow.com/ reda
pa hur manga klasser och paket det finns i Java-plattformen JDKS8.

http://stackoverflow.com/

152 KAPITEL 4. OBJEKT OCH INKAPSLING

4.3 Laboration: blockmole

=
o

Kunna forklara hur singelobjekt kan anvédndas som moduler.

Kunna forklara hur atkomst av medlemmar i singelobjekt sker.

Kunna skapa kod som reagerar pa och foriandrar objekts tillstand.

Kunna forklara nyttan med att samla namngivna konstanter i egen modul.
Kunna férklara hur import paverkar synlighet av namn.

Kunna ge exempel pa en situation diar man har nytta av namnbyte vid import.
Kunna redogora for skillnaden mellan paket och singelobjekt.

Kunna skapa och anvéanda tupler.

Oooooogoo

Forberedelser

] Gor 6vning objects och repetera 6vning functions.
[J Repetera appendix ??, ??, och ??2.
(] Hamta given kod via kursen github-plats.

4.3.1 Bakgrund

Blockmullvad (Talpa laterculus) ar
ett fantasidjur i familjen mullvads-
djur. Den ar kand for sitt karaktaris-
tiska kvadratiska utseende. Den lever
mest ensam i sina underjordiska gang-
ar som, till skillnad fran den verkliga
mullvadens (Talpa europaea) gangar,
har helt raka viggar.

=T

4.3.2 Obligatoriska uppgifter

Uppgift 1. Skapa katalog och kodfil. Du ska, steg for steg, skapa ett program som
later anvéindaren interagera med en levande blockmullvad. Anvind en editor, t.ex. VS
code, kompilera ditt program i terminalen med scala compile . --watch och kor i
annat terminalfonster med scala run .

a) Skapa en ny fil med namnet blockmole.scala i en ny katalog i din hemkatalog,
till exempel ~/pgk/w04/lab/blockmole.scala, dir ~ dr din hemkatalog.

> mkdir -p ~/pgk/w04/lab

> code ~/pgk/w04/lab/blockmole.scala

b) Navigera till din nya katalog och kontrollera att din nya fil finns déar.

> cd ~/pgk/w04/lab/
> 1s

blockmole.scala

¢) Gor en paketdeklaration i borjan av filen blockmole.scala sa att koden du ska
skriva nedan ingéar i paketet blockmole.

https://github.com/lunduniversity/introprog/tree/master/workspace/

>

4.3. LABORATION: BLOCKMOLE 153

d) Deklarera sedan ett singelobjekt med namnet Main med en @main def run-
procedur som skriver ut texten: "Keep on digging!"

e) Kompilera ditt program med scala compile . och leta efter filer som slutar pa
. classi underkataloger till

.scala-build. Vilket namn har underkatalogen med ditt programs maskinkodsfiler?
Varfor fick underkatalogen detta namn?

f) Kor kommandot scala run . --main-class blockmole.run for att exekvera
ditt program och kontrollera utskriften i terminalfonstret.

Nu har du skrivit ett program som uppmanar en blockmullvad att fortsatta grava. Det
programmet &r inte sa anvindbart, eftersom mullvadar inte kan ldasa. Néasta steg ar
darfor att skriva ett grafiskt program.

Uppgift 2. Skapa en grundstruktur for programmet. I mindre program fungerar det
bra att samla alla funktioner i ett singelobjekt, men i stora program blir det lattare
att hitta i koden och forsta vad den gér om man har flera moduler med olika ansvar.
Ditt program ska ha féljande 6vergripande struktur:

package blockmole

object Color:

// Skapar olika farger som behdvs i dvriga moduler
77?7

object BlockWindow:

// Har ett introprog.PixelWindow och ritar blockgrafik
77?7

object Mole: // Representerar en blockmullvad som kan grava
def dig(): Unit = println("Har ska det gravas!")

object Main:
def drawWorld(): Unit = println("Ska rita ut underjorden!")

@main def run =
drawWorld()
Mole.dig()

Skapa programskelettet ovan i filen blockmole.scala och se till att koden kompilerar
utan fel och gar att kora med utskrifter som forvintat. Funktionen 777 i skelettet
anviands som platshallare for att koden ska kunna kompileras trots att singelobjektens
kroppar just nu 4r tomma (mer om detta i kapitel 5). Byt ut ??? mot den faktiska
koden for Color och BlockWindow i kommande deluppgifter.

Vi ldgger i denna laboration alla moduler i samma fil, men i andra situationer nir
modulerna blir stora och/eller ska ateranviandas av flera olika program &r det bra att
ha dem i olika filer sa att de kan kompileras och testas separat.

Uppgift 3. Lagg till farger i fargmodulen. 1 singelobjektet Color ska vi skapa farger
med hjalp av Java-klassen java.awt.Color. Eftersom vart singelobjektnamn "krockar”
med namnet pa Java-fargklassen sa byter vi namn pa Java-klassen till JColor i
importdeklarationen.

154 KAPITEL 4. OBJEKT OCH INKAPSLING

a) Laggin en importdeklaration med namnbytet direkt efter paketdeklarationen. Vi
lagger importen sa att den syns i hela paketet eftersom flera objekt behover tillgang
till JColor. Sakerstill att koden fortfarande kompilerar utan fel.

b) Skapa sedan nedan farger i objektet Color:

object Color:

val black = new JColor(O, 0, 0)
val mole = new JColor(51, 51, 0)
val soil = new JColor(153, 102, 51)
val tunnel = new JColor(204, 153, 102)

val grass = new JColor(25, 130, 35)

Uppgift 4. Skapa ett ritfonster i modulen for blockgrafik. Lagg till nedan tre variabler
i singelobjektet BlockWindow:

val windowSize
val blockSize

(30, 50) // (width, height) in number of blocks
10 // number of pixels per block

val window = new PixelWindow(???, 7?7, ?77?)

¢ Importera introprog.PixelWindow lokalt i BlockWindow. (En lokal import-
deklaration &r bra hér eftersom det bara ar detta objekt som behéver tillgang
till PixelWindow.)

* Gor sa att storleken pa window motsvarar blockstorleken ganger bredd resp. héjd
iwindowSize.

¢ Ge fonstret en lamplig titel, t.ex. "Digging Blockmole".

* Nir du kompilerar behover du se till att introprog finns tillginglig pa classpath
(se ovning objects).

¢ Om du glomt ordningen pa parametrarna till klassen PixelWindow sa kolla i do-
kumentationen for PixelWindow ®. Anvind namngivna argument vid skapandet
av fonstret. Tycker du att koden blir mer ldsbar med namngivna argument? ©

For att testa fonstret, 14gg till en enkel testritning genom att i proceduren drawworld
anvanda BlockWindow.window, till exempel:

def drawWorld(): Unit =
BlockWindow.window.line (100, 10, 200, 20)

Kompilera och kor och sdkerstéll att allt fungerar som forvantat.

Uppgift 5. Skapa procedur for blockgrafik. Nu har du gjort ett grafiskt program, men
annu syns ingen mullvad. Det &dr dags att skapa koordinatsystemet i blockmullvadens
blockvérld.

5https://fileadmin.cs.lth.se/pgk/api
8Det gar tyvarr inte att anviinda namngivna argument nér man instansierar Java-klasser i Scala,
men PixelWindow 4r implementerad i Scala sa hir fungerar det fint.

https://fileadmin.cs.lth.se/pgk/api

4.3. LABORATION: BLOCKMOLE 155

Figur 4.1: Varje block bestar av manga pixlar. Det markerade blocket har koordinat
(1,1) i blockkoordinater medan blockets 6versta vanstra pixel har koordinat (7,7) i
PixelWindow-koordinater, om det t.ex. gar sju-ganger-sju pixlar per block. Vad ar
block-koordinaten for blocket till hoger om det markerade blocket i bilden? Vad ar dess
PixelWindow-koordinater for 6versta vanstra och nedersta hogra pixlarna?

a) Sakerstill att du kan forklara hur koordinaterna i ett PixelWindow tolkas, genom
att med papper och penna rita en enkel skiss av ungefidr var positionerna (0,0),
(300,0), (0,300) och (300,300) ligger i ett fonster som ar 300 bildpunkter brett och 500
bildpunkter hogt. Anvand figur 4.1 for att forklara relationen mellan underliggande
fonsterkoordinater och blockkoordinater. Notera att y-axeln pekar nedat.

b) Koordinatsystem i BlockWindow ska ha kvadratiska, stora bildpunkter som bestar
av manga fonsterpixlar. Vi kallar dessa stora bildpunkter for block for att lattare skilja
dem fran de enpixelstora bildpunkterna i PixelWindow.

I block-koordinatsystemet for BlockWindow géller foljande:

Blockstorleken anger sidan i kvadraten for ett block riaknat i antalet pixlar. Om
blockstorleken &r b, sa ligger koordinaten (x,y) i BlockWindow pa koordinaten
(bx,by) i PixelWindow.

Implementera funktionen block i modulen BlockWindow enligt nedan, sa att en
kvadrat ritas ut niar proceduren anropas. Parametern pos anger block-koordinaten
och parametern color anger fargen. Typ-alias-deklarationen av Pos ger ett beskri-
vande typnamn for en 2-tupel av heltal, som vi kan anvinda i parameterlistor for
att betecknande positioner i ett BlockWindow. Se dokumentationen av fill-metoden
i PixelWindow. Observera att du behover rikna om block-koordinaterna i pos till
fonsterkoordinater i windows. fill. Fyll i det som saknas nedan.

type Pos = (Int, Int)

def block(pos: Pos)(color: JColor = JColor.gray): Unit =
val x = ??? //rakna ut blockets x-koordinat i pixelfdnstret
val y = ??? //rakna ut blockets y-koordinat i pixelfénstret
window.fill(??7?)

Sakerstill att koden kompilerar utan fel.

c¢) For att testa din procedur, anropa funktionen BlockWindow.block nagra ganger i
Main.drawWorld, dels med utelimnat defaultargument, dels med olika farger ur

156 KAPITEL 4. OBJEKT OCH INKAPSLING

fargmodulen. Kompilera och kor ditt program och kontrollera att allt fungerar som
det ska.

Uppgift 6. Skapa rektangelprocedur och underjorden. Du ska nu skriva en procedur
med namnet rectangle som ritar en rektangel med hjilp av proceduren block. Sen
ska du anvinda rectangle i Main.drawWorld for att rita upp mullvadens underjor-
diska varld.

a) Lagg till proceduren rectangle i grafikmodulen. Procedurhuvudet ska ha foljande
parametrar uppdelade i tre olika paramterlistor, samt returtyp Unit:

(leftTop: Pos)(size: (Int, Int))(color: JColor = JColor.gray)

Parametern leftTop anger blockkoordinaten for rektangelns 6vre vanstra horn,
och size anger (bredd, hojd) uttryckt i antal block.
Anvind denna nistlade repetition for att rita ut rektangeln:

for y <- 77?7 do
for x <- ??? do
block(x, y)(color)

b) I vilken ordning ritas blocken i rektangeln ut (lodrétt eller vagratt)? Om du ar Y
osidker kan du lagga in en utskrift av (x, y) iden innersta loopen for att se ordningen.
c¢) Lagg foljande kod i Main.drawWorld sa att programmet ritar ut underjorden (det
vill sdga en massa jord dir blockmullvaden kan griava sina tunnlar) och dven lite grés.

def drawWorld(): Unit =
BlockWindow.rectangle(0, 0)(size
BlockWindow. rectangle(0, 4)(size

(30, 4))(Color.grass)
(30, 46))(Color.soil)

d) AnropaMain.drawWorldiMain.run och testa att det fungerar. Om nagon del av
fonstret forblir svart istallet for att fa grasfarg eller jordfiarg, kontrollera att block och
rectangle dr korrekt implementerade.

Uppgift 7. I PixelWindow finns funktioner for att kidnna av tangenttryckningar och
musklick. Du ska anvéanda de funktionerna for att styra en blockmullvad. Studera
dokumentationen for awaitEvent och Event i PixelWindow, samt koden i exempelpro-
grammet TestPixelWindow i paketet introprog.examples.

a) Lagg till denna funktion i BlockWindow:

val maxWaitMillis = 10

def waitForKey(): String =
window.awaitEvent (maxWaitMillis)
while window.lastEventType != PixelWindow.Event.KeyPressed do
window.awaitEvent(maxWaitMillis) // skip other events
println(s"KeyPressed: ${window.lastKey}")
window. lastKey

Det finns olika sorters hindelser som ett PixelWindow kan reagera pa, till exempel
tangenttryckningar och musklick. Funktionen som du precis lagt in vantar pa en
héndelse i ditt PixelWindow med hjilp av (window.awaitEvent) dnda tills det kom-
mer en tangenttryckning (KEY_EVENT). Nar det kommit en tangenttryckning anropas

v ®

4.3. LABORATION: BLOCKMOLE 157

window. lastKey for att ta reda pa vilken bokstav eller vilket tecken det blev, och det
resultatet blir ockséa resultatet av waitForKey, eftersom det ligger sist i blocket.

b) Utoéka proceduren Mole.dig enligt nedan:

def dig(): Unit =
var x = BlockWindow.windowSize. 1 / 2
var y = BlockWindow.windowSize._2 / 2
var quit = false
while 'quit do
BlockWindow.block(x, y)(Color.mole)
val key = BlockWindow.waitForKey()

if key == "w" then ??77

else if key == "a" then 2?77

else if key == "s" then ?7?

else if key == "d" then 777

else if key == "g" then quit = true
end while

c¢) Fyllialla ??? sa att 'w' styr mullvaden ett steg uppat, 'a’' ett steg at vanster,
's' ett steg nedat och 'd' ett steg at hoger.

d) Kontrollera sa att main bara innehaller tva anrop: ett till drawWorld och ett till
dig. Kompilera och kor ditt program for att se om programmet reagerar pa tangenterna
w, a, s och d.

e) Om programmet fungerar kommer det bli manga mullvadar som tillsammans
bildar en lang mask, och det &r ju lite underligt. Lagg till ett anrop i Mole.dig som
ritar ut en bit tunnel pa position (x,y) efter anropet till BlockWindow.waitForKey
men innan if-satserna. Kompilera och kor ditt program for att grava tunnlar med din
blockmullvad.

4.3.3 Kontrollfrdgor

Repetera teorin for denna vecka och var beredd pa att kunna svara pa dessa fragor
nér det blir din tur att redovisa vad du gjort under laborationen:

Hur dndras mullvadens koordinater nér den ror sig uppat pa skarmen?

Hur representeras farger med RGB?

Vad ar en tupel och hur anvinds tupler i denna labb?

Vad innebéar punktnotation?

Ge exempel pa anviandning av import och forklara vad som hénder.

Vad ar fordelen med skuggning och lokala namn?

Vi anvinde flera singelobjekt som olika s.k. moduler i denna laboration. Vad ar
fordelen med att att dela upp koden i moduler?

8. Géa igenom malen med laborationen och kontrollera sa du har uppfyllt dem.

No o

4.3.4 Frivilliga extrauppgifter

Uppgift 8. Mullvaden kan for tillfdllet grava sig utanfor fonstret. Lagg till nagra
if-satser i borjan av while-satsen som upptécker om x eller y ligger utanfor fonstrets
kant och flyttar i sa fall tillbaka mullvaden precis innanfor kanten.

158 KAPITEL 4. OBJEKT OCH INKAPSLING

Uppgift 9. Mullvadar ar inte sa intresserade av livet ovanfor jord, men det kan vara
trevligt att se hur langt ner mullvaden gravt sig. Lagg till en himmelsfiarg i objektet
Color och rita ut himmel ovanfor griset i Mole.drawWorld. Justera ocksa det du gjorde

i foregaende uppgift, sa att mullvaden haller sig pa marken. Tips: Du har nytta av en in-
teraktiv fargvéiljare som du kan fa genom att anropa introprog.Dialog.selectColor()
i Scala REPL.

Uppgift 10. Andra sa att mullvaden inte limnar nagon tunnel efter sig nir den
springer pa griset.

Uppgift 11. Andra i din rectangle-metod sa att den ritar ut en likadan rektangel
men utan att anvinda nistlade loopar. Detta kan dstadkommas genom ett anrop till
PixelWindow. fill.

Uppgift 12. Lat mullvaden fortsiatta grava 4ven om man inte trycker ned nagon
tangent. Tangenttryckning ska dndra riktningen.

a) Skapa en ny metod BlockWindow.waitForKeyNonBlocking som mojliggor tan-
gentbordsavlidsning som ej blockerar exekveringen enligt nedan:

def waitForKeyNonBlocking(): String =
import PixelWindow.Event.{KeyPressed, Undefined}

window.awaitEvent (maxWaitMillis)

while
window.lastEventType != KeyPressed &&
window.lastEventType != Undefined)
do window.awaitEvent(maxWaitMillis)
if window.lastEventType == KeyPressed then window.lastKey else ""

b) Lagg till en ny metod BlockWindow.delay som ska géra det mojligt att hindra
blockmullvaden fran att springa alltfor fort:

def delay(millis: Int): Unit = Thread.sleep(millis)

c¢) Skapa en ny metod Mole.keepOnDigging som fran borjan &r en kopia av metoden
dig. Gor foljande tillagg/andringar:

1. Lagg till tva variabler var dx och var dy i borjan, som ska halla reda pa rikt-
ningen som blockmullvaden graver. Initialisera dem till 0 respektive 1.

2. Lagg in en fordréjning pa 200 millisekunder i den oéndliga loopen. Deklarera
en konstant delayMillis pa lampligt stélle i Mole och anviand denna konstant
som argument till delay.

3. Anropa waitForKeyNonBlocking i stillet for waitForKey och kolla efter knapp-
tryckning enligt nedan kodskelett. Fyll i de saknade delarna sa att blockmullva-
den ror sig ett steg i rdtt riktning i varje looprunda.

if key == "w" then { dy = -1; dx = 0 }
else if key == "a" then { 7?7 }

else if key == "s" then { 7?7 }

else if key == "d" then { ??7? }

else if key == "q" then { quit = true }

y += 777?

X += 277

4.3. LABORATION: BLOCKMOLE 159

Uppgift 13. Fanga blockmasken.

Blockmask (Lumbricus quadratus) ar ett fantasidjur i fa-
miljen daggmaskar. Den &r kand for att kunna teleportera
sig fran en plats till en annan péa ett 6gonblick och &r darfor
svarfangad. Den har i likhet med den verkliga daggmas-
ken (Lumbricus terrestris) RGB-fargen (225,100,235), men
ar kvadratisk och exakt ett block stor. Blockmasken ar ett
eftertraktat villebrad bland blockmullvadar.

a) Lagg till modulen Worm nedan i din kod och anvénd procedurerna i keepOnDigging
sa att blockmullvaden far en blockmask att jaga.

object Worm:
import BlockWindow.Pos

def nextRandomPos(): Pos =
import scala.util.Random.nextInt
val x = nextInt(BlockWindow.windowSize._1)
val y = nextInt(BlockWindow.windowSize._2 - 7) + 7
(x, y)

var pos = nextRandomPos ()
def isHere(p: Pos): Boolean = pos == p

def draw(): Unit

BlockWindow.block(pos) (Color.worm)

def erase(): Unit = BlockWindow.block(pos) (Color.soil)

val teleportProbability = 0.02

def randomTeleport(notHere: Pos): Unit =
if math.random() < Worm.teleportProbability then
erase()
while
pos = nextRandomPos ()
pos == notHere
do ()
draw()

end Worm

b) Koden i Worm forutsétter att himmel finns i fonstrets 6versta 7 block. Hur manga
block som dr himmel kan egentligen med fordel vara en konstant med ett bra namn
pa en bra plats. Denna konstant bor anvédndas dven i drawWorld. Fixa det!

¢) Gor sa att texten "WORM CAUGHT!" skrivs ut i terminalen om blockmullvaden ar
pa samma plats som blockmasken.

d) Anvind parametern notHere till att forhindra att blockmasken teleporterar sig
till samma plats som blockmullvaden.

160 KAPITEL 4. OBJEKT OCH INKAPSLING

e) Gor sa att blockmullvaden far 1000 poing varje gang den fangar blockmasken.
f) Gor sa att spelet varar en bestamd, lagom lang tid, innan Game Over. Anvand
System.currentTimeMillis som ger aktuella antalet millisekunder sedan den forste
januari 1970. Nér spelet ar slut ska den totala podngen som blockmullvaden samlat
skrivas ut i terminalen.

g) Gor sa att spelets hastighet 6kar (d.v.s. att fordrojningen i spel-loopen minskar)
efter en viss tid. I samband med det ska sannolikheten for att blockmasken teleporterar
sig oka.

Kapitel 5

Klasser och datamodellering

Begrepp som ingar i denna veckas studier:

applikationsdomén
datamodell
objektorientering
klass

instans

Any

isInstanceOf
toString

new

null

this

accessregler
private
private[this]
klassparameter
priméar konstruktor
fabriksmetod
alternativ konstruktor
forandringsbar
oforanderlig
case-klass
kompanjonsobjekt
referenslikhet
innehallslikhet

eq

oo ogogogogo

161

162 KAPITEL 5. KLASSER OCH DATAMODELLERING

5.1 Teori

Begreppet Kklass ar en viktig abstraktionsmekanism inom objekt-orienterad pro-
grammering (OOP) for att modellera data i en applikationsdomén, t.ex. data om
anvdndare och deras favoritmusik i applikationsdoménen musikspelare. Klasser an-
vinds for att samla funktioner och data. En klass har ett namn och kan ha parametrar.
En klass deklareras med nyckelordet class och idr en beskrivning hur en viss typ av
objekt ska utformas nir de si smaningom skapas. Det gar att skapa manga objekt ur
en och samma klass.

5.1.1 En metafor for klass: Stémpel

En klass liknar en stampel. * En stiampel kan tillverkas —
motsvarar deklaration av klas-
sen.

¢ Det hinder inget forrdn man
stamplar — motsvarar instan-
siering.

e Da skapas avbildningar av
stdmpeln — motsvarar alloke-
ring av ett objekt som ar en
instans av klassen.

¢ Allokering kallas ocksa kon-
struktion och funktionen/ko-
den som gor sjialva allokeringen
kallas konstruktor.

5.1.2 Vad ar en klass?

¢ En klass dr en mall (eng. template) for att skapa objekt.

* Objekt kan skapas med new Klassnamn(parametrar), vilket kallas instansie-
ring.

¢ I Scala 3 ar new valfritt, det racker med Klassnamn(parametrar).

¢ Ett objekt som skapats med klassen Klassnamn som mall kallas for en instans
av klassen Klassnamn.

¢ En klass innehaller medlemmar (eng. members), som bl.a. kan vara:

- attribut, kallas dven falt (eng. field): val, lazy val, var
- metoder, kallas dven operationer: def

* Varje instans har sin egen uppsittning virden pa attributen, som tillsammans
utgor instansens tillstand.

5.1.3 Datamodellering

Varfor behovs klasser?

5.1. TEORI 163

* | en viss applikationsdoméan (eng. application domain), tex. skatteverkets
deklarationssystem, behévs en modell av doméanspecifik data, t.ex. personer,
personnummer, adresser, inkomster, avdrag, fastigheter, etc.

* Med klasser kan du skapa nya typer (utéver Int, String ...) som béttre repre-
senterar doménens data.

¢ Med klasser implementerar du modeller som representerar visentliga attribut
ur applikationsdoménen.

¢ Med metoder (funktioner i klasser) kan du skapa och behandla doménens data.

¢ Datamodellering i Scala gors ofta med s.k. case-klasser och oféranderliga
instanser.

5.1.4 Singelobjekt jamfért med klass

Vi har tidigare deklarerat singelobjekt som bara finns i en enda upplaga:

scala> object Bj6érn { var dlder = 54; val langd = 178 }

Med en klass kan man skapa godtyckligt manga instanser av klassen med
hjalp av nyckelordet new foljt av klassens namn:

scala> class Person { var alder = 0; var langd = 0 }

scala> val bjorn = new Person // allokera plats i minnet
bjorn: Person = Person@7ae75ba6 // unikt id for instansen

Person@7ae75ba6

alder n
langd n

5.1.5 Foérdandring av objektets tillstaind

scala> bjérn.alder = 55

scala> bjorn.langd = 178

bjorn| e

Person@7ae75ba6

alder | 55

55 |
langd | 178

164 KAPITEL 5. KLASSER OCH DATAMODELLERING

5.1.6 Batire att initialisera med hjdlp av klassparametrar

scala> class Person(var alder: Int, var léngd: Int)

scala> val sandra = new Person(43, 166)
sandra: Person = Person@7878bbdb

sandra{%-.___\\‘i

Person@7878bbdb

alder | 43
langd | 166

5.1.7 Klassdeklarationer och instansiering

Syntax for deklaration av klass:
class Klassnamn(parametrar){ medlemmar }

Exempel: deklaration

class Klassnamn(val attributl: Int, attribut2: String): //klassparametrar
val attribut3: Double = 42.0 //publikt ofdéranderligt attribut
private var attribut4: Boolean = false //privat medlem syns inte utat
def metod(parameter: Int) = attributl + 1 //funktion i objekt kallas metod
lazy val attr5 = Vector.fill(100000) (42.0) //fordréjd initialisering

Klass-parametrar blir attribut som initialiseras med de argument som ges vid new.
(Kompilatorn skapar primarkonstruktor: kod som allokerar & initialiserar alla
attribut.)

Exempel: instansiering med argument for initialisering av klassparametrar

val instansReferens = new Klassnamn(42, "hej") // new ar valfritt i Scala 3

Parametrar som inte foregas av modifierare (t.ex. private val, val, var) blir attribut
som bara &r synliga i denna instans, de kallas da instansprivata.

Attribut i klasskroppen &r publika (alltsa synliga utat) om de inte deklareras private
(eller protected som begrinsar synlighet till subtyper som vi ska se senare).

5.1.8 (")vning: en klass som representerar en person

1. Deklarera en klass Person med dessa publika attribut:

¢ oforanderligt fornamn
¢ oféranderligt efternamn
¢ forandringsbar alder med defaultargument 0

5.1. TEORI 165

2. lagg till en metod i klasskroppen med explicit returtyp som ger en 2-tupel med
fornamn och efternamn

3. skriv en deklaration som deklarerar en variabel p som initialiseras med virdet
av ett uttryck som instansierar klassen Person med ditt namn och din alder som
nyfodd.

4. skriv en sats som skriver ut ditt fornamn genom att referera attribut med
punktnotation

5. skriv en tilldelningssats som dndrar tillstandet for den instans som referensen p
refererar till sa att aldersattributets vérde blir din nuvarande alder

5.1.9 Lésning: klassen Person

class Person(
val givenName: String,
val familyName: String,
var age: Int = 0

def name: (String, String) = (givenName, familyName)

scala> val p = Person("Bjorn", "Regnell")
val p: Person = Person@783dcOe7

scala> println(p.name._1)
Bjorn

scala> p.age

Kan vi fa se nagot som &r finare dn Person@783dc0e7 ?

5.1.10 Skapa egen najs toString

class Person(
val givenName: String,
val familyName: String,
var age: Int = 0

def name: (String, String) = (givenName, familyName)
override def toString = "najs toString"

R R R R R R R R RO R

scala> val p = Person("Bjorn", "Regnell")
val p: Person = najs toString

scala> println(p.name._1)
Bjorn

scala> p.age = 55

B W N P

166 KAPITEL 5. KLASSER OCH DATAMODELLERING

Vad vill du se i stéllet for "najs toString"?
Ovning: Visa instansens tillstdnd med strdnginterpolatorn s"?"

5.1.11 Instansprivata klassparametrar

Parametrar som inte foregas av nagon modifierare alls (t.ex. val, var etc.) blir med-
lemmar som &r bara dr synliga i denna instans.
Exempel pa konsekvensen av instansprivata parametrar:

scala> class C(a: Int){ def add(other: C): Int = a + other.a }
-- Error:
1 |class C(a: Int){ def add(other: C): Int = a + other.a }

| ANANANAAAN

| value a cannot be accessed as a member of (other : C) from class C.

Men detta fungerar fint:

scala> class D(private val a: Int){ def add(other: D): Int = a + other.a }

scala> D(42).add(D(43))
res@: Int = 85

...eftersom modifieraren private val ger en medlem som "bara” ar klassprivat och
ger ddarmed synlighet i alla D-instanser (men bara dér; medlemmen &r inte ens synlig
i subtyper till D).

5.1.12 Case-klasser ar som vanliga klasser med extra godis

Med case framfor class far du en massa godis pa kopet, bland annat detta:

¢ En najs toString-metod med klassens namn och dess attributvirden.

scala> case class Person(name: String, age: Int)

scala> val p = Person("Bjoérn", 55)

scala> p.toString
val resO: String = Person(Bjérn,55)

¢ Parameter till case-klass blir automatiskt ett publikt oforinderligt attribut,
alltsa en val-medlem utan att du behover skriva nagot.

scala> p.age
val resl: Int = 55

¢ En copy-metod med alla attribut som parametrar och instansens attributvar-
den som default-argument: det blir da smidigt att skapa delvis forandrade
kopior dir nagra attribut dndrats med namngivna argument och andra forblir
som innan.

scala> p.copy(age = p.age + 1)

val res2: Person = Person(Bjorn,56)

5.1. TEORI 167

5.1.13 Foérdjupning: Styra synlighet med private[X]

Med hjialp av private[X] kan du begriansa synlighet till X, diar X kan vara ett singel-
objekt, en typ eller ett paket:

scala> object X:
| object Y { private[X] var y = 42 }
| def visaHemlis = Y.y // y syns i X

I
// defined object X

scala> X.Y.y
- Error:
|variable y cannot be accessed as a member of X.Y.type from module class rs$line$26.

scala> X.visaHemlis
val res@: Int = 42

5.1.14 Styra anvdndningen av infixa alfanumeriska operatorer

Metoder som har alfanumeriska namn, alltsd namn med bokstéaver och ev. siffror
ger en varning vid operatornotation om de inte ar deklarerade med nyckelordet
infix.

case class Box(x: Int):
def +(other: Box): Box = Box(x + other.x) // utan varning
def plus(other: Box) = Box(x + other.x) // ger varning
infix def add(other: Box) = Box(x + other.x) // utan varning

scala> Box(41) plus Box(1)
1 warning found

- Warning:
1 |Box(41) plus

| AAAN

|Alphanumeric method plus is not declared infix; it should not be used as infix opera
|Instead, use method syntax .plus(...) or backticked identifier “plus’.
val resO: Box = Box(42)

scala> Box(41) add Box(1)
val resl: Box = Box(41)

5.1.15 Qvning: Klassen Complex

Implementera klassen Complex nedan som representerar komplexa tal:

O 00 N O U1l A W N

=
(S

168 KAPITEL 5. KLASSER OCH DATAMODELLERING

class Complex(val re: Double, val im: Double):
def r = ??? // absolutbeloppet
def fi = ??? // vinkeln i radianer
def +(other: Complex): Complex = ??? // resultatet av addition
var imSymbol = 'i' // symbol f6ér imaginardel, anvands i toString
override def toString = ??? // en strangrepresentation av talet

Exempel: imagindr-delen ar 4

z2=3+41

real-delen ar 3

5.1.16 Exempel: Klassen Complex

class Complex(val re: Double, val im: Double):
def r = math.hypot(re, im)
def fi = math.atan2(im, re) // motstdende sida forst
def +(other: Complex) = new Complex(re + other.re, im + other.im)
var imSymbol = 'i'
override def toString = s"$re + imimSymbol"

scala> val z1 = new Complex(3, 4) // konstruktion av instans av Complex
z: Complex = 3.0 + 4.01

scala> val polarForm = (z1.r, z1.fi)
polarForm: (Double, Double) = (5.0,0.6435011087932844)

scala> val z2 = Complex(1l, 2) // new behdvs inte i Scala 3
z2: Complex = 1.0 + 2.01

scala> z1 + z2
res0: Complex = 4.0 + 6.01

https://scala-lang.org/api/3.x/scala/math.html#atan2-44b

5.1.17 Exempel: Principen om enhetlig access

class Complex(val re: Double, val im: Double):
val r = math.hypot(re, im)
val fi = math.atan2(im, re)
def +(other: Complex) = new Complex(re + other.re, im + other.im)
var imSymbol = 'i'
override def toString

s"$re + imimSymbol"

https://scala-lang.org/api/3.x/scala/math.html#atan2-44b

0 N O Ul A WN

5.1. TEORI 169

¢ Efter som attributen re och im ar oféranderliga, kan vi lika gidrna éndra i klass-
implementationen och géra om metoderna r och fi till val-variabler utan att
klientkoden paverkas.

¢ Da anropas math.hypot och math.atan2 bara en gang vid initialisering (och inte
varje gang som med def).

¢ Vi skulle dven kunna anvinda lazy val och da bara rdkna ut r och fi om och
nér de verkligen refereras av klientkoden, annars inte.

¢ Eftersom klientkoden inte ser skillnad pa metoder och variabler, kallas detta
principen om enhetlig access. (Manga andra sprak har inte denna mdjlighet,
tex Java dar metoder mdste ha parenteser.)

5.1.18 Instansiering med direkt anvéndning av new

Instansiering genom direkt anviandning av new
(har forsta varianten av Complex med r och fi som metoder)

scala> val cl = new Complex(3, 4)
aledl

re: Double [3.0
im: Double |4.0
Char

imSymbol:

Ofta vill man goéra
indirekt instansiering s& att vi senare har friheten att d&ndra hur instansiering
sker.

5.1.19 Indirekt instansiering med fabriksmetoder

En fabriksmetod 4r en metod som anvinds for att instansiera objekt.

object MyFactory {
def createComplex(re: Double, im: Double)
def createReal(re: Double)
def createImaginary(im: Double)

}

new Complex(re, im)
new Complex(re, 0)
new Complex(0, im)

Instansiera inte direkt, utan indirekt genom anvindning av fabriksmetoder:
- ____________ ________________
scala> import MyFactory.x*

scala> createComplex(3, 4)
res@: Complex = 3.0 + 4.01

scala> createReal(42)
resl: Complex = 42.0 + 0.01

10

170 KAPITEL 5. KLASSER OCH DATAMODELLERING

scala> createImaginary(-1)

res2: Complex = 0.0 + -1.01

5.1.20 Hur férhindra direkt instansiering?

Om vi vill forhindra direkt instansiering kan vi gora primirkonstruktorn privat:

class Complex private (val re: Double, val im: Double):
def r = math.hypot(re, im)
def fi = math.atan2(im, re)
def +(other: Complex) = new Complex(re + other.re, im + other.im)
var imSymbol = 'i'
override def toString = s"$re + imimSymbol"

MEN... da gar det ju inte lingre att instansiera nagot alls! H(

scala> new Complex(3,4)

error:
constructor Complex in class Complex cannot be accessed

5.1.21 Kompanjonsobjekt med indirekt instansiering

¢ Ett kompanjonsobjekt (eng. companion object) ar ett singelobjekt som ligger i sam-
ma kodfil som en klass, och som har samma namn som klassen.

¢ Medlemmar i ett kompanjonsobjekt far accessa privata medlemmar i kompanjons-
klassen (och vice versa) och kompanjonsobjektet far darfor accessa privat konstruktor
och kan gora new.

¢ Fabriksmetod + privat konstruktor: tillit enbart indirekt instansiering.

class Complex private (val re: Double, val im: Double):
def r = math.hypot(re, im)
def fi = math.atan2(im, re)
def +(other: Complex) = new Complex(re + other.re, im + other.im)
var imSymbol = 'i'
override def toString = s"$re + imimSymbol"

object Complex:
def apply(re: Double, im: Double)
def real(re: Double)
def imag(im: Double)

new Complex(re, im) // new behdvs har
new Complex(re, 0)
new Complex(@, im)

* new behovs for att forhindra rekursivt anrop av apply och stack overflow

O 00 N O Ul A W N

=
(S

5.1. TEORI 171

5.1.22 Anvdndning av kompanjonsobjekt med fabriksmetoder
Nu kan vi bara instansiera indirekt!)

scala> Complex.real(42.0)
res0: Complex = 42.0 + 0.01

scala> Complex.imag(-1)
resl: Complex = 0.0 + -1.01

scala> Complex.apply(3,4)

res2: Complex = 3.0 + 4.01

scala> Complex(3,4)
res3: Complex = 3.0 + 4.01

scala> new Complex(3, 4)
error:
constructor Complex in class Complex cannot be accessed

5.1.23 Alternativa direktinstansieringar med default-argument
Med default-argument kan vi erbjuda alternativa sétt att direktinstansiera.

class Complex(val re: Double = 0, val im: Double = 0):
def r = math.hypot(re, im)
def fi = math.atan2(im, re)
def +(other: Complex) = new Complex(re + other.re, im + other.im)
var imSymbol = 'i'
override def toString = s"$re + imimSymbol"

scala> new Complex()
res@: Complex = 0.0 + 0.01

scala> new Complex(re = 42) //anrop med namngivet argument
resl: Complex = 42.0 + 0.01

scala> new Complex(im = -1)
res2: Complex = 0.0 + -1.01

scala> new Complex(1)
res3: Complex = 1.0 + 0.01

5.1.24 Alternativa satt att instansiera med fabriksmetod

Vi kan ocksa erbjuda alternativa sétt att instansiera indirekt med fabriksmetoden
apply i ett kompanjonsobjekt genom default-argument:

class Complex private (val re: Double, val im: Double):
def r = math.hypot(re, im)

172 KAPITEL 5. KLASSER OCH DATAMODELLERING

def fi = math.atan2(im, re)

def +(other: Complex) = new Complex(re + other.re, im + other.im)
var imSymbol = 'i'

override def toString = s"$re + imimSymbol"

object Complex:
def apply(re: Double = 0, im: Double = 0) = new Complex(re, im)
def real(r: Double) apply(re r)
def imag(i: Double) apply(im = i)
val zero = apply()

5.1.25 Medlemmar som bara behdvs i en enda upplaga

Attributet imSymbol passar bittre att ha i kompanjonsobjektet, eftersom det racker
att ha en enda upplaga, som kan vara gemensam for alla objekt:

class Complex private (val re: Double, val im: Double):
def r = math.hypot(re, im)
def fi = math.atan2(im, re)
def +(other: Complex) = new Complex(re + other.re, im + other.im)
override def toString = s"$re + im{Complex.imSymbol}"

object Complex:
var imSymbol = 'i'
def apply(re: Double = 0, im: Double = 0) = new Complex(re, im)
def real(r: Double) = apply(re = r)
def imag(i: Double) = apply(im = i)
val zero = apply()

5.1.26 Medlemmar i singelobjekt ar statiskt allokerade

Minnesplatsen for attribut i singelobjekt allokeras automatiskt en gang for alla,
och kallas darfor statiskt allokerad. Singelobjektets namn Complex utgér en statisk
referens till den enda instansen och &r av typen Complex. type.

Complex imSymbol: Char []

Nu bereder vi inte plats for imSymbol i varenda dynamiskt allokerade instans:

scala> val cl = Complex(3, 4)

5.1. TEORI 173

re: Double |3.0
im: Double |4.0

cl

5.1.27 Attribut i kompanjonsobjekt anvéndas for sddant som &r ge-
mensamt for alla instanser

Om vi &ndrar pa statiska imSymbol sa dndras toString for alla dynamiskt allokerade
instanser.

scala> val cl Complex(3, 4)

cl: Complex = 3.0 + 4.01

scala> Complex.imSymbol = 'j'
Complex.imSymbol: Char = j

scala> val c2 = Complex(5, 6)
c2: Complex = 5.0 + 6.0j

scala> cl
res@: Complex = 3.0 + 4.0j

5.1.28 Ovning: en laskig mutant

1. Skapa en klass med namnet Mutant som har ett fordndringsbart attribut som
klassparameter med namnet i av typen Int med default-argumentet 5.

Deklarera tva val-variabler som kallas
2. feml och fem2 och som bada refererar till
samma Mutant-instans.

En Mutant-instans dar i
kanske ar fem.

w

Skriv kod som dndrar tillstand via den ena mutantreferensen.
4. Syns dndringen via den andra mutantreferensen?

5.1.29 Case-klasser

Case-klasser ar ett smidigt sitt att skapa oforanderliga datastrukturer. Med nyc-
kelordet case framfor class far du mycket "godis pa kopet”:

174 KAPITEL 5. KLASSER OCH DATAMODELLERING

* Klassparametrar blir automatiskt publika® ofsranderliga attribut och du slipper
alltsa skriva val.

¢ Du far en automatisk toString med klassens namn och virdet av alla val-
attribut som ges av klassparametrarna

* och en copy-metod for att skapa nya, delvis forindrade instanser, med attribut-
viardena som defaultargument.

* Du far ett kompilator-genererat kompanjonsobjekt med en fabriksmetod
apply for indirekt instansiering dar alla klassparametrarnas val-attribut initi-
aliseras.

¢ ... och mer dértill men mer om det senare...

5.1.30 Exempel: oférdnderliga case-klassen Point

case class Point(x: Double, y: Double)

scala> val pl = Point(3, 4)
pl: Point = Point(3.0,4.0)

scala> val p2 = pl
p2: Point = Point(3.0,4.0)

scala> pl.x = 42
error: reassignment to val

Vi kan utan risk dela med oss av en referens till en ofordnderlig klass — ingen kan
dndra dess innehall. (Jamfor 1dskiga mutanten i tidigare exempel.)

5.1.31 Vad dr en konstruktor?

¢ En konstruktor dr den kod som exekveras nér klasser instansieras.

¢ Konstruktorn skapar ett nytt objekt i minnet vid varje anrop.

¢ | Scala genererar kompilatorn en primirkonstruktor at dig med maskin-
kod som initialiserar alla attribut baserat pa klassparametrarna som du dekla-
rerat.

¢ | Scala kan man ocksa skriva egna s.k. hjalpkonstruktorer (eng. auxilliary
constructor), men det dr ovanligt, eftersom man har mdéjligheten med fabriks-
metoder i kompanjonsobjekt och default-argument.

5.1.32 Foérdjupning: Hjdlpkonstruktorer i Scala (ovanliga)

Fordjupning for kinnedom:

Lalltsa inte instansprivata som i vanliga klasser.

0 N o U A W N

5.1. TEORI 175

I Scala kan man skapa ett alternativ till priméarkonstruktorn, en sa kallad
hjalpkonstruktor (eng. auxilliary constructor) genom att deklarera en metod
med det speciella namnet this.

Hjilpkonstruktorer maste borja med att anropa en annan konstruktor som
star fore i koden, till exempel primirkonstruktorn.

class Point(val x: Int, val y: Int, val z: Int): // primarkonstruktor
def this(x: Int, y: Int) = this(x, y, 0) // anropa primarkonstruktorn
def this(x: Int) = this(x, 0) // anropa hjalpkonstruktor

Varfor? Enklare att anvianda fran Java-kod jamfort med apply i kompanjonsob-
jekt. (Men om din Scala-kod inte ska anvindas fran Java sa ar detta onodigt:
anvind da hellre kompanjonsobjekt med fabriksmetod.)

5.1.33 Foérdjupning: Anvéndning av hjélpkonstruktor

scala> val pl = Point(1)
pl: Point = Point@21312342

scala> val p2 = Point(1l, 2)
p2: Point = Point@43254325

scala> val p3 = Point(1, 2, 3)
p3: Point = Point@346654

Men man gor mycket oftare sa har i Scala:

case class Point(x: Int, y: Int =0, z: Int = 0)

Anviand alltsa hellre

defaultargument i klassparametrar, eller
fabriksmetoder i kompanjonsobjekt, antingen med default-argument eller 6ver-
lagrade.

5.1.34 Referens saknas: null

I Java och manga andra sprak anvinder man ofta nyckelordet null for att
representera att ett virde saknas.

En referens som &r null refererar inte till nagon instans.

Om du forsoker referera till instansmedlemmar med punktnotation genom en
referens som &r null kastas ett undantag NullPointerException.

Of6rsiktig anvidndning av null dr en vanlig killa till buggar, som kan vara
svara att hitta och fixa.

O 00 N O U1l A W N

e T el el
U M W N R O

176 KAPITEL 5. KLASSER OCH DATAMODELLERING

5.1.35 Exempel: null

scala> class Gurka(val vikt: Int)

scala> var g: Gurka = null // ingen instans allokerad &n
var g: Gurka = null

scala> g.vikt
java.lang.NullPointerException

scala> g = Gurka(42) // instansen allokeras
g: Gurka Gurka@lec7d8b3

scala> g.vikt
val res0: Int

scala> g = null // instansen kommer att destrueras av skrapsamlaren

¢ Scala har null av kompatibilitetsskil, men det &ar brukligt att endast anvinda
null om man anropar Java-kod.

® Scala erbjuder smidiga Option, Some och None for siker hantering av saknade
varden; mer om detta kommande vecka.

5.1.36 Defaultvarden under pdgdende konstruktion

Int | O
Double | 0.0
Float | 0.0F
Long | OL

Short | 0.toShort
Byte | 0.toByte
Char | 0.toChar

Boolean | false

Alla referenstyper, tex. String | null

5.1.37 Problem med initialisering av attribut vid konstruktion

class InitBugl:
val HEJ] hej.toUpperCase
val hej "hej"

class InitBug2:
val b = a
val a = 10

u A W N =

U A W N =

5.1. TEORI

class InitBug3:
val hej2 = hejl
val hejl = "hej"

scala> val ibl new InitBugl
scala> val ib2 = new InitBug2

scala> ib2.b
scala> val ib3 = new InitBug3
scala> ib3.hej2

Vad héander?

177

5.1.38 Vilka varden har attribut medan konstruktion pagar?

class InitBugl:
val HEJ = hej.toUpperCase
val hej = "hej"

class InitBug2:
var b = a
var a = 10

class InitBug3:
val hej2 = hejl
val hejl = "hej"

scala> val ibl = new InitBugl // java.lang.NullPointerException
scala> val ib2 new InitBug2
scala> ib2.b // val res0: Int = 0 // WHAT????

scala> val ib3 = new InitBug3
scala> ib3.hej2 // val resl: String = null //WHAT???

Varfor? Vad finns det for 16sningar?

5.1.39 Hur undvika initialiseringsproblem vid konstruktion?

Nagra tips for att undvika initialiseringsproblem av attribut:

* Andra om mgjligt ordningen pa attribut-deklarationer
¢ Anvind om mojligt i stillet Lazy val (init sker senare)
* Anvind om mdjligt i stéllet def (evaluering vid varje anrop)

initialiseringsproblem: -Wsafe-init

Om du verkligen behéver ha ett oinitialiserat varde:

Anvind denna kompilatoroption for att fa hjalp med varningar vid risk for

178 KAPITEL 5. KLASSER OCH DATAMODELLERING

class Box:
private var x: String = scala.compiletime.uninitialized // tydliggdr null-risk
def get: String = if x != null then x else "" // gloém ej kolla null

def getOrElse(alt: String): String = if x != null then x else alt
def set(value: String): Unit = x = value

Forsok att undvika null om det gar eftersom det ger stor risk for buggar!

(I ovan fiktiva exempel hade vi kunnat undvika detta enkelt genom att ge x startviardet
"" i stallet for null. En sadan 16sing férutséatter att det finns en rimlig representation
av ett saknat varde. Mer om hantering av saknade varden senare...)

5.1.40 Be kompilatorn att varna vid initialiseringsproblem

Initialisering i fel ordning kan ge ovintade 6verraskningar:

scala> class C { val b = a; val a = 42 }

scala> C().b
val res0: Int = 0 // default-vardet for Int &r noll och a har &nnu inte fatt vardet 42

Med kompilator-optionen -Wsafe-init far du en vilbehovlig varning.

scala> :settings -Wsafe-init

scala> class C { val b = a; val a
1 warning found

- Warning:
1 |class C { val b = a;
|

| Access non-initialized value a.

5.1.41 Be kompilatorn ge fler bra varningar
Sla pa mer utforliga meddelanden och varningar:

//> using options -unchecked -deprecation -Wunused:all -Wvalue-discard -Wsafe-init

-unchecked Extra varningar vid flera fall av oséker kod.

-deprecation Forklaring vid anvédndning av utgaende funktioner.

-Wunused:all Varning om deklarationer ej anvinds.

-Wvalue-discard Varning vid forlorat varde.

-Wsafe-init Varna vid anviandning av dnnu ej initialiserade at-
tribut.

Sla péa alla varningar och ge kompileringsfel vid varning:

//> using options -Wall -Werror
Se alla tillgidngliga varningar med: scala compile -W

Om du tycker en specifik varning ar irriterande kan du sla av den sa hér:

5.1. TEORI 179

@annotation.nowarn
val b = a
val a = 42

5.1.42 Referensen this
¢ Nyckelordet this ger en referens till den aktuella instansen.

scala> class Gurka(var vikt: Int){def jagSjalv = this}

scala> val g Gurka(42)
val g: Gurka Gurka@5ae9a829

scala> g.jagSjalv
val res0: Gurka = Gurka@5ae9a829

scala> g.jagSjalv.vikt
val resl: Int = 42

scala> g.jagSjalv.jagSjalv.vikt
val res2: Int = 42

e Referensen this anvinds ofta for att komma runt “namnkrockar” déar variabler
med samma namn gor sa att den ena variabeln inte syns.

5.1.43 Getters och setters

* I manga sprak (t.ex. Java, Python) finns inget motsvarande nyckelord val som
garanterar oférianderliga attributreferenser. 2

¢ Darfor gor man i dessa sprak néstan alltid alla attribut privata for att forhindra
att de 4ndras pa ett okontrollerat sitt.

¢ Darfor ar det normalt att inféra metoder som kallas getters och setters, som
anvinds for att indirekt ldsa och uppdatera attribut.

* Dessa metoder kidnns i manga sprak igen genom konventionen att de heter nagot
som borjar med get respektive set. (Men ej vanligt i Scala.)

¢ Med indirekt access av attribut kan man astadkomma flexibilitet, sa att
implementationen kan dndras utan att 4ndra i klientkoden:

— man kan t.ex. i efterhand &ndra representation av de privata attributen
eftersom all access sker genom getters och setters.

* Man kan astadkomma oforanderliga datastrukturer dar attributreferenserna
inte fordndras efter allokering om klassen inte erbjuder en setter for privata
attribut.

2Java har visserligen final men det 4r annorlunda som vi ska se senare.

180 KAPITEL 5. KLASSER OCH DATAMODELLERING

5.1.44 Java-exempel: Klassen JPerson

Indirekt access av privata attribut:

> scala repl .

public class JPerson {

private String name;
private int age = 0;

public JPerson(String name){
//namnkrock fixas med this
this.name = name;

}

public String getName(){
return name;

}

public int getAge(){
return age;

}

scala> val p = JPerson("Bjorn")
val p: JPerson = JPerson@7e77408

scala> p.getAge
val res0: Int = 0

scala> p.setAge(42)

scala> p.getAge
val resl: Int = 42

scala> p.age
-- Error:
p.age

ANAAAAN

value age is not a member of JPe

public void setAge(int age){
this.age = age;

}

5.1.45 Motsvarande JPersoni Scala

Sa har brukar man dstadkomma ungefiar motsvarande i Scala:

class Person(val name: String):
var age = 0

Notera att alla attribut har 4r publika.

5.1.46 Forhindra felaktiga attributvérden med setters

Med hjalp av setters kan vi forhindra felaktig uppdatering av attributvarden, till
exempel negativ alder i klassen JPerson i Java:

public void setAge(int age){
if (age >= 0) {
this.age = age;
} else {
this.age = 0;

5.1. TEORI 181

Hur kan vi astadkomma motsvarande i Scala?
Antag att vi borjade med nedan variant, men angrar oss och sedan vill infora funktio-
nalitet som forhindrat negativ alder utan att Andra i klientkod:

class Person(val name: String):
var age = 0

Om vi inf6ér en ny metod setAge och gor attributet age privat sa funkar det inte ldngre
att skriva p.age = 42 och vi "’kvaddar” klientkoden! :(

5.1.47 Getters och setters i Scala

¢ Principen om enhetlig access tillsammans med specialsyntax for setters kommer

till var raddning!

* En setter kan i Scala skapas med en procedur vars namn slutar med _=
¢] Scala kan man utan att kvadda klientkod inféra getter+setter sa har:

0 N O U~ W N

class Person(val name: String): // @ndrad implementation men samma access
private var myPrivateAge = 0
def age = myPrivateAge // getter
def age_=(a: Int): Unit = // setter
if a >= 0 then myPrivateAge = a else myPrivateAge = 0

scala> val p = Person("Bjorn")
val p: Person = Person@28ac3dc3

scala> p.age = 42 // najs syntax om getter parad med setter enl ovan
val p.age: Int = 42

scala> p.age = -1 // nu férhindras negativ alder
val p.age: Int =

5.1.48 Referenslikhet eller innehdllslikhet?

Det finns tva principiellt olika sorters likhet:

* Referenslikhet (eng. reference equality): tva referenser anses lika om de refere-
rar till samma instans i minnet.

¢ Innehallslikhet, 4.k. strukturlikhet (eng. structural equality): tva referenser
anses lika om de refererar till objekt med samma innehall.

® | Scala finns flera metoder som testar likhet:

- metoden eq testar referenslikhet och rl.eq(r2) ger true om rl och r2
refererar till samma instans.

— metoden ne testar referensolikhet och r1.ne(r2) ger true om rl och r2
refererar till olika instanser.

O 00 N O U A W N -

L L e e e =
N o U A WN RO

182 KAPITEL 5. KLASSER OCH DATAMODELLERING

— metoden == som anropar metoden equals som default testar referenslikhet
med eq men som kan 6verskuggas om man sjalv vill bestimma om det
ska vara referenslikhet eller strukturlikhet.

¢ Scalas standardbibliotek och grundtyperna Int, String etc. testar inne-
hallslikhet genom metoden ==

5.1.49 Exempel: referenslikhet och innehdlislikhet

I Scalas standardbibliotek har man 6verskuggat equals sa att metoden == ger test av
innehallslikhet mellan instanser:

scala> val vl = Vector(1,2,3)
vl: scala.collection.immutable.Vector[Int] Vector(1l, 2, 3)

scala> val v2 = Vector(1,2,3)
v2: scala.collection.immutable.Vector[Int] Vector(1l, 2, 3)

scala> vl eq v2 //referenslikhetstest: olika instanser
res@: Boolean = false

scala> vl ne v2
resl: Boolean = true

scala> vl == v2 //innehdllslikhetstest: samma innehall
res2: Boolean = true

scala> vl !'= v2
res3: Boolean = false

5.1.50 Referenslikhet och egna klasser

Om du inte gor nagot speciellt med dina egna klasser s& ger metoden == test av
referenslikhet mellan instanser:

scala> class Gurka(val vikt: Int)

scala> val gl = new Gurka(42)
gl: Gurka = Gurka@2cc61b3b

scala> val g2 = new Gurka(42)
g2: Gurka = Gurka@l63df259

scala> gl == g2 // samma innehall men olika instanser
res@: Boolean = false

scala> gl.vikt == g2.vikt
resl: Boolean = true

O 00 N O Ul A W N =

e el
w N = o

5.1. TEORI 183

5.1.51 Case-klasser ger innehdlislikhet

Forutom annat “godis pa kopet” far du med case class dven detta:

* Metoden == ger innehallslikhet (och inte referenslikhet).

5.1.52 Likhet och case-klasser

Metoden equals ér i case-klasser automatiskt 6verskuggad sa att metoden == ger test
av strukturlikhet.

scala> case class Gurka(vikt: Int)

scala> val gl = Gurka(42)
gl: Gurka = Gurka(42)

scala> val g2 = Gurka(42)
g2: Gurka = Gurka(42)

scala> gl eq g2 // olika instanser
res@: Boolean = false

scala> gl == g2 // samma innehall!
resl: Boolean = true

5.1.63 Sammanfattning case-klass-godis
Kom-ihag-lista med ”godis” i case-klasser sa hiar langt:

klassparametrar blir val-attribut

najs toString

automatisk fabriksmetod apply i kompanjonsobjekt
== ger innehallslikhet (eng. structural equality)

L

Men vi har inte sett allt godis 4n:
Monstermatchning (mer om det senare).

5.1.54 Implementation saknas: ???

¢ Ofta vill man bygga kod iterativt och steg for steg lagga till olika funktionalitet.

¢ Standardfunktionen ??? ger vid anrop undantaget NotImplementedError och
kan anvindas pa platser i koden déar man dnnu inte ar fardig.

o 777 tillater kompilering av ofardig kod.

¢ Undantag har bottentypen Nothing som &r subtyp till alla typer och kan darmed
tilldelas referenser av godtycklig typ.

184 KAPITEL 5. KLASSER OCH DATAMODELLERING

scala> lazy val sprangsSnart: Int = ???

scala> sprangsSnart + 42
scala.NotImplementedError: an implementation is missing

5.1.55 Exempel: ofdrdig kod

case class Person(name: String, age: Int):
def &rTondring = age >= 13 && age <= 19
def arUng = !arGammal
def arGammal: Boolean = ??? //implementation annu ej klar

scala> Person("Bjorn", 51).arTonaring
res23: Boolean = false

scala> Person("Sandra", 39).arUng
scala.NotImplementedError: an implementation is missing

5.2. OVNING CLASSES 185

5.2 Ovning classes

o

M

Kunna deklarera klasser med klassparametrar.

Kunna skapa instanser med och utan new.

Kunna ge argument vid instansiering.

Forsta inneborden av referensvariabler och viardet null.
Kunna anvidnda nyckelordet private for att styra synlighet av attribut och
konstruktorparametrar.

Forsta syftet med getters och setters.

Kunna férklara accessregler for kompanjonsobjekt.

Kunna skapa fabriksmetod i kompanjonsobjekt.

Kénna till nyttan med en privat konstruktor.

Forsta skillnaden mellan referenslikhet och strukturlikhet.
Kinna till skillnaden mellan == och eq, samt != och ne.
Kunna forklara hur case-klasser hanterar instansiering.
Kinna till hur case-klasser hanterar likhet.

ooood

oooogoogo

Forberedelser

[] Studera begreppen i kapitel 5

5.2.1 Grunduppgifter; férberedelse infér laboration
Uppgift 1. Para ihop begrepp med beskrivning.

Koppla varje begrepp med den (férenklade) beskrivning som passar bést:

klass 1 A | indirekt tilldelning av attributvirde

instans 2 B | instanser anses olika dven om tillstadnden &r lika
konstruktor 3 C | nyckelord vid direkt instansiering av klass
klassparameter 4 D | ser privata medlemmar i klass med samma namn
referenslikhet 5 E | hjalpfunktion fér indirekt konstruktion
innehallslikhet 6 F | slipper skriva new; automatisk innehallslikhet
case-klass 7 G | ett varde som ej refererar till nagon instans

getter 8 H | en mall for att skapa flera instanser av samma typ
setter 9 I | upplaga av ett objekt med eget tillstindsminne
kompanjonsobjekt | 10 J | instanser anses lika om de har samma tillstand
fabriksmetod 11 K | binds till argument som ges vid konstruktion

null 12 L | indirekt atkomst av attributvarde

new 13 M | skapar instans, allokerar plats for tillstandsminne

Uppgift 2. Klass och instans. Du har i 6vning objects sett hur singelobjekt i en
egen namnrymd kan samla funktioner (metoder) och ha tillstand (attribut). Men
singelobjekt finns bara i en upplaga. Vill du kunna skapa méanga objekt av samma
typ behover du en klass. En objektupplaga som skapats ur en klass kallas en instans
av klassen. Varje instans har sitt eget tillstadnd. Deklarera singelobjektet och klassen
nedan och klistra in i REPL.

186 KAPITEL 5. KLASSER OCH DATAMODELLERING

object Singelpunkt { var x = 1; var y
class Punkt { var x 3; var y

1}
NN
[

a) Antag att uttrycken till vinster evalueras uppifran och ned. Vilket resultat till
héger hor ihop med respektive uttryck? Prova i REPL om du é&r osiker.?

Singelpunkt.x 1 A | java.lang.NullPointerException
Punkt.x 2 B |1

val p = new Singelpunkt 3 C | Not found: type

val pl = new Punkt 4 D | pl: Punkt = Punkt@27ala53c

val p2 = Punkt() 5 E |3

{ pl.x = 1; p2.x } 6 F | p2: Punkt = Punkt@5lab04bd

(new Punkt).y 7 G | value is not a member of object
{ val p: Punkt = null; p.x } | 8 H|2

b) Vid tre tillfallen blir det fel. Varfor? Ar det kompileringsfel eller exekveringsfel?

Uppgift 3. Klassparametrar. Klassen Punkt i foregaende uppgift ar inte sa smidig
att anvidnda eftersom man forst efter instansiering kan ge attributen x och y de
koordinatvirden man 6nskar och detta méaste ske med explicita tilldelningssatser.
Detta problem kan du l6sa med klassparametrar som later dig initialisera attri-
buten med konstruktionsargument och pa sa séitt ange ett initialtillstand direkt i
samband med instansiering.
Deklarera klassen nedan i REPL.

class Point(var x: Int, var y: Int)

a) Antag att uttrycken till vanster evalueras uppifran och ned. Vilket resultat till
hoger hor ihop med respektive uttryck? Prova i REPL om du ar oséker.

val pl Point(1, 2)
val p2 = Point()

val p2 = Point(3, 4)
p2.x - pl.x

Point(0, 1).y
Point(0, 1, 2)

A | missing argument for parameter

2

pl: Point = Point@30ef773e

too many arguments for constructor
p2: Point = Point@218cf600

1

< S S NS UR R
HEHOOQW

b) Vid tva tillfdllen blir det fel. Varfor? Ar det kompileringsfel eller exekveringsfel?

Uppgift 4. Ofordnderlig klass med defaultargument. Det som géller for parametrar och
argument till funktioner ar dven tillampligt pa klassparametrar, t.ex. defaultargument
och namngivna argument. Man kan dessutom framfor klassparametrar anvinda
nyckelorden var och val och da blir parametern ett synligt attribut. Vill man ha
privata attribut kan man ange t.ex. private val framfor klassparameternamnet. Om
inget anges framfor en klassparameter 4r det den allra mest restriktiva synligheten

3Stringen efter @-tecknet &r en hexadecimal representation av det heltal som tillordnas varje objekt
for att systemet ska kunna sérskilja olika instanser. https://stackoverflow.com/questions/4712139

https://stackoverflow.com/questions/4712139

5.2. OVNING CLASSES 187

private[this] val som giller, vilket innebir att namnet bara syns i den aktuella
instansen?.

Deklarera nedan klass 1 REPL.

class Point3D(val x: Int = 0, val y: Int = 0, z: Int = 0)

a) Antag att uttrycken till vanster evalueras uppifran och ned. Vilket resultat till
hoger hor ihop med respektive uttryck? Prova i REPL om du &r oséker.

val pl = Point3D() 1 A | false

val p2 = Point3D(y = 1) 2 B | Reassignment to val

Point3D(z = 2).z 3 C | pl: Point3D = Point3D@2eb37eee
p2.y =0 4 D | true

p2.y == 5 E | value cannot be accessed

pl.x == Point3D().x 6 F | p2: Point3D = Point3D@65a9e8d7

b) Vad ar problemet med ovan klass om man vill anvénda den for att representera
punkter i 3 dimensioner?

Uppgift 5. Case-klass, this, likhet, toString och kompanjonsobjekt.
Klistra in nedan klasser i REPL.

0):
0): Pt

case class Pt(x: Int = 0, y: Int

def moved(dx: Int = 0, dy: Int Pt(x + dx, y + dy)

class MutablePt(private var p: (Int, Int) (0, 0)):

def x: Int = p._1

def y: Int = p._2

def move(dx: Int = 0, dy: Int = 0) = { p = (x + dx, y + dy); this }

override def toString = s"MPt($x,$y)"

a) Antag att uttrycken till vinster evalueras uppifran och ned. Vilket REPL-svar till
hoger hor ihop med respektive uttryck? Prova i REPL om du ar oséker.

val pl = Pt(1, 2) 1 A | MPt(5,6)
val p2 = Pt(y = 3) 2 B | false
val p3 = MutablePt(5, 6) 3 C | Pt(0,3)
val p4 = Mutable() 4 D | Not found
p2.moved(dx = 1) == Pt(1, 3) 5 E | Pt(1,2)
p3.move(dy = 1) == MutablePt(5, 7) | 6 F | true

b) Vilken returtyp kommer kompilatorn hirleda for funktionen MutablePt.move?

¢) Vad ar skillnaden mellan instansiering med universella apply-metoder och instan-
siering med new? Finns det nagot fall dar new maste anvandas?

d) Vad kallas sidana metoder som def x och def y ovan?

4Fér case-klasser, som vi ska se snart, &r det i stéllet val medférande synlighet och oféranderlighet
som géaller (alltsa inte private[this] val).

O 00 N O Ul A W N =

I e el i =
A W N R O

188 KAPITEL 5. KLASSER OCH DATAMODELLERING

Uppgift 6. Implementera delar av klasserna Pos, KeyControl, Mole och BlockWindow
som behovs under laborationen blockbattlel. I niasta laboration ska du bygga vidare
pa blockmole-labben och gora ett spel for tva spelare dér varje spelare styr sin egen
instans av en blockmole. Vi maste da gora om Mole sa att den blir en klass i stéllet
for ett singelobjekt. Gor fardigt klasserna nedan och testa noggrant sa att de fungerar.

Alla klasser ska tillhora package blockbattle och ligga i varsin egen fil med
samma namn som klassen, t.ex. Pos.scala.

Tips: Ha ett separat terminalfénster igang och kor Scala CLI med dndringsbevak-
ning enligt nedan kommano. Da kompileras din d4ndrade kod om automatiskt varje
gang du sparar en scala-fil i aktuell katalog.

scala compile . --watch

Optionen - -watch kan skrivas kortare med -w i stéllet.

a) Under laborationen ar det smidigt att kunna representera flyttbara positioner i
ett pixelfonster. Implementera case-klassen Pos i ett nytt terminalfénster enligt nedan
sa att den fungerar enligt efterfoljande REPL-tester.

package blockbattle

case class Pos(x: Int, y: Int):
def moved(delta: (Int, Int)): Pos = ??7?

Testa sa att Pos fungerar med hjéalp av REPL enligt nedan:

> scala repl .
Welcome to Scala 3.3.0 (17.0.6, Java Open]DK 64-Bit Server VM).
Type in expressions for evaluation. Or try :help.

scala> blockbattle.Pos(1,2)
val res0: blockbattle.Pos = Pos(1,2)

scala> import blockbattle.x*

scala> val p = Pos(1,2)
val p: blockbattle.Pos = Pos(1,2)

scala> p.moved(0,1)
val resl: blockbattle.Pos = Pos(1,3)

Testa dven att anropa moved pa klassnamnet, t.ex. Pos.moved(0,1). Fungerar det-
ta? Varfor/varfor inte? Hur skiljer sig anrop till metoder i singelobjekt respektive
klassinstanser?

b) Under laborationen ar det smidigt att kunna representera vilka tangenter som
motsvarar de olika riktningar som en anvéndare kan styra sin mullvad i. Gor klart
case-klassen KeyControl enligt nedan sa att den fungerar enligt efterféljande REPL-
tester. Metoden direction ska ge ett delta-steg i ratt (x, y)-riktning for ett givet
tangentnamn. Metoden has ska ge true om tangentnamnet finns i nagon av de fyra
riktningstangenterna i denna denna KeyControl-instans, annars false.

package blockbattle

case class KeyControl(left: String, right: String, up: String, down: String):
def direction(key: String): (Int, Int) = ??7?

W 00 N O U A W N =

W W NNNNNNNNNNRRBRRR B B B 2 &2
P ® © 0 N O U A& WNREPROG@OO®NO U _WNR

5.2. OVNING CLASSES 189

def has(key: String): Boolean = 777

scala> import blockbattle.*

scala> val kcl = KeyControl(right="d",left="a",up="w",down="s")
val kcl: blockbattle.KeyControl = KeyControl(a,d,w,s)

scala> val kc2 = KeyControl("Left","Right","Up", "Down")
val kc2: blockbattle.KeyControl = KeyControl(Left,Right,Up,Down)

scala> kc2.left
val res0: String = Left

scala> kc2.has("a")

val resl: Boolean false

scala> kc2.has("Up")
val res2: Boolean = true

scala> kcl.direction("a")
val res3: (Int, Int) = (-1,0)

scala> kcl.direction("s")
val res4: (Int, Int) = (0,1)

scala> kcl.direction("d")
val res5: (Int, Int) = (1,0)

scala> kcl.direction("w")
val res6: (Int, Int) = (0,-1)

scala> Pos(1,2).moved(kcl.direction("a"))
val res7: blockbattle.Pos = Pos(0,2)

¢) Gor klart klassen Mole enligt nedan. Mole &r en klass som representerar en block-
mullvad med fordanderliga attribut for position, riktning och poéang. Varje instans har
aven oforanderliga attribut som haller reda pa dess namn, dess fiarg och vilka tangen-
ter som kan anvandas for att styra mullvaden. Implementera klassens medlemmar
en i taget och testa noga med lampliga testfall efter varje tilldgg/buggfix. Skapa ett
huvudprogram t.ex. i filen Main.scala med dina tester som skapar instanser och
skriver ut attribut etc.

package blockbattle

class Mole(
val name: String,
var pos: Pos,
var dir: (Int, Int),
val color: java.awt.Color,
val keyControl: KeyControl

var points = 0

override def toString =
s"Mole[name=$name, pos=$pos, dir=$dir, points=$points]"

190 KAPITEL 5. KLASSER OCH DATAMODELLERING

/*+ 0m keyControl.has(key) sa uppdateras riktningen dir enligt keyControl =/
def setDir(key: String): Unit = ?7?7?

/** Uppdaterar dir till motsatta riktningen. x/
def reverseDir(): Unit = ?77?

/*x Uppdaterar pos sa att den blir nextPos */
def move(): Unit = ??77?

/** Ger nasta position enligt riktningen dir utan att uppdatera pos x*/
def nextPos: Pos = ???

d) Under laborationen behéver du en klass blockbattle.BlockWindow som med
hjalp av introprog.PixelWindow erbjuder blockgrafik. Varje instans av BlockWindow
ska ha ett attribut som refererar till en PixelWindow-instans. Detta kallas aggrege-
ring (eng. aggregation).’

For att det ska ga att kompilera och testa din BlockWindow-klass behéver du
ha introprog-paketet pa classpath. Ladda ner filen https://fileadmin.cs.lth.se/
introprog.jar via din webblésare eller med kommandot curl nedan (notera att det
ar stora bokstaven 0 och inte en nolla i optionen -sL0):

curl -o introprog.jar -sLO https://fileadmin.cs.lth.se/introprog.jar

scala run . --jar introprog.jar

Da hamnar introprog.jar automatiskt pa classpath.

Gor klart klassen BlockWindow enligt nedan. Metoden setBlock ska med hjilp
av metoden pixelWindow.fill fylla ett kvadratiskt omrade med sidan blockSize
pixlar pa en viss position pos i block-koordinater och med en viss fiarg color. Metoden
getBlock ska med hjilp av metoden pixelWindow.getPixel ge fargen for 6vre vinstra
hornet i blocket pa position pos i block-koordinater.

package blockbattle

class BlockWindow(
val nbrOfBlocks: (Int, Int),
val title: String = "BLOCK WINDOW",
val blockSize: Int = 14

import introprog.PixelWindow

val pixelWindow = new PixelWindow(
nbrOfBlocks._1 x blockSize, nbrOfBlocks._2 * blockSize, title)

def setBlock(pos: Pos, color: java.awt.Color): Unit = ??7?
def getBlock(pos: Pos): java.awt.Color = 7?7

def write(
text: String,
pos: Pos,
color: java.awt.Color,
textSize: Int = blockSize
): Unit = pixelWindow.drawText (

5https ://en.wikipedia.org/wiki/Object_composition#Aggregation

https://fileadmin.cs.lth.se/introprog.jar
https://fileadmin.cs.lth.se/introprog.jar
https://en.wikipedia.org/wiki/Object_composition#Aggregation

N O U AW N

5.2. OVNING CLASSES 191

text, pos.x * blockSize, pos.y * blockSize, color, textSize)

def nextEvent(maxWaitMillis: Int = 10): BlockWindow.Event.EventType =
import BlockWindow.Event._
pixelWindow.awaitEvent(maxWaitMillis)
pixelWindow.lastEventType match

case PixelWindow.Event.KeyPressed => KeyPressed(pixelWindow.lastKey)
case PixelWindow.Event.WindowClosed => WindowClosed
case _ => Undefined

object BlockWindow:
def delay(millis: Int): Unit = Thread.sleep(millis)

object Event:
trait EventType
case class KeyPressed(key: String) extends EventType
case object WindowClosed extends EventType
case object Undefined extends EventType

I instruktionerna till laborationen blockbattlel finns tips om hur du kan hantera
héndelser i ett BlockWindow med hjilp av metoden nextEvent ovan.

e) Gor sa att huvudprogrammet i Main.scala ritar nagra valfria block i en in-
stans av klassen BlockWindow. Skapa 4ven en while (!quit)-loop som med hjilp av
nextEvent () skriver ut hindelser i terminalen som inte ar av typen Undefined.

Metoden nextEvent() ligger i klassen BlockWindow. Varje looprunda ska dven
innehalla en 200 millisekunders fordréjning genom anrop av delay-metoden som
definierats i kompanjonsobjektet BlockWindow ovan. Om héndelsen WindowClosed
intraffar ska loopen avslutas. Kér huvudprogrammet och kontrollera sa att resultatet
blir som forvéntat.

5.2.2 Extrauppgifter; trdna mer

Uppgift 7. Instansiering med new och vdrdet null. Man skapar instanser av klasser
med new. D4 anropas konstruktorn och plats reserveras i datorns minne for objektet.
Variabler av referenstyp som inte refererar till nagot objekt har vardet null.

a) Vad hinder nedan? Vilka rader ger felmeddelande och i sa fall hur lyder felmed-
delandet?

scala> class Gurka(val vikt: Int)
scala> var g: Gurka = null
scala> g.vikt

scala> g = new Gurka(42)
scala> g.vikt

scala> g = null

scala> g.vikt

b) Rita minnessituationen efter raderna 2, 4, 6.

Uppgift 8. Skapa en punktklass som kan hantera poldra koordinater och en klass
som representerar en polygon m.h.a. dessa punkter. Du ska skapa en oférianderlig
case-klass Point som kan representera en koordinat bade med "vanliga” kartesiska

192 KAPITEL 5. KLASSER OCH DATAMODELLERING

koordinater® och med polira koordinater 7. Sedan ska du anvinda denna klass for att
skapa regelbundna polygoner med en oféranderlig case-klass Polygon.

a) Skapa kod med hjalp av en editor, t.ex. VS code, i filen Point. scala enligt foljande
riktlinjer:

1. Point ska ligga i paketet graphics.
2. Point ska ha foljande tva publika, oférdnderliga klassparametrar:
* x: Double for x-koordinaten.
¢ y: Double for y-koordinaten.
3. Point ska ha f6ljande publika medlemmar (tva oférianderliga attribut och en
metod):
* val r: Double ska ge motsvarande poldra koordinatens avstand till origo.
e val theta: Double ska ge polira koordinatens vinkel i radianer.
e def +(p: Point): Point ska ge en ny punkt vars koordinat 4r summan
av x- respektive y-koordinaterna for denna instans och punkten p.
4. Point ska ha ett kompanjonsobjekt med en metod som konstruerar en punkt
fran poldra koortdinater. Metoden ska ha detta huvud:
def polar(r: Double, theta: Double): Point

Tips:

* Du har nytta av metoderna r = math.hypot(x, y) och 8 =math.atan2(y, x)
vid omvandling till poldra koordinater:

X

* Du har nytta av metoderna math.cos(theta) och math.sin(theta) vid om-
vandling fran polara koordinater.

* Notera att klassens attribut 4r av typen Double och inte Int, trots att vi senare
ska anvianda punkten for att beskriva en diskret pixelposition i ett PixelWindow.
Anledningen till detta ar att det kan uppsta avrundningsfel vid numeriska
berdkningar. Detta blir sarskilt mérkbart vid upprepad réikning med sma vérden,
t.ex. ndr man ritar en approximerad cirkel med manga linjesegment.

b) Klassen PolygonWindow nedan innehéller ett PixelWindow och ger mdjlighet att ri-
ta ut polygoner. Kopiera koden for PolygonWindow till en ny kodfil PolygonWindow.scala
i samma katalog som du placerade Point ovan i.

//> using dep "se.lth.cs::introprog:1.4.0"

package graphics

import introprog.PixelWindow
import java.awt.Color

6https ://sv.wikipedia.org/wiki/Kartesiskt_koordinatsystem
7https ://sv.wikipedia.org/wiki/Pol%C3%A4ra_koordinater

https://sv.wikipedia.org/wiki/Kartesiskt_koordinatsystem
https://sv.wikipedia.org/wiki/Pol%C3%A4ra_koordinater

5.2. OVNING CLASSES 193

extension (p: Point) def toPixels: Seq[Int] =
Seq(p.x.round.toInt, p.y.round.tolnt)

class PolygonWindow:

val black = Color(0, 0, 0)

val coolGreen = Color(0, 255, 111)
val width = 500

val height = 500

val window =
PixelWindow(width, height, title = "Polygons",
background = black, foreground = coolGreen)

def draw(polygon: Polygon): Unit =
for i <- 0 until polygon.nbrOfCorners do
val from = polygon.points(i).toPixels.map(_ + width / 2)
val next = polygon.points((i+1l) % polygon.nbrOfCorners)
val to = next.toPixels.map(_ + width / 2)
window.line(from(0), from(l), to(0), to(l), lineWidth = 2)

Skapa en case-klass vid namn Polygon med en parameter points: Vector[Point]
och ett attribut val nbrOfCorners: Int. Case-klassen Polygon ska ocksa ligga i pa-
ketet graphics.

Likt klassen Point ovan ska ocksa Polygon ha ett kompanjonsobjekt. Kompanjon-
sobjektet ska ha en metod regular som skapar en regelbunden polygon. Metoden ska
ha féljande parametrar: norOfCorners: Int, radius: Double, midPoint: Point
Fundera 6ver hur case-klassen Polygon och dess kompanjonsobjekt ska se ut for att
koden ovan i PolygonWindow ska fungera som tankt. Testa att allt fungerar i REPL.

¢) Kan man anvinda metoden regular for att rita cirklar? Kan man anvinda
Polygon for att representera oregelbundna polygoner? Testa i REPL.

Uppgift 9. Klasser, instanser och skrdp. For 1dange sedan i en galax langt langt borta...

case class Arm(arTillVanster: Boolean)
case class Ben(arTillVanster: Boolean)
case class Huvud(harHar: Boolean = true)

case class Rymdvarelse(

arml: Arm = Arm(true),
arm2: Arm = Arm(false),
benl: Ben = Ben(true),
ben2: Ben = Ben(false),

huvudl: Huvud = Huvud(harHar = false),

var huvud2: Huvud = Huvud()
):
def arSkallig = 'huvudl.harHar && 'huvud2.harHar

0 N o U WN

O 00 N O Ul A W N

194 KAPITEL 5. KLASSER OCH DATAMODELLERING

a) Kilistrain ovan rymdkod i REPL och evaluera nedan rader. Rita minnessituationen

efter rad 5 och beskriv vad som héinder.

scala> val alien = Rymdvarelse()
scala> alien.arSkallig

scala> val predator = Rymdvarelse()
scala> predator.arSkallig

scala> predator.huvud2 = alien.huvudl

scala> predator.huvud2 eq alien.huvudl // test av referenslikhet
scala> println(predator)

scala> predator.arSkallig

b) Vad hander sa smaningom med det ursprungliga huvud2-objektet i predator efter
tilldelningen pa rad 5? Gar det att referera till detta objekt pa nagot satt?

Uppgift 10. Case-klass. Ofordnderlig kvadrat.

a) Implementera nedan kvadrat med en editor och klistra in den i REPL.

case class Square(val x: Int = 0, val y: Int = 0, val side: Int = 1):
val area: Int = 777

/*x Creates a new Square moved to position (x + dx, y + dy) */
def moved(dx: Int, dy: Int): Square = 7?7

def isEqualSizeAs(that: Square): Boolean = 7?77

/** Multiplies the side with factor and rounded to nearest integer x/
def scale(factor: Double): Square = ???

object Square:
/*x A Square at (0, 0) with side 1 */
val unit: Square = ???

b) Testa din kvadrat enligt nedan. Forklara vad som hénder.

scala> val (sl, s2) = (Square(), Square(l, 10, 1))
scala> val s3 = sl moved (1,-5)

scala> sl isEqualSizeAs s3

scala> s2 isEqualSizeAs sl

scala> sl isEqualSizeAs Square.unit

scala> s2.scale(math.Pi) isEqualSizeAs s2

scala> s2.scale(math.Pi) isEqualSizeAs s2.scale(math.Pi)
scala> s2.scale(math.Pi) eq s2.scale(math.Pi)

scala> Square.unit eq Square.unit

O 00 N O U A W N =

5.2. OVNING CLASSES 195
5.2.3 Foérdjupningsuppgifter; utmaningar

Uppgift 11. Innehdllslikhet mellan olika typer. Klistra in nedan klasser i REPL och
undersok vad som héinder.

class Gurka(val vikt: Int)

class Bil(val typ: String)

scala> class Gurka(val vikt: Int)
I
| class Bil(val typ: String)
// defined class Gurka
// defined class Bil

scala> 42 == "Fyrtiotva"

scala> Gurka(50) == Bil("Sedan")

Finns det nagot resultat som ar problematiskt, och i sa fall, varfor?

Uppgift 12. Attributrepresentation. Privat konstruktor. Fabriksmetod. Kim Kodkunnig
skapade for ldnge sedan denna klass som anvidnds pa manga stéllen i befintlig kod:

class Point private (val x: Int, val y: Int)

object Point:
def apply(x: Int =0, y: Int = 0): Point = new Point(x, vy)
val origo = apply()

a) Vad hiander om du forsoker instansiera Kim Kodkunnigs klass direkt med nyc-
kelordet new?

b) Varfor anvinder Kim Kodkunnig ett kompanjonsobjekt med en fabriksmetod?
Vilka accessregler géiller mellan ett kompanjonsobjekt och klassen med samma namn?

¢) Hjialp Kim Kodkunnig att 4ndra attributrepresentationen sa att det oférianderliga
tillstandet utgors av en 2-tupel val p: (Int, Int) i stéllet. Befintlig kod ska inte
behéva dndras och klassen Point ska bete sig fran "utsidan” precis som innan.

Uppgift 13. Synlighet av klassparametrar och konstruktor, private[this].

a) En av gurk-klasserna nedan ar trasig. Varfor och vad blir det for fel?

class Gurkal(vikt: Int)
class Gurka2(val vikt: Int)
class Gurka3(private val vikt: Int)

class Gurka4(private val vikt: Int, kompis: Gurka4):
def kompisVikt = kompis.vikt

class Gurka5(private[this] val vikt: Int, kompis: Gurka5):
def kompisVikt = kompis.vikt

O 00 N O Ul A W N

e el
w N = O

N o A W NP

196 KAPITEL 5. KLASSER OCH DATAMODELLERING

class Gurka6 private (vikt: Int)

class Gurka7 private (var vikt: Int)
object Gurka7:
def apply(vikt: Int) =
require(vikt >= 0, "negativ vikt: " + vikt)
new Gurka7(vikt)

b) Undersok nedan vad nyckelorden val och private far for konsekvenser. Forklara
vad som hénder. Vilka rader ger vilka felmeddelanden?

scala> new Gurkal(42).vikt

scala> new Gurka2(42).vikt

scala> new Gurka3(42).vikt

scala> val ingenGurka: Gurka4 = null

scala> new Gurka4(42, ingenGurka).kompisVikt

scala> new Gurka4 (42, new Gurka4(84, null)).kompisVikt

scala> new Gurka6(42)
scala> new Gurka7(-42)
scala> Gurka7(-42)

scala> val g = Gurka7(42)
scala> g.vikt

scala> g.vikt

scala> g.vikt

Uppgift 14. Egendefinierad setter kombinerat med privat konstruktor. Klistra in denna
kod i REPL:

class Gurka8 private (private var _vikt: Int):
def vikt = _vikt
def vikt_=(v: Int): Unit =
require(v >= 0, "negativ vikt: " +v)
_vikt = v

object Gurka8:
def apply(vikt: Int) =
require(vikt >= 0, "negativ vikt: " + vikt)
new Gurka8(vikt)

a) Forklara vad som hénder nedan. Vilka rader ger vilka felmeddelanden?

scala> val g = Gurka8(-42)
scala> val g Gurka8(42)
scala> g.vikt

vikt = 0

g.
scala> g.
scala> g.vikt = -1
g.
g.

vikt += 42
vikt -= 1000

scala>
scala>

b) Vad ar fordelen med mojligheten att skapa egendefinierade setters?

Uppgift 15. Objekt med fordnderligt tillstand (eng. mutable state). Du ska implemen-
tera en modell av en hoppande groda som uppfyller féljande krav:

5.2. OVNING CLASSES 197

1. Varje grodobjekt ska halla reda pa var den ar.
2. Varje grodobjekt ska halla reda pa hur langt grodan hoppat totalt.

3. Varje grodobjekt ska kunna berikna hur langt det 4r mellan grodans nuvarande
position och utgangsléget.

4. Alla grodor bérjar sitt hoppande i origo.

5. En groda kan hoppa enligt tva metoder:

¢ relativ forflyttning enligt parametrarna dx och dy,
¢ slumpmaissig relativ forflyttning [1,10] i x-ledsfériandring och [1,10] i y-
ledsférandring.

a) Implementera klassen Frog enligt nedan kodskelett och ovan krav.

class Frog private (initX: Int = 0, initY: Int = 0):
def x: Int = 7?7
def y: Int = 7?7

def jump(dx: Int, dy: Int): Unit = ?7?
def randomJump: Unit = ?77?

def distanceToStart: Double = 7?77
def distanceJumped: Double = 7?7
def distanceTo(that: Frog): Double = ???

object Frog:
def spawn(): Frog = ?777?

Tips:

* Om namnet man vill ge ett privat foranderligt attribut "krockar” med ett me-
todnamn, dr det vanligt att man borjar attributets namn med understreck, t.ex.
private var _x for att pa sa sitt undkomma namnkonflikten.

* Infoér en metod i taget och klistra in den nya grodan i REPL efter varje utvidgning
och testa.

b) Skapa en metod def test(): Unit i ett singelobjekt FrogTest som innehaller
kod som gor minst en kontroll av varje krav. Om ingen kontroll gar fel ska "Test Ok!"
skrivas ut, annars ska exekveringen avbrytas. Tips: Anviand assert(b, msg) som
avbryter exekveringen och skriver ut msg om b ar falsk.

¢) Vad kallas en metod som enbart returnerar virdet av ett privat attribut?

d) Infor setters for attributen som héller reda pa x- och y-postitionen. Férandringar
av positionen i x- eller y-led ska ridknas som ett hopp och alltsa registreras i det
attribut som haller reda pa det ackumulerade hoppavstandet.

e) Simulera ett massivt grodhoppande med krockdetektering genom att skapa 100
grodor som till att borja med &r placerade pa x-axeln med avstandet 8 liangdenheter
mellan sig. For varje runda i en while-sats, 1at en slumpéssigt vald groda gora ett
randomJump tills nagon groda befinner sig ndrmare dn 0.5 ldngdenheter, vilket &ar
definitionen pa att de har krockat. Ridkna hur manga looprundor som behé6vs innan
nagot grodpar krockar och skriv ut antalet. Skriv &ven ut det totala antalet

Tips: Borja med pseudokod pa papper. Anvind en grodvektor.

198 KAPITEL 5. KLASSER OCH DATAMODELLERING

Uppgift 16. Objekt med fordnderligt tillstand (eng. mutable state). Webbshoppen
UberSquare séljer flyttbara kvadrater. I affarsmodellen ingar att ta betalt per for-
flyttning. Du ska hjilpa UberSquare att utveckla en enkel prototyp for att imponera

pa riskkapitalister. (En variant av denna uppgift ingick i tentamen 2017-08-23.)

a) Implementera Square enligt dokumentationskommentarerna i efterféljande kod-

skiss och enligt dessa krav:

1. Varje instans av Square ska riakna antalet forflyttningar som gjorts sedan in-

stansen konstruerats.

2. For att kunna 6vervaka sina kunder vill UberSquare dven rikna det totala
antalet forflyttningar som gjorts av alla kvadrater som nagonsin skapats (s.k.

big data).

3. Varje gang forflyttning sker ska ett visst belopp adderas till den ackumulerade

kostnaden for respektive kvadrat, enligt kostnadsberikningen i krav 4.

4. UberSquare ir oroliga for att kvadraterna flyttas for langt bort och bestammer
darfor att for varje forflyttning ska den ackumulerade kvadratkostnaden 6kas
med den nya positionens avstand till ursprungsliget vid kvadratens konstruk-

tion multiplicerat med aktuell storlek pa kvadraten.

5. For att framsta som goda berattar UberSquare i sin marknadsforing att det ar

gratis att skala kvadrater. 8

/** A mutable and expensive Square. x*/

class Square private (val initX: Int, val initY: Int, val initSide: Int):
private var nMoves = 0
private var sumCost = 0.0

private var _x = initX
private var _y = initY

private var _side = initSide

private def addCost(): Unit =
sumCost += ?7?7?

def x: Int
def y: Int

777
777

def side = ???

/** Scales the side of this square and rounds it to nearest integer */
def scale(factor: Double): Unit = ??7?

/** Moves this square to position (x + xd, y + dy) =*/
def move(dx: Int, dy: Int): Unit = ??7?

/** Moves this square to position (x, y) */
def moveTo(x: Int, y: Int): Unit = ???

/**x The accumulated cost of this Square x*/

8D.v.s. ett anrop av metoden scale orsakar ingen omedelbar kostnad.

o U~ W N =

5.2. OVNING CLASSES 199

def cost: Double = ?7??

/*x Returns the accumulated cost. Sets the accumulated cost to zero. */
def pay: Double = ???

override def toString: String =
s"Square[($x, $y), side: $side, #moves: $nMoves times, cost: $sumCost]"

object Square:
private var created = Vector[Square] ()

/** Constructs a new Square object at (x, y) with size side */
def apply(x: Int, y: Int, side: Int): Square =

require(side >= 0, s"side must be positive: $side")

777

/**x Constructs a new Square object at (0, 0) with side 1 *x/
def apply(): Square = ?77?

/** The total number of moves that have been made for all squares. */
def totalNumberQOfMoves: Int = ???

/**x The total cost of all squares. *x/
def totalCost: Double = ??77?

b) Testa din kvadratprototyp i REPL. Anvind t.ex. koden nedan:

scala> val xs = Vector.fill(10) (Square())
scala> xs.foreach(_.move(2, 3))
scala> xs.foreach(_.scale(2.9))

scala> val (m, c) = (Square.totalNumberOfMoves, Square.totalCost)
val m: Int = 10
val c: Double = 36.055512754639885

Uppgift 17. Hjdlpkonstruktor. 1 tidigare uppgifter har vi mojliggjort alternativa sétt
att skapa instanser genom default-argument och fabriksmetoder i kompanjonsobjekt.

Ett annat sitt att goras detta pa, som i Scala #r ovanligt?, 4r att definiera flera
konstruktorer inne i klasskroppen. I Scala kallas en siddan extra konstruktor for
hjalpkonstruktor (eng. auxiliary constructor).

En hjilpkonstruktor skapar man i Scala genom att definiera en metod som har
det speciella namnet this, alltsd en deklaration def this(...) = ... Hjidlpkon-
struktorer maste borja med att anropa en annan konstruktor, antingen den priméra
konstruktorn (d.v.s. den som klasshuvudet definierar) eller en tidigare definierad
hjalpkonstruktor.

a) Lé&s mer om hjalpkonstruktorer hér:
www.artima.com/pinsled/functional-objects.html#6.7

b) Hitta pa en egen uppgift med hjialpkonstruktorer, baserat pa nagon av klasserna i
tidigare 6vningar.

9Men i Java &r detta mycket vanligt d& defaultargument m.m. inte ingar i spraket.

http://www.artima.com/pins1ed/functional-objects.html#6.7

200 KAPITEL 5. KLASSER OCH DATAMODELLERING

5.3 Laboration: blockbattle0

Forberedelser

[Gor ovning classes i avsnitt 5.2.

0 Du har tva veckor pa dig att géra blockbattle. Lias redan nu igenom alla
uppgifter i avsnitt 6.3, men gor forst grundévningarna innan du paborjar labben,
speciellt uppgift 6 i avsnitt 5.2.

Kapitel 6

Monster och felhantering

Begrepp som ingar i denna veckas studier:

monstermatchning
match

Option

throw

try

catch

Try

unapply

sealed

flatten

flatMap

partiella funktioner
collect
wildcard-monster
variabelbindning i monster
sekvens-wildcard
bokstavliga monster
implementera equals
hashcode

OoooooooDgoogooooooogo

201

202 KAPITEL 6. MONSTER OCH FELHANTERING

6.1 Teori

6.1.1 Bastypen for alla typer: Any
Scalas typsystem adr fullstandigt:

¢ Exakt alla existerande virden i Scala ar objekt som har en typ.

¢ Alla typer ar subtyper till bastypen Any, och déirfor kallas topptyp.

¢ Typen Nothing dr subtyp till alla typer, och kallas déarfor bottentyp.
Inget viarde har enbart typen Nothing; alla objekttyper 4r mindre specifika dn
sa.

¢ En foérenklad beskrivning av topptypen Any som ger alla objekt toString etc:

trait Any:
// metoder som far Gverskuggas
def toString: String // en strangrepresentation
def equals(other: Any): Boolean = eq(other) // definierar likhet
def hashCode: Int // ska ge samma heltal om equals true

// finala metoder far ej 6verskuggas:

final def eq(other: Any): Boolean // ger alltid referenslikhet
final def ne(other: Any): Boolean = !'eq(other)

final def ==(other: Any) = equals(other)

final def !=(other: Any) = 'equals(other)

final def isInstanceOf[T]: Boolean // typtest vid kortid
final def asInstanceOf[T]: T // osaker typkonvertering vid kértid
final def ## = hashCode // annorlunda for vardetyper och null

https://www.scala-lang.org/api/current/scala/Any.html
(Mer om bastyper, traits, equals, hashCode, ... senare.)

6.1.2 Alla typer dr subtyper till Any

Any

7

Matchable

ﬁs

AnyVal AnyRef

Alla vardetyper, t.ex. Int, Double, Boolean, ar subtyper till AnyVal
Alla referenstyper t.ex. String dr subtyper till AnyRef

Virden av typen Matchable kan anvindas vid s.k monstermatchning.
(Det finns dven s.k. opaka typer som inte kan ménstermatchas.)

6.1.3 Dina egna referenstyper dr subtyper till AnyRef
Alla typer du skapar &r subtyper till AnyRef utan att du behéver skriva det.

https://www.scala-lang.org/api/current/scala/Any.html

6.1. TEORI 203

trait Gronsak: // din egen bastyp
def vikt: Int

case class Gurka(vikt: Int) extends Gronsak // din egen subtyp
case class Tomat(vikt: Int) extends Grénsak // en annan subtyp
Gronsak
Gurka Tomat

Det kommer mer om typhierarkier och extends i veckan om arv.

I ett match-uttryck kan man matcha pa ett visst viarde eller pa en viss typ och match-
uttryck anviands girna istéllet for nastlade if-uttryck, da de ofta &ar lattare att ldasa
och begripa. Med match-uttryck kan man ocksa gora monstermatchning mot case-
klass-instanser, t.ex. for att pa ett smidigt satt undersoka om attribut har speciella
véarden. Match-uttryck i Scala dr en mer kraftfull variant av switch-satser som finns i
manga andra sprak.

6.1.4 Vad ar matchning?

* Matchning gér man da man vill jAimfora ett virde mot andra viarden och hitta
overensstammelse (eng. match) enligt olika monster.
* Med monster kan man dven plocka isir objekt i sina bestandsdelar.

6.1.5 Plocka isdr ett objekt i sina bestdndsdelar med ménster

scala> case class Point(x: Int, y: Int)

scala> val p Point (1, 2) // konstruera en punkt
val p: Point Point(1,2)

scala> val Point(a, b) = p // plocka isar en punkt
val a: Int =1
val b: Int = 2

Point(a, b) kallas ett konstruktormonster.

De godtyckliga namnen a och b blir nya variabler.

Det finns manga olika sorters monster.

Vanligaste anvidndningen av monster &ar i match-uttryck.

204 KAPITEL 6. MONSTER OCH FELHANTERING

6.1.6 Kolla om det passar med néstlade if-uttryck

Ett vanligt problem:
att kolla vilket bland manga varden som passar

Kan goras med nistlade if-then-else-uttryck:

val g = scala.io.StdIn.readLine("Ange en grodnsak:")

val smak =
if g == "gurka" then "gott!"
else if g == "tomat" then "jattegott!"
else if g == "broccoli" then "ganska gott..."

else "inte gott :("

println(g + " ar " + smak)

6.1.7 Kolla om det passar med match-uttryck

I stallet for nastlade if kan du anvinda Scalas kraftfulla match-uttryck:

val g = scala.io.StdIn.readLine("Ange en grdnsak: ")

val smak =
g match
case "gurka" => "gott!"
case "tomat" => "jattegott!"
case "broccoli" => "ganska gott..."
case _ => "mindre gott..."

® Varje case-gren testas var for sig i tur och ordning uppifran och ned.
* Det som star mellan case och => kallas ett monster (eng. pattern)
* Om ett monster matchar sa gors det som star efter =>
* Inga efterfoljande case-grenar testas efter lyckad match.
¢ Ovan ir exempel pa matchning mot konstant-monster,
i detta fallet tre stycken strangkonstantmonster.
¢ Sista default-grenen ovan kallas wildcard-monster: case _ =>
* Det finns méanga andra satt att skriva monster.

6.1.8 Syntax fér match-uttryck
Ett match-uttryck bestar av godtyckligt manga case ... => ...

vardeAttUndersoka match {
case monsterl => resultatl
case monster2 => resultat2
case monster3 => resultat3

6.1. TEORI 205

case monsterN => resultatN

¢ Klammerparenteser efter match valfria om case pa ny rad.

® Varje resultat-uttryck kan bestd av manga rader.
¢ Klammerparenteser behovs ej efter => vid manga rader.

Om manga rader efter case sa blir sista uttrycket resultatet.
Vi ska nu se exempel pa manga olika monster

6.1.9 Matchning med gard

Man kan stoppa in en s.k gard (eng. guard) innan pilen => for att villkora matchningen:
(notera if utan then)

val g = scala.io.StdIn.readLine("Ange en grdnsak: ")
val smak = g match
case "gurka" if math.random() > 0.5 => "gott ibland!"
case "tomat" => "jattegott!"
case "broccoli" => "ganska gott..."
case _ => "mindre gott..."

case-grenen med gard ger bara en lyckad matchning
om uttrycket efter if dr sant; annars provas nésta gren, etc.

6.1.10 Matchning med variabelménster

Om det finns ett namn efter case som borjar med liten begynnelsebokstav, blir detta
namn en variabel som automatiskt binds till uttrycket fore match:

val g = scala.io.StdIn.readlLine("Ange en gronsak: ")
val smak = g match
case "gurka" if math.random() > 0.5 => "gott ibland!"
case "tomat" => "jattegott!"
case "broccoli" => "ganska gott..."
case other => "smakar bakvant: " + other.reverse

Ett enkelt variabelmonster, sa som
case other => ...
i exemplet ovan, matchar allt!
other far alltsa virdet av g om g inte ar "gurka", "tomat", "broccoli".

6.1.11 Matchning med eller-monster

Om man har samma utfall for olika grenar kan dessa slas ihop och ménstret separeras
med vertikalstreck: |

206 KAPITEL 6. MONSTER OCH FELHANTERING

val g = scala.io.StdIn.readlLine("Ange en grénsak: ")
val smak = g match

case "gurka" => "gott"

case "tomat" => "gott"

case "l1ok" => "gott"

case _ => "inte gott"

Mer koncist med eller-moénster:

val g = scala.io.StdIn.readLine("grénsak:")
val smak = g match
case "gurka" | "tomat" | "l6k" => "gott"
case _ => "inte gott"

6.1.12 Matchning med typade monster
Antag att vi har nedan odkta funktion f som vi vill matcha pa:

def f() = // Vilken returtyp harleds av kompilatorn?
if math.random() < 0.5 then 42 + math.random()
else s"gurka ${math.random()}"

Med en typannotering efter en variabel far man ett typat monster (eng. typed pat-
tern). Vid lyckad matchning omvandlas virdet till den specifika typen och binds till
variabeln.

val i: Int = f() match
case x: Double => x.round.toInt // typat ménster som kollar om Double
case s: String => s.length // typat monster som kollar om String

Matchning mot specifika typer enl. ovan anvinds i idiomatisk Scala hellre &n isInstance0Of
och asInstance0f men man kan géra motsvarande ovan sa hér:

val i2: Int =
val x = f()
if x.isInstanceOf[Double] then x.asInstanceOf[Double].round.toInt
else if x.isInstanceOf[String] then x.asInstanceOf[String].length
else throw scala.MatchError(x)

6.1.13 Foérdjupning: Unionstyper och typen Matchable

¢ Exempel: For de orelaterade typerna String och Int &r den mest specifika
typen som kan hirledas Int | String, ldases "Int eller String” och kallas en
unionstyp (eng. union type).

6.1. TEORI 207

scala> def f() math.random() match

case a if a > 0.5 => 42
a

case a if a < 0.2 => "hej"

def f(): Int | String

¢ Alla varden som kan undersékas med match har typen Matchable.
* Typen Matchable ar nistan lika generell som topptypen Any.

scala> (f().isInstanceOf[Matchable], f().isInstanceOf[Any])

val res@: (Boolean, Boolean) = (true,true)

* Matchable infordes i Scala 3 med opaka typalias som garanterat aldrig boxas
men inte kan monstermatchas. (Ingar ej i denna kurs.)

¢ Fordjupning om Matchable och opaque type i Scala 3 finns har:
https://dotty.epfl.ch/docs/reference/other-new- features

6.1.14 Konstruktorménster med case-klasser
En basklass med gemensamma delar och tva subtyper:

trait Gronsak:
def vikt: Int
def arRutten: Boolean

case class Gurka(vikt: Int, arRutten: Boolean) extends Gronsak
case class Tomat(vikt: Int, arRutten: Boolean) extends Gronsak

Tack vare case-klasserna kan man anvinda konstruktormonster (eng. constructor
pattern) for att se vad som finns inuti en instans:

def testa(g: Gronsak): String = g match
case Gurka(v, false) => "gott, vager " + v
case Gurka(_, true) => "inte gott"
case Tomat(v, r) => (if r then "inte " else "") + s"gott, vager $v"
case _ => s"okand gronsak: $g"

Konstruktormonster "plockar isdr” det som matchas och binder variabler till de
attribut som finns i case-klassens konstruktor.

6.1.15 Plocka isér samlingar med djupa ménster
* Man kan plocka isédr innehallet i en samling sa hér:

def visa(xs: Vector[Grdonsak]): String = xs match

case Vector() => "tom groénsaksvektor"

case Vector(Gurka(v, true)) => s"en rutten gurka som vager $v"
case Vector(g) => s"exakt en gronsak: $g"

case Vector(gl, g2) => s"exakt tva gronsaker: $gl, $g2"

case Vector(g, gs*) => s"fdrst en $g och sedan svansen: $gs"

https://dotty.epfl.ch/docs/reference/other-new-features

208 KAPITEL 6. MONSTER OCH FELHANTERING

¢ Vad hiander om du byter ordning pa 2:a och 3:e monstret?
® Vector(g, gsx*) kan ocksa skrivas som g +: ¢s

6.1.16 Matchning pé tupler
Det gar fint att plocka isér tupler med ménstermatchning:!

var pair = ("hej", 42)

pair match
case (a, b) if b == 42 => s"livets mening ar funnen: $a"
case (_, b) => s"fattas mening: $b"

Understreck betyder att vi inte dr intresserade av att binda ett variabelnamn till
vérdet.

6.1.17 Monstermatchning och upprdkning med case-objekt
En bastyp och specifika singelobjekt av gemensam typ:

trait Farg

case object Spader extends Farg // funkar utan case men vill ha najs toString
case object Hjarter extends Farg

case object Ruter extends Farg

case object Klover extends Farg

def parallellFarg(f: Farg): Farg = f match
case Spader => Klover
case Klover => Spader
case Hjarter => Ruter

Vilken case-gren har vi glomt? Kan kompilatorn hjalpa oss?

scala> parallellFarg(Ruter)

scala.MatchError: Ruter

Undantag vid kortid : (

6.1.18 Monstermatchning och férseglade typer

Med nyckelordet sealed far du en forseglad typ: inga fler subtyper far finnas 4n de
som star i samma kodfil. Du far varning om glémt fall i monstermatchning.

sealed trait Farg // ESC+Enter i REPL kompilerar fler rader i ett svep
case object Spader extends Farg
case object Hjarter extends Farg

1https ://youtu.be/aboZctrHfK8

https://youtu.be/aboZctrHfK8

o Ul A~ W N =

0 N O Ul A WN

6.1. TEORI 209

case object Ruter extends Farg
case object Klover extends Farg

def parallellFarg(f: Farg): Farg = f match
case Spader => Kldver
case Klover => Spader
case Hjarter => Ruter

1 warning found
|def parallellFarg(f: Farg): Farg = f match
| "~

match may not be exhaustive.

It would fail on pattern case: Ruter

Varning vid kompilering :) Tack kompilatorn!

6.1.19 Monstermatcha enumeration

I stillet for sealed trait ... case object ... kan du anvinda en enumeration
(4.k. upprikning, uppriknad datatyp, (eng. enumeration)).

enum Farg:
case Spader, Hjarter, Ruter, Klover

def parallellFarg(f: Farg): Farg =
import Farg.x
f match
case Spader => Klover
case Klover => Spader
case Hjarter => Ruter

1 warning found
| f match

A

|
| match may not be exhaustive.
I
I

It would fail on pattern case: Ruter

Aven hir far vi hjilpsam varning vid kompilering :) Tack kompilatorn!

6.1.20 Stora/smad begynnelsebokstéver vid matchning
Fallgrop: matcha viarde som borjar med liten bokstav.

scala> val livetsMening = 42

scala> def arLivetsMeningBuggig(svar: Int) = svar match
case livetsMening => true // lokalt namn som matchar allt!
case _ => false

scala> arLivetsMeningBuggig(43)
val resO: Boolean = true

210 KAPITEL 6. MONSTER OCH FELHANTERING

scala> val LivetsMening = 42 // stor begynnelsebokstav

scala> def arLivetsMening(svar: Int) = svar match
case LivetsMening => true // funkar fint!

case _ => false

scala> arLivetsMening(43)
val resl: Boolean = false

6.1.21 Stora/sma begynnelsebokstéver vid matchning

Ett satt att komma runt problemet med liten begynnelsebokstav:
backticks to the rescue!

scala> val livetsMening = 42
scala> def arLivetsMeningBackTicks(svar: Int) = svar match
case " livetsMening® => true // nu funkar det!

case _ => false

scala> arLivetsMeningBackTicks(43)
val res2: Boolean = false

0 N o U A W N

6.1.22 Monster pd andra stdllen én i match

Mbonster 1 deklarationer:

il scala> case class Point(x: Int, y: Int)

2

Ell scala> val p = Point(0, 1)

4

Ll scala> val Point(x, y) =p // konstruktorménster med case-klass
[val x: Int = 0

yl val y: Int =1

8

M scala> val (x, y, z) = (0, 1, 2) // konstruktormonster med tupel
i val x: Int

i val y: Int

iVl val z: Int

Monster i for-uttryck:

il scala> val xs = for (x, y) <- Vector((1,2), (3,4)) yield x
Yl Val xs: Vector[Int] = Vector(1l, 3)

O 00 N O U A W N =

6.1. TEORI 211

6.1.23 Monsterdelar och variabelt antal argument

Met tva olika specialtecken gar det att

* binda variabler till monsterdelar med @
case Vector(xs@Vector(a), Vector(42)) => ...
¢ matcha variabelt antal argument med x

case Vector(a, _, c¢) => ... matchar om 3 element, _ kvittar
case Vector(a, svansx) => ... matchar om minst ett element
case Vector(a, _*) => ... intresserad av forsta, svans kvittar

6.1.24 Partiella funktioner och metoden collect

¢ En partiell funktion ir, till skillnad fran en total funktion, inte definierad
for alla parametervirden.
* Partiella funktioner kan skapas med case utan match:

val pf: PartialFunction[Int, Double] = { case z if z '=0 => 1.0 / z }

* Funktionen &r inte definierad for argumentet 0:

scala> pf(0)
scala.MatchError: 0

* Detta dr anvandbart tillsammans med samlingsmetoden collect som applicerar
en partiell funktion endast pa definierade varden:

scala> Vector(l, 2, 0, 4).collect(pf)
val resQ: Vector[Double] = Vector(1.0, 0.5, 0.25)

scala> Vector(l -> 2, 0 -> 3, 42 -> 0).collect{ case (a,b) if a > 0 => a }
val resl: Vector[Int] = Vector(l, 42)

¢ Notera att krullparentes behovs vid case utan match.

6.1.25 Foérdjupning: metoden unapply

Nér du deklarerar en case-klass kommer kompilatorn att automatiskt generera en
metod med namnet unapply.

scala> case class Gurka(vikt: Int, arRutten: Boolean)

scala> Gurka.unapply // tryck ENTER fér att se typen
val res0: Gurka => Gurka = Lambdal914/0x00000008408cf840@b0e7bde

scala> val g = Gurka(100, false)

scala> Gurka.unapply(g)
val resl: Gurka = Gurka(100,false)

O 00 N O U1l A W N

212 KAPITEL 6. MONSTER OCH FELHANTERING

Vad ska detta vara bra for? Metoden unapply genereras av kompilatorn och an-
vands internt vid matchning och det 4r den metoden som gor att case-klasser kan
anvindas i konstruktormonster. Principen &r generell: Man kan skapa egna s.k. ex-
traktorer (eng. extractors) som kan plocka isar ett virde med monstermatchning,
dven utan case-klass.

For den nyfikne: https://docs.scala-lang.org/scala3/reference/changed- features/
pattern-matching.html

6.1.26 Hur hantera saknade vdarden?
Olika satt att hantera saknade varden:

¢ Hitta pa ett specialviarde: exempel -1 for saknat viarde
* null om virde saknas (vanligt i Java m.fl. sprak, mkt ovanligt i Scala)
¢ Anvind en samling och 1at tom samling representera saknat véarde:
val sums = Vector(Vector(42),Vector(32),Vector(),Vector(21))
* Option[A] gemensam bastyp for:
None som representerar saknat varde, och
Some[A] som representerar att viarde finns

6.1.27 En gemensam bastyp for ett vérde som kanske saknas

Option[A]

def get: A
def isEmpty: Boolean

ﬁs

Some[A] None

scala> var x: Option[Int] = Some(42)

scala> x.isEmpty
val res0: Boolean false

scala> x = None

scala> x.isEmpty
val resl: Boolean

6.1.28 Option fér hantering av ev. saknade vérden

Alla vill inte berétta for Facebook vad de har for kon.
Forbattra Facebooks kod med ett litet Scala-program:

https://docs.scala-lang.org/scala3/reference/changed-features/pattern-matching.html
https://docs.scala-lang.org/scala3/reference/changed-features/pattern-matching.html

6.1. TEORI 213

enum Gender:
case Male, Female

case class Person(name: String, gender: Option[Gender])

I —————————————.
scala> val pl = Person("Bjoérn", Some(Gender.Male))

scala> val p2 Person("Sandra", Some(Gender.Female))

scala> val p3 = Person("Kim", None)

scala> val g2 = p2.gender
val g2: Option[Gender] = Some(Female)

scala> def show(g: Option[Gender]): String = g match
case Some(x) => x.toString
case None => "undefined"

scala> show(g2) // ger "Female"

scala> show(p3.gender) // ger "undefined"

scala> val ps = Vector(pl,p2,p3)

scala> val binary = ps.flatMap(_.gender) // flatMap ignorerar None
val binary: Vector[Gender] = Vector(Male, Female)

6.1.29 Nagra smidiga metoder p& Option
Metoden getOrElse gor att man ofta kan undvika matchning.

var opt: Option[Int] = None
val x = opt.getOrElse(42) // ge mig vardet om finns annars defaultvarde

Flera av de vanliga samlingsmetoderna funkar, t.ex. foreach och map.

opt.foreach(x => println(x)) // inget gdrs om varde saknas
opt.map(x => x + 1) // inget beraknas om varde saknas
opt = Some(42) // tilldela opt ndgot varde
opt.foreach(x => println(x)) // detta gors da varde finns

opt.map(x => x + 1) // ny option med uppdaterat varde

6.1.30 Nagra samlingsmetoder som ger en Option, 6vning

scala> val (xs, ys) = (Vector(1,2,3), Vector())

scala> xs.headOption
?7?

214 KAPITEL 6. MONSTER OCH FELHANTERING

scala> ys.headOption
?7?

scala> xs.find(_ > 1)
???

scala> xs.find(_ > 5)
227

scala> (xs.lift(0), ys.lift(0))

?7?
scala> val huvudstad = Map("Sverige" -> "Sthlm", "Skane" -> "Malmé")

scala> huvudstad.get("Skadne")
227

scala> huvudstad.get("Danmark")
?7?

6.1.31 Nagra samlingsmetoder som ger en Option, svar

scala> val (xs, ys) = (Vector(1,2,3), Vector())

scala> xs.headOption
val resQ: Option[Int] = Some(1l)

scala> ys.headOption
val resl: Option[Nothing] = None

scala> xs.find(_ > 1)
val res2: Option[Int] Some(2)

scala> xs.find(_ > 5)
val res3: Option[Int] None

scala> (xs.lift(0), ys.lift(0))
val res4: (Option[Int], Option[Nothing]) = (Some(1),None)

scala> val huvudstad = Map("Sverige" -> "Sthlm", "Skane" -> "Malmé")

scala> huvudstad.get("Skane")
val res5: Option[String] = Some(Malmo)

scala> huvudstad.get("Danmark")
val res6: Option[String] = None

6.1.32 Vad dr ett undantag (eng. exception)?

Undantag representerar ett fel eller ett onormalt tillstand som uppticks under exe-
kvering och som behover hanteras pa sirskilt satt vid sidan av det normala exekve-
ringsflodet.

u A W N =

6.1. TEORI 215

sv.wikipedia.org/wiki/Undantagshantering

Exempel pa undantag:

¢ Indexering utanfor vektorns indexgranser.

¢ Lisning bortom filens slut.

¢ Forsok att 6ppna en fil som inte finns.

* Minnet ar slut.

¢ Heltalsdivision med noll ger java.lang.ArithmeticException.
e "hej".toInt ger java.lang.NumberFormatException

6.1.33 Orsaka undantag indirekt med require och assert

¢ Med funktionen require(b) skapas ett
IllegalArgumentException("requirement failed")
om b ar false

* require anvinds om man vill begréinsa vilka argument som ér giltiga

* Med funktionen assert(b) skapas ett AssertionError("assertion failed")
om b ar false

* assert anviands om man vill forhindra ogiltiga tillstand

Se implementationen av require hér:
https://github.com/scala/scala/blob/v2.13.17/src/library/scala/Predef.scala#
L322

6.1.34 Kasta undantag direkt med primitiva throw

Man kan sjilv generera ett undantag med throw, vilket kallas att kasta ett undantag
som (om det inte fangas), gor att exekveringen avbryts.

scala> def pang = throw Exception("PANG!")
pang: Nothing

scala> pang
java.lang.Exception: PANG!

Olika satt att hantera undantag och forhindra att exekveringen avbryts:

* try catch-uttryck omvandlar undantag till ngt lampligt virde.
® scala.util.Try kapslar in kod som kan ge undantag.

6.1.35 En gemensam bastyp for ndgot som kan misslyckas

import scala.util.{Try, Success, Failure}

https://sv.wikipedia.org/wiki/Undantagshantering
https://github.com/scala/scala/blob/v2.13.17/src/library/scala/Predef.scala#L322
https://github.com/scala/scala/blob/v2.13.17/src/library/scala/Predef.scala#L322

216 KAPITEL 6. MONSTER OCH FELHANTERING

Try[T]

def get: T
def isFailure: Boolean
def isSuccess: Boolean

5

Success[T] Failure[T]

val value: T val exception: Throwable

6.1.36 Hantera undantag som ett vérde med Try
scala> def pang = throw new Exception("PANG!")
scala> def kanskePang = if math.random() < 0.5 then 42 else pang
scala> import scala.util.{Try, Success, Failure}
scala> def forsdok = Try { kanskePang }
scala> val xs = Vector.fill(15){forsok}
scala> val trettonde = xs(12) match
case Success(value) => value
case Failure(e) => println(e); -1
scala> (xs(12).isSuccess, xs(12).isFailure)
scala> xs(12).getOrElse(0)

scala> xs(12).toOption

scala> forsok.foreach(println)

scala> forsok.map(_ + 1)

scala> for Success(x) <- xs yield x

6.1.37 Primitiva try-catch-uttryck
Man kan fanga undantag direkt med ett try ... catch-uttryck:

def carola =
try
if math.random() > 0.5 then throw Exception("stormvind")
4?2
catch
case e: Exception =>

U A W N =

6.1. TEORI 217

println("Fangad av en " + e.getMessage)
-1

scala> Vector.fill(5) (carola)
Fangad av en stormvind

Fangad av en stormvind
Fédngad av en stormvind
val res0: Vector[Int] = Vector(-1, 42, 42, -1, -1)

https://www.youtube.com/watch?v=4M16pJqc_bw

6.1.38 Undvik undantag om det gar

Fordelar med undantag:

¢ Vid allvarliga fel da det inte 4r mycket att gora &n att starta om, t.ex. OutOfMemoryException,
ar det bra att fa veta vad som &r fel.

* Onormala fall som uppkommer séllan kan hanteras separat (t.ex. i huvudpro-
grammet) utan att koden for normalfallet blir tillkranglad.

Nackdelar med undantag:

¢ Ett slags "goto” som gor exekveringsflodet svart att folja.
e Skapa stack-trace tar tid; undantag som sker ofta paverkar prestanda.

Exempel: undantagslosa toIntOption 4r bade sdker och snabb!
scala> def time(op: => Unit): Long {val t0 = System.nanoTime; op; System.nanoTime - t
scala> def min(op: => Unit, n: Int 1000): Long = Seq.fill(n) (time(op)).drop(n / 20).m

scala> min(util.Try("hello".toInt))
val res@: Long = 3549

scala> min(try "hello".toInt catch (_: Throwable) => ())
val resl: Long = 3046

scala> min("hello".toIntOption)
val res2: Long = 157

6.1.39 Fordjupning: Kontrollerade undantag

¢ Det finns en risk att hantering av undantag gloms bort.
Vad hénder da? Pang! — det blir kortidsfel och tvarstopp :(

* Det finns mojligheter i Scala att lata kompilatorn kontrollera om undantag
hanteras med s.k. kontrollerade undantag (eng. checked exceptions)

¢ Den nyfikne kan ldasa mer hér:
https://docs.scala-lang.org/scala3/reference/experimental/canthrow.
html

https://www.youtube.com/watch?v=4Ml6pJqc_bw
https://docs.scala-lang.org/scala3/reference/experimental/canthrow.html
https://docs.scala-lang.org/scala3/reference/experimental/canthrow.html

218 KAPITEL 6. MONSTER OCH FELHANTERING

Nér du jamfor varden med == anropas metoden equals som finns for alla typer. Du
kan i dina egna klasser 6verskugga equals med en din egna definition av vad likhet
ska innebéra. Da ar det lampligt att anvidnda matchning. Det ar dock ett ganska
omfattande arbete att implementera en korrekt likhetsjamforelse som fungerar under
alla omstéandigheter. Ett recept for en fullstindig implementation av equals ges i
fordjupningen nedan.

6.1.40 Foérdjupning: Implementera equals med match

Det visar sig att innehallslikhet 4ar forvanansvart komplicerat att implementera,
speciellt i samband med arv.

* Det enklare fallet: Gor fordjupningsuppgift "Metoden equals” och implementera
equals for innehallslikhet utan arv.
En bra traning pa att anvéinda match!

* Svarare: Gor fordjupningsuppgifterna "Overskugga equals” och "Overskugga
equals vid arv” om du vill se hur en komplett equals ska se ut som fungerar i
alla lagen.

Det kriavs i denna kurs inte att du sjalv ska kunna implementera en generellt funge-
rande equals. Men du ska forsta skillnaden mellan referenslikhet och innehéallslikhet.
Mer om equals i fortsdttningkursen, men en liten inblick i problemet nu...

Om en klass markeras final kan den ej ha nagra subklasser. Kompilatorn kontrol-
lerar att detta giller alla finala klasser och ger kompileringsfel om du forsoker gora
extends pa en final klass. Om en klass garanterat inte har nagra subklasser kan
implementationen av equals gora enklare.

6.1.41 Foérdjupning: equals som fungerar fér finala klasser

Recept for implementation av equals som fungerar for typer som inte har nagra
subtyper:

final class Gurka(val vikt: Int, val &rAtbar: Boolean):
override def equals(other: Any): Boolean = other match
case that: Gurka => vikt == that.vikt && &rAtbar == that.&arAtbar
case _ => false

override def hashCode: Int = (vikt, &rAtbar).## // ger bra hashcode

¢ Du maste alltid 6verskugga hashCode ocksa om du 6verskuggar equals annars
funkar inte gurksamlingar (lang story ...)

¢ Notera typen Any — detta foljer hur man valde att gora i Java (tyvarr?).

¢ Ett typsidkrare innehallslikhetstest som garanterat bara jamfor en gurka
med en gurka och inget annat:

def ===(other: Gurka): Boolean =
vikt == other.vikt && &rAtbar == other.&rAtbar

6.1. TEORI 219

6.1.42 Foérdjupning: Recept i 8 steg for arvssdker equals

1.

Infér denna metod: def canEqual(other: Any): Boolean
Observera att typen pa parametern ska vara Any. Om subklass behovs override.
Metoden canEqual ska ge true om other 4r av samma typ som this, t.ex.:

override def canEqual(other: Any): Boolean = other.isInstanceOf[Gurka]
. Infor metoden equals och var noga med att parametern har typen Any:

override def equals(other: Any): Boolean
Implementera metoden equals med ett match-uttryck som bérjar sa hér:
other match

. Match-uttrycket ska ha tva grenar. Den forsta grenen ska ha ett typat monster

for den klass som ska jamforas, t.ex.:

case that: Gurka =>
Om du implementerar equals i den klass som infér canEqual, bérja med:
(that canEqual this) &&
och skapa dérefter en fortsiattning som baseras pa innehallet i klassen, t.ex.:
this.vikt == that.vikt && this.langd == that.langd
Om du 6verskuggar equals vill du nog borja med super.equals(that) &&
Den andra grenen i matchningen ska vara: case _ => false
Overskugga hashCode, t.ex. med tupel av attributvirden och metoden ##:
override def hashCode: Int = (vikt, langd).##

http://www.artima.com/pinsled/object-equality.html

6.1.43 Fordjupning: Sdkrare likhetstest i Scala 3

Problem: equals tar viarden av vilken typ som helst.
Detta kallas universell likhet.

scala> case class Hund(namn: String)
scala> case class Katt(namn: String)

scala> Hund("bob") == Katt("bob") // knasig jamforelse; kan aldrig bli sant
val resO: Boolean = false // men kompilatorn later dig géra likhetstestet

I Scala 3 kan du fa typsdker likhetstest med derives CanEqual
Detta kalla multiversell likhet.

scala> case class Hund(namn: String) derives CanEqual

scala> Hund("bob") == Katt("bob") // tack kompilatorn for fel:
- Error:

1 |Hund("bob") == Katt("bob")

|Values of types Hund and Katt cannot be compared with == or !=

Du slipper skriva derives CanEqual om du gor:

import scala.language.strictEquality

Las mer hdr: https://docs.scala-lang.org/scala3/reference/contextual/
multiversal-equality.html

http://www.artima.com/pins1ed/object-equality.html
https://docs.scala-lang.org/scala3/reference/contextual/multiversal-equality.html
https://docs.scala-lang.org/scala3/reference/contextual/multiversal-equality.html

220 KAPITEL 6. MONSTER OCH FELHANTERING

© 00 30 O W N

=
=]

6.2. OVNING PATTERNS 221

6.2 Ovning patterns
Mail

[0 Kunna skapa och anvidnda match-uttryck med konstanta viarden, garder och
monstermatchning med case-klasser.

[J Kunna skapa och anvéinda case-objekt for matchningar pa uppriknade virden.

[0 Kunna hantera saknade virden med hjilp av typen Option och ménstermatch-
ning pa Some och None.

[J Kunna fanga undantag med scala.util.Try.

[0 Kénna till try, catch och throw.

[0 Kinna till nyckelordet sealed och forsta nyttan med forseglade typer.

Forberedelser

[0 Studera begreppen i kapitel 6

6.2.1 Grunduppgifter; forberedelse infér laboration

Uppgift 1. Matcha pd konstanta virden.

a) Skriv nedan program med en kodeditor och spara i filen Match.scala. Kompilera
och kor och och ge som argument din favoritgronsak. Vad hiander? Forklara hur ett
match-uttryck fungerar.

object Match:
def main(args: Array[String]l): Unit =
val favorite = if args.length > 0 then args(0) else "selleri"
println("Din favoritgronsak: " + favorite)
val firstChar = favorite.tolLowerCase.charAt(0)
val meThink = firstChar match
case 'g' => "gurka ar gott!"
case 't' => "tomat ar gott!"
case 'b' => "broccoli ar gott!"
case _ => s"$favorite ar mindre gott..."
println(s"Jag tycker att $meThink")

b) Vad blir det for felmeddelande om du tar bort case-grenen for defaultviarden
och indata viljs s& att inga case-grenar matchar? Ar det ett exekveringsfel eller ett
kompileringsfel?

Uppgift 2. Gard i case-grenar. Med hjilp en gard (eng. guard) i en case-gren kan man
begrinsa med ett villkor om grenen ska viljas.

Utga fran koden i uppgift 1a och byt ut case-grenen for 'g'-matchning till nedan
variant med en gard med nyckelordet if (notera att det inte behévs parenteser runt
villkoret):

case 'g' if math.random() > 0.5 => "gurka ar gott ibland..."

Kompilera om och kor programmet upprepade ganger med olika indata tills alla grenar
i match-uttrycket har exekverats. Forklara vad som hénder.

222 KAPITEL 6. MONSTER OCH FELHANTERING

Uppgift 3. Monstermatcha pa attributen i case-klasser. Scalas match-uttryck ar extra
kraftfulla om de anvinds tillsammans med case-klasser: da kan attribut extraheras
automatiskt och bindas till lokala variabler direkt i case-grenen som nedan exempel
visar (notera att v och rutten inte behover deklareras explicit). Detta kallas for
monstermatchning. Vad skrivs ut nedan? Varfor? Prova att byta namn pa v och
rutten.

scala> case class Gurka(vikt: Int, arRutten: Boolean)

scala> val g = Gurka(100, true)
scala> g match { case Gurka(v,rutten) => println("G" + v + rutten) }

Uppgift 4. Matcha pa case-objekt och nyttan med sealed. Skriv nedan kodrader i en
REPL en for en. Notera nyckelordet sealed som anvinds for att forsegla en typ. En
forseglad typ maste ha alla sina subtyper i en och samma kodfil.

scala> sealed trait Farg
scala> case object Spader extends Farg

a) Hur lyder felmeddelandet och varfor sker det? Ar det ett kompileringsfel eller ett
kortidsfel?

b) Skapa nu nedan kod i en editor och klistra in i REPL.

object Kortlek:
sealed trait Farg
object Farg:
val values = Vector(Spader, Hjarter, Ruter, Kldver)
case object Spader extends Farg
case object Hjarter extends Farg
case object Ruter extends Farg
case object Klover extends Farg

c¢) Skapa en funktion def parafarg(f: Farg): Fargien editor, som med hjalp av
ett match-uttryck returnerar parallellfargen till en farg. Parallellfargen till Hjarter
ar Ruter och vice versa, medan parallellfargen till KLover dr Spader och vice versa.
Klistra in funktionen i REPL. Passa dven pa att skriva en import-sats for det yttre
objektet Kortlek, si medlemmarna av objektet kan nas enkelt.

scala> parafarg(Spader)
scala> val xs = Vector.fill(5) (Farg.values((math.random() * 4).toInt))

scala> xs.map(parafarg)

d) Vi ska nu undersoka vad som hinder om man glommer en av case-grenarna i
matchningen i parafarg. "Glom” alltsa avsiktligt en av case-grenarna och klistra in
den nya parafarg med den ofullstandiga matchningen. Hur lyder varningen? Kommer
varningen vid kortid eller vid kompilering?

e) Anropa parafdrg med den "glomda” firgen. Hur lyder felmeddelandet? Ar det ett
kompileringsfel eller ett kortidsfel?

f) Forklara vad nyckelordet sealed innebér och vilken nytta man kan ha av att
forsegla en supertyp.

0 N O U~ W N

N o o AW N

6.2. OVNING PATTERNS 223

Uppgift 5. Monstermatcha enumeration. Vi ska nu undersoka och jamfora skillnad
mellan nyckelorden enum och sealed trait. Skriv nedan kod i en REPL.

enum Farg:
case Spader, Hjarter, Ruter, Klover

a) Skapa med hjalp av en editor igen en funktion def parafarg(f: Farg): Farg,
néistintill likadan som den som vi skapade i deluppgift 4c. Funktionen ska aterigen
utnyttja match-uttryck for att returnera paralellfargen till argumentet som ges. Tank
pa att denna gangen &dr Farg inget sealed trait, utan istédllet en enumeration (enum).
Klistra in funktionen i REPL.

scala> parafarg(Farg.Ruter)

scala> val xs = Vector.fill(5)(Farg.values((math.random() * 4).toInt))
scala> xs.map(parafarg)

b) Fundera pa skillnader och likheter mellan att utnyttja sealed trait ihop med
case-objekt gentemot att anvéinda sig av enum vid ménstermatchning.

Uppgift 6. Betydelsen av sma och stora begynnelsebokstdver vid matchning. For att
astadkomma att namn kan bindas till variabler vid matchning utan att de behéver
deklareras i forvag (som vi sag i uppgift 3) sa har identifierare med liten begyn-
nelsebokstav fatt speciell betydelse: den tolkas av kompilatorn som att du vill att
en variabel binds till ett virde vid matchningen. En identifierare med stor begyn-
nelsebokstav tolkas ddremot som ett konstant virde (t.ex. ett case-objekt eller ett
case-klass-monster).

a) En case-gren som fangar allt. En case-gren med en identifierare med liten begyn-
nelsebokstav som saknar gard kommer att matcha allt. Prova nedan i REPL, men
forsok lista ut i forvig vad som kommer att hdnda. Vad hiander?

scala> val x = "urka"

scala> x match
case str if str.startsWith("g") => println("kanske gurka")
case vadsomhelst => println("ej gurka: " + vadsomhelst)

scala> val g = "gurka"

scala> g match
case str if str.startsWith("g") => println("kanske gurka")
case vadsomhelst => println("ej gurka: " + vadsomhelst)

b) Fallgrop med sma begynnelsebokstdver. Innan du provar nedan i REPL, férsck
gissa vad som kommer att hdnda. Vad hiander? Hur lyder varningarna och vad innebér
de?

scala> val any: Any = "varken tomat eller gurka"
scala> case object Gurka

scala> case object tomat

scala> any match

case Gurka => println("gurka")
case tomat => println("tomat")
case _ => println("allt annat")

¢) Anvdnd backticks for att tvinga fram match pd konstant vdrde. Det finns en utvag
om man inte vill att kompilatorn ska skapa en ny lokal variabel: anvind specialtecknet

0 N O U~ W N

O 00 N O Ul A W N

=R
N B ®

224 KAPITEL 6. MONSTER OCH FELHANTERING

backtick, som skrivs * och kriver speciella tangentbordstryck.? Gor om foregdende
uppgift men omgirda nu identifieraren tomat i tomat-case-grenen med backticks, sa
hir: case “tomat® => ...

Uppgift 7. Matcha pad innehall i en Vector. Kor nedan i REPL. Vad skrivs ut? Forklara
vad som hénder.

scala> val xss = Vector(Vector("hej"),Vector("pa", "dej"),Vector("4","x","2"))
scala> xss.map(_ match

case Vector() => "tom"

case Vector(a) => a.reverse

case Vector(_, b) => b.reverse
case Seq(a, "x", b) =>a + b
case _ => "ANNARS DETTA"

) . foreach(println)

Uppgift 8. Anvdanda Option och matcha pa virden som kanske saknas. Man behéver
ofta skriva kod for att hantera virden som eventuellt saknas, t.ex. saknade telefon-
nummer i en persondatabas. Denna situation ar sa pass vanlig att manga sprak har
speciellt stod for saknande varden.

I Java® anvinds virdet null for att indikera att en referens saknar virde. Man far
da komma ihag att testa om vardet saknas varje gang sddana varden ska behandlas,

t.ex. med if (ref != null) { ...} else { ... }. Ett annat vanligt trick 4r att
lata -1 indikera saknade positiva heltal, till exempel saknade index, som far behandlas
medif (i '= -1) { ...} else { ... }.

I Scala finns en speciell typ Option som mgjliggér smidig och typséker hantering
av saknade viarden. Om ett kanske saknat viarde packas in i en Option (eng. wrapped
in an Option), finns det i en speciell slags samling som bara kan innehalla inget eller
nagot varde, och alltsa har antingen storleken 0 eller 1.

a) Forklara vad som hiander nedan.

scala> var kanske: Option[Int] = None
scala> kanske.size
scala> kanske = Some(42)
scala> kanske.size
scala> kanske.isEmpty
scala> kanske.isDefined
scala> def okaOmFinns(opt: Option[Int]): Option[Int] = opt match
case Some(i) => Some(i + 1)
case None => None
scala> val annanKanske = okaOmFinns (kanske)
scala> def oka(i: Int) =1 + 1
scala> val merKanske = kanske.map(6ka)

b) Monstermatchingen ovan dr minst lika knélig som en if-sats, men tack vare
att en Option ar en slags (liten) samling finns det smidigare satt. Forklara vad som
hénder nedan.

val meningen = Some(42)

val ejMeningen = Option.empty[Int]
meningen.map(_ + 1)

2Fréga nagon om du inte hittar hur man gor backtick * pa ditt tangentbord.
3Scala har ocksa null men det behovs bara vid samverkan med Java-kod.

O 00 N O Ul A W N =

e e e e e el =
© 0O N O U A W N B O

O 00 N O Ul A W N =

=
- ©

6.2. OVNING PATTERNS 225

ejMeningen.map(_ + 1)
ejMeningen.map(_ + 1).orElse(Some("saknas")).foreach(println)

meningen.map(_ + 1).orElse(Some("saknas")).foreach(println)

¢) Samlingsmetoder som ger en Option. Forklara for varje rad nedan vad som hénder.
En av raderna ger ett felmeddelande; vilken rad och vilket felmeddelande?

N ————————————————————————————————
val xs = (42 to 84 by 5).toVector

val e = Vector.empty[Int]

xs.headOption

xs.headOption.get

xs.headOption.getOrElse(0)

xS .headOption.orElse(Some(0))

e.headOption

e.headOption.get

e.headOption.getOrElse(0)
e.headOption.orElse(Some(0))

Vector(xs, e, e, e)

Vector(xs, e, e, e).map(_.lastOption)
Vector(xs, e, e, e).map(_.lastOption).flatten
xs.lift(0)

xs.lift(1000)

e.lift(1000).getOrElse(0)

xs.find(_ > 50)

xs.find(_ < 42)

e.find(_ > 42).foreach(_ => println("HITTAT!"))

d) Vilka ar fordelerna med Option jamfort med null eller -1 om man i sin kod
glommer hantera saknade varden?

Uppgift 9. Kasta undantag. Om man vill signalera att ett fel eller en onormal
situtation uppstatt sa kan man kasta (eng. throw) ett undantag (eng. exception). Da
avbryts programmet direkt med ett felmeddelande, om man inte viljer att fanga (eng.
catch) undantaget. a) Vad hénder nedan?

scala> throw new Exception("PANG!")
scala> java.lang. // Tryck TAB efter punkten
scala> throw new IllegalArgumentException("fel fel fel")
scala> val carola =
try
throw new Exception("stormvind!")

42
catch
case e: Throwable =>
println("Fangad av en " + e)
-1

b) Néamn ett par undantag som finns i paketet java.lang som du kan gissa vad de
innebér och i vilka situationer de kastas.

¢) Vilken typ har variabeln carola ovan? Vad hade typen blivit om catch-grenen
hade returnerat en striang i stallet?

Uppgift 10. Fanga undantag med scala.util.Try. I paketet scala.util finns typen
Try med stort T som dr som en slags samling som kan innehélla antingen ett "lyckat”
eller "misslyckat” viarde. Om beridkningen av virdet lyckades och inga undantag kastas

O 00 N O U1l A W N

N NN NNNNRBR 2 H 23 1B 2 B B2
O U A WN RO O O NO U A WN R O

226 KAPITEL 6. MONSTER OCH FELHANTERING

blir vardet inkapslat i en Success, annars blir undantaget inkapslat i en Failure.
Man kan extrahera virdet, respektive undantaget, med moénstermatchning, men det
ar oftast smidigare att anvinda samlingsmetoderna map och foreach, i likhet med
hur Option anvinds. Det finns dven en smidig metod recover pa objekt av typen Try
dar man kan skicka med kod som kors om det uppstar en undantagssituation.

a) Forklara vad som hinder nedan.

scala> def pang = throw new Exception("PANG!")
scala> import scala.util.{Try, Success, Failure}
scala> Try{pang}
scala> Try{pang}.recover{case e: Throwable => "desarmerad bomb: " + e}
scala> Try{"tyst"}.recover{case e: Throwable => "desarmerad bomb: " + e}
scala> def kanskePang = if math.random() > 0.5 then "tyst" else pang
scala> def kanskeOk = Try{kanskePang}
scala> val xs = Vector.fill(100) (kanskeOk)
scala> xs(13) match
case Success(x) => ":)"
case Failure(e) => ":(" + e
scala> xs(13).isSuccess
scala> xs(13).isFailure
scala> xs.count(_.isFailure)
scala> xs.find(_.isFailure)
scala> val badOpt = xs.find(_.isFailure)
scala> val goodOpt = xs.find(_.isSuccess)
scala> badOpt
scala> badOpt.get
scala> badOpt.get.get
scala> badOpt.map(_.getOrElse("bomben desarmerad!")).get
scala> goodOpt.map(_.getOrElse("bomben desarmerad!")).get
scala> xs.map(_.getOrElse("bomben desarmerad!")).foreach(println)
scala> xs.map(_.toOption)
scala> xs.map(_.toOption).flatten
scala> xs.map(_.toOption).flatten.size

b) Vad har funktionen pang for returtyp?
¢) Varfor far funktionen kanskePang den hérledda returtypen String?

6.2.2 Foérdjupningsuppgifter; utmaningar

Uppgift 11. Anvdanda matchning eller dynamisk bindning? Man kan astadkomma
urskiljningen av de dtbara gronsakerna i uppgift 3 med dynamisk bindning i stéllet
for match.

a) Gor en ny variant av ditt program enligt nedan riktlinjer och spara den modifiera-
de koden i filen vegopoly.scala och kompilera och kor.

e Ta bort predikatet d&rAtvard i objektet Main och infor i stéllet en abstrakt metod
def arAtbar: Booleani traiten Grénsak.

¢ Infor konkreta val-medlemmar i respektive gronsak som definierar dtbarheten.

e Andra i huvudprogrammet i enlighet med ovan #ndringar sa att arAtvard
anropas som en metod pa de skordade gronsaksobjekten nir de dtvirda ska
filtreras ut.

N O U W N

U A W N

6.2. OVNING PATTERNS 227

b) Lagg till en ny gronsak case class Broccoli och definiera dess dtbarhet. Andra
i slump-funktionerna sa att broccoli blir ovanligare &n gurka.

¢) Jamfor 16sningen med match i uppgift 3 och 16sningen ovan med polymorfism.
Vilka ar for- och nackdelarna med respektive 16sning? Diskutera tva olika situatio-
ner pa ett hypotetiskt foretag som utvecklar mjukvara for jordbrukssektorn: 1) att
uppséittningen gronsaker inte dndras sarskilt ofta medan definitionerna av dtbarhet
andras valdigt ofta och 2) att uppséattningen gronsaker dndras valdigt ofta men att
dtbarhetsdefinitionerna inte dndras sarskilt ofta.

Uppgift 12. Metoden equals. Om man 6verskuggar den befintliga metoden equals
s& kommer metoden == att fungera annorlunda. Man kan d& sjidlv dstadkomma
innehallslikhet i stéllet for referenslikhet. Vi borjar att studera den befintliga equals
med referenslikhet.

a) Vad hiander nedan? Undersok parametertyp och returvirdestyp for equals.

scala> class Gurka(val vikt: Int, val arAtbar: Boolean)
scala> val gl = new Gurka(42, true)
scala> val g2 = gl

scala> val g3 = new Gurka(42, true)

scala> gl == g2

scala> gl == g3

scala> gl.equals // tryck ENTER fér att se funktionstyp

b) Rita minnessituationen efter rad 4.
¢) Overskugga metoderna equals och hashCode.

Bakgrund: Det visar sig forvanande komplicerat att implementera innehéallslikhet med me-
toden equals sa att den ger bra resultat under alla speciella omstindigheter. Till exempel
maste man dven 6verskugga en metod vid namn hashCode om man 6verskuggar equals,
eftersom dessa bada anvinds gemensamt av effektivitetsskil for att skapa den interna
lagringen av objekten i vissa samlingar. Om man missar det kan objekt bli "osynliga” i
hashCode-baserade samlingar — men mer om detta i senare kurser. Om objekten ingar i en
oppen arvshierarki blir det ocksa mer komplicerat; det ar enklare om man har att géra
med finala klasser. Dessutom krévs speciella hinsyn om klassen har en typparameter.

Definera klassen nedan i REPL med 6verskuggade equals och hashCode; den arver
inte nagot och ar final.

// fungerar fint om klassen ar final och inte &rver ndgot
final class Gurka(val vikt: Int, val &rAtbar: Boolean):
override def equals(other: Any): Boolean = other match
case that: Gurka => vikt == that.vikt && &rAtbar == that.arAtbar
case _ => false
override def hashCode: Int = (vikt, &rAtbar).## //forklaras sen

d) Vad hédnder nu nedan, dir Gurka nu har en 6verskuggad equals med innehallslik-
het?

scala> new Gurka(42, true)
scala> gl

scala> new Gurka(42, true)
scala>
scala>

© 00 N O U A W N -

=
(=]

© 00 3 O U B~ W N -

N N N NDDNDNDDNDDNDNDDNRKRKFKRRPRRERFHEKFHFKFH -3 3
© 00 1 O U b W N HOOOW-==1O Ut A WNHK O

228 KAPITEL 6. MONSTER OCH FELHANTERING

e) Hur mirker man ovan att den 6verskuggade equals medf6r att == nu ger inne-
hallslikhet? Jamfor med deluppgift a.

I uppgift 18 far du prova péa att folja det fullstindiga receptet i 8 steg for att
overskugga en equals enligt konstens alla regler. I efterféljande kurs kommer mer
traning i att hantera innehallslikhet och hash-koder. I Scala far man ett objekts
hash-kod med metoden ##.*

Uppgift 13. Polynom. Med hjilp av koden nedan, kan man gora foljande:

scala> import polynomial.x

scala> Const(l) x* Xx
res0: polynomial.Term

scala> (xx*5)"2
resl: polynomial.Prod 25x"2

scala> Poly(x*(-5), y*4, (272)x*3)
res2: polynomial.Poly = -5x + y™4 + 3272

a) Forklara vad som hiander ovan genom att studera koden nedan®.

object polynomial:

sealed trait Term:
def x(that: Term): Term

case class Const(value: BigDecimal) extends Term:

def toSilentString: String = this match

case Const.One = ""
case Const.MinusOne => "-"
case _ => value.toString

override def toString = value.toString

override def *x(that: Term): Term = that match
case Const(d) => Const(d * value)
case v: Var => Prod(this, Set(v))
case Prod(c, vs) => Prod(Const(c.value * value), vs)

def x(d: BigDecimal): Const = Const(d * value)

def ~(e: Int): Const = Const(value.pow(e))
object Const:

final val Zero

final val One
final val MinusOne

Const(BigbDecimal(0))
Const(BigDecimal(1))
Const(BigDecimal(-1))

40m du ar nyfiken pa hash-koder, 14s mer hér: en.wikipedia.org/wiki/Hash_function
5Koden finns dven har:
github.com/lunduniversity/introprog/tree/master/compendium/examples/polynomial

https://en.wikipedia.org/wiki/Hash_function
https://github.com/lunduniversity/introprog/tree/master/compendium/examples/polynomial

30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82

6.2. OVNING PATTERNS 229

case class Var(name: Char, exp: Int = 1) extends Term:

private def silentExpString: String =
if exp == 1 then "" else """+exp.toString

override def toString = s"$name$silentExpString"
def ~(e: Int): Var = Var(name, e * exp)
def x(c: BigDecimal) = Prod(Const(c), Set(this))

override def *(that: Term): Term = that match
case c: Const => Prod(c, Set(this))

case v: Var =>
if v.name == name then Var(name, v.exp + exp)

else Prod(Const.One, Set(this, v))

case p: Prod => p * this

object Var:

def apply(d: BigDecimal, name: Char): Prod =
Prod(Const(d), Set(Var(name)))

def apply(d: BigDecimal, name: Char, exp: Int): Prod =
Prod(Const(d), Set(Var(name, exp)))

def addExp(vl: Var, v2: Var): Var = Var(vl.name, vl.exp + v2.exp)
def multiply(vl: Var, vs: Set[Var]): Set[Var] =
if !vs.contains(vl) then vs + vl
else vs.map(v2 => if vl.name == v2.name then addExp(vl, v2) else v2)
def multiply(vsl: Set[Var], vs2: Set[Var]): Set[Var] =
var result = vs2
vsl.foreach{ vl => result = multiply(vl, result) }
result
case class Prod(const: Const, vars: Set[Var]) extends Term :

override def toString = s"${const.toSilentString}${vars.mkString}"

override def *(that: Term): Term = that match
case Const(d) => Prod(Const(d * const.value), vars)

case v: Var => Prod(const, Var.multiply(v, vars))

case Prod(Const(d), vs) =>
Prod(Const(const.value * d), Var.multiply(vs, vars))

83
84
85
86
87
88
89
90
91

230 KAPITEL 6. MONSTER OCH FELHANTERING

def ~(e: Int) = Prod(const ~ e, vars.map(_ ~ e))

case class Poly(xs: Set[Term]):
override def toString = xs.mkString(" + ")

object Poly:
def apply(ts: Termx) : Poly = Poly(ts.toSet)

val (x, y, z, s, t) = (Var('x'), Var('y'), Var('z"'), Var('s'), Var('t'))

b) Bygg vidare pa object polynomial och implementera addition mellan olika ter-
mer.

Uppgift 14. Option som en samling. Studera dokumentationen fér Option hér och se
om du kénner igen nagra av metoderna som ocksa finns pa samlingen Vector:
www.scala-lang.org/api/current/scala/Option.html

Forklara hur metoden contains pa en Option fungerar med hjilp av dokumentatio-
nens exempel.

Uppgift 15. Fanga undantag med catch i Java och Scala. Gor motsvarande program
i Scala som visas i uppgift ??, men utnyttja att Scalas try-catch ar ett uttryck.
Kompilera och kor och testa sa att de ur anvindarens synvinkel fungerar precis pa
samma sitt. Notera de viktigaste skillnaderna mellan de bada programmen.

Uppgift 16. Polynom, fortsdittning: reducering. Bygg vidare pa object polynomiali
uppgift 13 pa sidan 228 och implementera metoden def reduce: Poly i case-klassen
Poly som forenklar polynom om flera Prod-termer kan adderas.

Uppgift 17. Typsdker innehdllstest med metoden ===. Metoderna equals och == tilla-
ter jamforelse med vad som helst. Ibland vill man ha en typsiker innehallsjamforelse
som bara tillater jamforelse av objekt av en mer specifik typ och ger kompileringsfel an-
nars. Man brukar da definiera en metod === som har en parameter that som har en sa
specifik typ som onskas. Infor nedan abstrakta metod === 1 traiten polynomial.Term
i uppgift 13 pa sidan 228 och 6verskugga den sedan i alla subklasser till Term. Testa
sa att du far kompileringsfel om du férsoker jamfora en Term med nagot helt annat,
t.ex. en String eller Vector.

def ===(that: Term): Boolean

Uppgift 18. Overskugga equals med innehdllslikhet dven for icke-finala klasser. Ne-
dan visas delar av klassen Complex som representerar ett komplext tal med realdel och
imaginérdel. I stillet for att, som man ofta gor i Scala, anvéinda en case-klass och en
equals-metod som automatiskt ger innehallslikhet, ska du trdna pa att implementera
en egen equals.

class Complex(val re: Double, val im: Double):
def abs: Double = math.hypot(re, im)
override def toString = s"Complex($re, $im)"
def canEqual(other: Any): Boolean = 777
override def hashCode: Int = 7?77
override def equals(other: Any): Boolean = 777

http://www.scala-lang.org/api/current/scala/Option.html

6.2. OVNING PATTERNS 231

case object Complex:
def apply(re: Double, im: Double): Complex = new Complex(re, im)

Folj detta recept® i 8 steg for att 6verskugga equals med innehéallslikhet som fungerar
aven for klasser som inte ar final:

1. Infoér denna metod: def canEqual(other: Any): Boolean
Observera att typen pa parametern ska vara Any. Om detta gors i en subklass till
en klass som redan implementerat canEqual, behovs dven override.

2. Metoden canEqual ska ge true om other dr av samma typ som this, alltsa till
exempel:
def canEqual(other: Any): Boolean = other.isInstanceOf[Complex]

3. Infor metoden equals och var noga med att parametern har typen Any:
override def equals(other: Any): Boolean

4. Implementera metoden equals med ett match-uttryck som bérjar sa hér:
other match

5. Match-uttrycket ska ha tva grenar. Den forsta grenen ska ha ett typat ménster for
den klass som ska jamforas:
case that: Complex =>

6. Om du implementerar equals i den klass som infér canEqual, borja uttrycket med:
(that canEqual this) &&
och skapa dérefter en fortséttning som baseras pa innehallet i klassen, till exempel:
this.re == that.re && this.im == that.im
Om du 6verskuggar en annan equals 4n den standard-equals som finns i AnyRef,
vill du formodligen borja det logiska uttrycket med att anropa superklassens equals-
metod: super.equals(that) & men du far fundera noga pa vad likhet av under-
klasser egentligen ska innebéra i ditt speciella fall.

7. Den andra grenen i matchningen ska vara: case _ => false

8. Overskugga hashCode, till exempel genom att géra en tupel av innehallet i klassen
och anropa metoden ## pa tupeln sa far du i en bra hashcode:
override def hashCode: Int = (re, im).##

Uppgift 19. Overskugga equals vid arv. Bygg vidare pa exemplet nedan och éverskug-
ga equals vid arv, genom att folja receptet i uppgift 18.

trait Number:
override def equals(other: Any): Boolean = ???

class Complex(re: Double, im: Double) extends Number:
override def equals(other: Any): Boolean = ???

class Rational(numerator: Int, denominator: Int) extends Number:
override def equals(other: Any): Boolean = ???

6Detta recept bygger pa http://www.artima.com/pinsled/object-equality.html

http://www.artima.com/pins1ed/object-equality.html

232 KAPITEL 6. MONSTER OCH FELHANTERING

Uppgift 20. Speciella matchningar. Las om anvandning av speciella matchningar
har:
dotty.epfl.ch/docs/reference/changed-features/vararg-splices.html

a) Prova variabelbinding med @i en matchning i REPL.

b) Prova sekvensmonster med _ och _* i en matching i REPL.

Uppgift 21. Extraktorer. Las mer om extraktorer har:
dotty.epfl.ch/docs/reference/changed-features/pattern-matching.html

Skapa ditt eget extraktor-objekt for http-addresser som i t.ex.:
http://my.host.domain/path/to/this

extraherar my.host.domain och path/to/this med metoden unapply och testa i en
matchning.

Uppgift 22. Polynom, fortsdttning: polynomdivision. Implementera polynomdivision
pa lampligt séatt genom att bygga vidare pa object polynomial i uppgift 13 pa sidan
228.

Las mer om polynomdivision héar: sv.wikipedia.org/wiki/Polynomdivision

https://dotty.epfl.ch/docs/reference/changed-features/vararg-splices.html
https://dotty.epfl.ch/docs/reference/changed-features/pattern-matching.html
https://sv.wikipedia.org/wiki/Polynomdivision

6.3. LABORATION: BLOCKBATTLE1

6.3 Laboration: blockbattlel

Mail

233

[Kunna forklara skillnader och likheter mellan ett singelobjekt och objekt som ar

instanser av klasser.

[J Kunna forklara skillnaden mellan forédndringsbara och oforéanderliga objekt.
[Kunna definiera och instansiera klasser och case-klasser, samt kunna beskriva
nér en case-klass dr lampligast och ge nagra exempel pa vad en saddan erbjuder

utover en vanlig klass.

[J Kunna skapa och anvéinda klasser vars instanser innehaller referenser till andra

instanser (aggregering).

Forsta inneborden av instansreferensen this.

O
[J Kunna skapa enkla match-uttryck.

Forberedelser

] Gor 6vning classes i avsnitt 5.2, speciellt uppgift 6.

[Gor 6vning patterns i avsnitt 6.2.

[Las igenom hela laborationen och planera ditt arbete.
[J Hamta given kod via kursen github-plats.

6.3.1 Bakgrund

LEFT MOLE pts: 445 RIGHT MOLE pts: 353

GAME OVER!

Figur 6.1: En duell om blockmaskar
mellan tva lundensiska blockmullva-
der fangade pa bild under intensivt
grivanade.

Under denna laboration ska du trana
pa att deklarera klasser och skapa fle-
ra instanser av samma klass. Du tranar
dven pa att bygga ett storre program
fran grunden.

Du ska utveckla ett spel for tva spe-
lare som sitter vid samma tangentbord,
dar den vanstra spelaren styr en block-
mullvad med tangenterna A,S,D,W, och
den higra spelaren styr en annan block-
mullvad med piltangenterna.

I bilden till vanster ser du hur spelet
kan se ut. Det finns en ljusbrun och en
morkbrun mullvad. Podngrikningen vi-
sas overst i himlen. Det finns fyra rosa
blockmaskar (se uppgift 13 i laboration
blockmole) som mullvadarna tdavlar om
att forsoka fanga. Nér en blockmask te-
leporterar sig till en ny slumpmaéssig po-
sition lamnar den jord efter sig. Nar en
mullvad gréver sig upp till grasytan blir
det hal i graset. Det ger poing att griava
tunnlar och att fanga blockmaskar.

Du bestammer sjilv hur poidngsétt-
ningen ska ske och kriteriet for nar spe-
let ar slut etc.

https://github.com/lunduniversity/introprog/tree/master/workspace/

234

KAPITEL 6. MONSTER OCH FELHANTERING

6.3.2 Obligatoriska krav

Foljande funktionella krav ska uppfyllas av ditt program:

O

Di

ooosooood

OO

k

Varje mullvad ror sig i sin aktuella riktning tills anvdndaren dndrar riktning
genom att trycka pa ”sin” motsvarande knapp, t.ex. W eller pil-upp.

Da en mullvad gar i morkbrun jord ska ljusbruna tunnlar griavas.

D4 en blockmullvad nar fonstrets kant eller himlen ska dess riktning reverseras.
Det ska ge poidng att grdva tunnlar.

Varje spelares poédng ska visas under spelets gang.

Ett spel ska avslutas och Game over visas nir nagot valfritt kriterium uppfyllts.

od ska utformas enligt dessa design-krav:

Ett Game skapas i huvudprogrammet med metoden start som kor igang spelet.
Konstanter ska namnges och placeras i lampligt kompanjonsobjekt.

Varje klass med ev. tillhérande kompanjonsobjekt ska finnas i en egen kodfil och
tillhora paketet blockbattle.

Du ska utga fran klasserna som du implementerat i uppgift 6 i 6vning classes.
Klassen BlockWindow omvandlar till interna fonsterkoordinater. Ovriga klasser
ska anvinda block-koordinater.

6.3.3 Valbara krav - vdlj minst ett

Du ska implementera minst ett (gidrna flera) av dessa krav:

U
]

oogo

oOod

Det ska finnas lagom manga blockmaskar (se labb blockmole uppg. 13, sid. 159).
Blockmullvadarna ska dven ha ett attribut som representerar hilsan, t.ex. ett
numeriskt virde mellan 0 och 100. Hilsan ska forsvagas nagot nar man griver
tunnlar. Halsan ska synas i spelfonstret, t.ex. som en sekvens med réda block i
himlen som indikerar andelen av maxhilsan for resp. spelare.

Att springa péa graset ska paverka poéang och/eller hilsa.

Att fanga blockmask ska paverka poing och/eller hilsa.

Det ska finnas gula blockdiamanter som ger méanga poang om man tar dem forst.
Det ska vid spelstart ga att vilja namn pa respektive blockmullvad och namnet
ska synas i spelet vid podangutskriften.

Det ska ga fortare att ga i gangar jamfort med att gréava i jord.

Om en blockmullvad fangar en blockmask ska dess gravhastighet 6ka.

Om en blockmullvad krockar med en annan blockmullvad ska nagot héinda, t.ex.
att dess riktning reverseras.

Visa highscore vid Game Over. Highscore sparas med introprog.I0i en fil som
skapas om den inte finns annars lédses in vid uppstart om den finns och uppdate-
ras vid behov. Spara hela highscore-listan eller bara higsta podng hittills.

6.3.4 Forberedelser infor redovisningen

Innan du redovisar din implementation ska du muntligt kunna redogéra for foljande:

O

(]
O

Studera nagon annans spel och ge din kamrat minst ett tips om hur kodens
lasbarhet kan forbattras. Skriv ner dina tips och beskriv dem vid redovisningen.
Beskriv vilka atgarder du gjort for att din kod ska vara latt att lasa och forsté.
Beskriv hur du stegvis utvecklat ditt program fran enklare till mer avancerad
funktionalitet, samt vilka buggar du upptickt och fixat.

Beskriv vilket eller vilka valfria krav som din implementation uppfyller.
Beskriv hur du hade behévt dndra i klassen Mole for att det ska ga att skriva
new Mole().move().move().reverseDir().move()

v ®

6.3. LABORATION: BLOCKBATTLE1 235

6.3.5 Tips och férslag

1. Manga sma steg. Kor kompilering under dndringsbevakning med - -watch i ett
eget terminalfonster, sa att du vid varje dndring kan ratta ev. kompileringsfel. Kor
och testa ditt program i ett annat terminalfonster.

2. Infor bra namn. Din kod blir lattare att ldsa och dndra i om du hittar pa bra namn
pa medlemmar och ldgger dem pa lampligt stille. T.ex. kan du samla globala spel-
konstanter i kompanjonsobjektet till klassen Game. Du kan bygga vidare pa nedan
kod och ldgga till medlemmar allteftersom du upptéicker att de behovs. Nedan finns
exempelvis en funktion som ger bakgrundsfiargen for en viss y-koordinat, vilken &r
anvandbar nir du ska aterstilla bakgrunden efter att en mullvad har flyttat sig.

package blockbattle

object Game:
val windowSize = (30, 50)
val windowTitle = "EPIC BLOCK BATTLE"
val blockSize = 14
val skyRange =0 to 7
val grassRange = 8 to 8
object Color { ??? }
/** Used with the different ranges and eraseBlocks */
def backgroundColorAtDepth(y: Int): java.awt.Color = 2?7

class Game(
val leftPlayerName: String
val rightPlayerName: String

"LEFT",
"RIGHT"

import Game.x // direkt tillgang till namn pa medlemmar i kompanjon

val window = new BlockWindow(windowSize, windowTitle, blockSize)
val leftMole: Mole = ?77?
val rightMole: Mole = 777

def drawWorld(): Unit = ???

/*x Use to erase old points, e.g updated score x/
def eraseBlocks(x1l: Int, yl: Int, x2: Int, y2: Int): Unit = 7?7

def update(mole: Mole): Unit = ??? // update, draw new, erase old
def gameloop(): Unit = 7?7

def start(): Unit =
println("Start digging!")
println(s"$leftPlayerName ${leftMole.keyControl}")
println(s"$rightPlayerName ${rightMole.keyControl}")
drawWorld()
gameLoop()

3. Dela upp din kod i funktioner. Din kod blir ldttare att 14sa och dndra i om du
delar upp den i manga sma funktioner med bra namn. I Game-klassen ovan finns
exempel pa nagra anvindbara funktioner. Allteftersom du utvidgar ditt program
kan du lagga till fler funktioner som t.ex. heter showPoints, gameOver, etc.

236 KAPITEL 6. MONSTER OCH FELHANTERING

4. Téank igenom den 6vergripande strukturen. Programmet du ska skriva i den-
na laboration ar stérre dn det du gjort tidigare. Det ar darfor viktigt att tdnka
igenom strukturen pa ditt program, vilka klasser som har hand om vad och hur de
samarbetar. Diskutera gidrna med handledare om du ir osdker pa hur de koddelar
du utvecklat i foregdende veckas 6vning 6, klasserna Pos, KeyControl, Mole och
BlockWindow, dr tdnkta att samverka. Var noga med att testa sa de olika klasserna
och deras metoder fungerar var for sig.

5. Utformning av gameLoop(). I ett spel behivs en s.k. spel-loop (eng. game loop)
som upprepar den kod som ska koras vid varje ny skdrmbild, ofta kallad frame. 1
varje runda i spel-loopen sker uppdatering av data och ritning i spelfénstret, samt
en lamplig fordréjning. En skiss pa en typisk spel-loop visas nedan:

var quit = false
val delayMillis = 80

def gameLoop(): Unit =
while !quit do
val t0 = System.currentTimeMillis
handleEvents() // andrar riktning vid tangenttryck etc.
update(leftMole) // flyttar, ritar, suddar, etc.
update(rightMole)

val elapsedMillis = (System.currentTimeMillis - t0).toInt
Thread.sleep((delayMillis - elapsedMillis) max 0)
end while
end gamelLoop

6. Hantering av handelser. Ett BlockWindow, som du implementerade i uppgift 6 i
6vning classes, kan via anrop av nextEvent ge KeyPressed (key) vid knapptryck
och WindowClosed vid fonsterstingning. Om ingen hindelse finns att behandla
returneras Undefined. Anvind en loop som betar av alla hidndelser tills Undefined
patraffas, enligt nedan:

def handleEvents(): Unit =
var e = window.nextEvent ()
while e != BlockWindow.Event.Undefined do
e match
case BlockWindow.Event.KeyPressed(key) =>
??? // aéndra riktning pa resp. mullvad

case BlockWindow.Event.WindowClosed =>
??? // avsluta spel-loopen

e = window.nextEvent()
end while
end handleEvents

7. Flimmerfri grafik. For att minska méangden flimmer (eng. flicker) ar det béast att
i varje iteration i spel-loopen (1) bara rita om det som &ndrats fér att minimera
tiden som spenderas pa att rita, och (2) vid dndringar rita nya delar fore att gamla
delar raderas. For att slippa mullvadsflimmer kan du "rita forst — sudda sen” enligt

6.3. LABORATION: BLOCKBATTLE1 237

nedan.”

window.setBlock(mole.nextPos, mole.color) // draw new
window.setBlock(mole.pos, Color.tunnel) // erase old
mole.move() // update

"Inom spelutveckling anvéinder man oftast istéllet sa kallad double buffering (eller till och med triple
buffering) for att fa helt flimmerfri grafik. Det ligger dock bortom kursen och stods inte av PixelWindow.

238 KAPITEL 6. MONSTER OCH FELHANTERING

Kapitel 7

Sekvenser och enumerationer

Begrepp som ingar i denna veckas studier:

[] oversikt av Scalas samlingsbiblio-

tek och samlingsmetoder

Iterable

Seq

List

ListBuffer

ArrayBuffer
WrappedArray
sekvensalgoritm
algoritm: SEQ-COPY
in-place vs copy

algoritm: SEQ-REVERSE
registrering

algoritm: SEQ-REGISTER
linjarsokning

ooooooooooogoodg

klasshierarkin i scala.collection

239

Ooooooooooooogg

algoritm: LINEAR-SEARCH
tidskomplexitet
minneskomplexitet

oversikt strangmetoder
StringBuilder

ordning

inbyggda sokmetoder

find

indexOf

indexWhere

inbyggda sorteringsmetoder
sorted

sortWith

sortBy

repeterade parametrar

240 KAPITEL 7. SEKVENSER OCH ENUMERATIONER

7.1 Teori

7.1.1 Vad dr en sekvens?

* En sekvens ar en foljd av element som

— har ordningsnummer (t.ex. numrerade fran noll)
— dr av en viss typ (t.ex. heltal).

* En sekvens kan innehalla flera element som ér lika.
¢ En sekvens kan vara tom och har da liangden noll.
¢ Exempel pa en icke-tom sekvens med dubbletter:

scala> val xs = Vector(42, 0, 42, -9, 0, 5)
xs: scala.collection.immutable.Vector[Int] =

Vector(42, 0, 42, -9, 0, 5)

¢ Indexering ger ett element via dess ordningsnummer:

scala> xs(2)
resO: Int = 42

scala> xs.apply(2)
resl: Int = 42

7.1.2 Exempel: En strdng &r en sekvens av tecken

scala> "haj po daj"

Léngd? Vad ligger pa forsta platsen? Elementtyp? Dubbletter?

scala> "haj po daj".length
resl: Int = 10

scala> "haj po daj".apply(0)
res2: Char = h

scala> "haj po daj"(0)
res3: Char = h

scala> "haj po daj".distinct
res4: String = haj pod

7.1.3 lterera 6ver element i en sekvens

* Att iterera (eng. iterate), 4.k. traversera (eng. traverse), innebir att ga igenom
och behandla element i en samling.
¢ Exempel pa iterering med foreach, map, for:

7.1. TEORI 241

scala> val xs = Vector(1,2,3)
val xs: Vector[Int] = Vector(l, 2, 3)

scala> xs.foreach(x => println(x + 1))

scala> xs.map(_ + 1)
val res0: Vector[Int] = Vector(2, 3, 4)

scala> for x <- xs yield x - 1
val resl: Vector[Int] = Vector(0, 1, 2)

7.1.4 Lagg tilli bérjan och i slutet av en sekvens

* Med metoderna +: och :+ kan du skapa en ny sekvens med nya element tillagda
i borjan resp. i slutet.
* Minnesregel: "Colon on the collection side”

scala> val xs = Vector(1,2,3)
scala> xs :+ 42 // ger ny Vector(1l, 2, 3, 42)
scala> 42 +: xs // ger ny Vector(42, 1, 2, 3)

¢ Semantik: operatornotation med operatorer som slutar med kolon ir hége-
rassociativa
* Anropet 42 +: xs skrivs av kompilatorn om till xs.+: (42)

1 scala> xs.+:(42)
2 res4: scala.collection.immutable.Vector[Int] = Vector(42, 1, 2, 3)

¢ Konkatenering (sammanfogning) av sekvenser: xs ++ ys

7.1.5 Egenskaper hos nagra sekvenssamlingar i Scala
e Vector

- Oforanderlig. Snabb pa att skapa kopior med sméa férdndringar.
— Allsidig prestanda: bra till det mesta.

e List

Oforanderlig. Snabbt att skapa kopior med uppdatering i borjan.
Snabbt jobba i borjan, men langsamt jobba i slutet av listan.
Smidig & snabb vid rekursiva algoritmer.

Langsam vid upprepad indexering pa godtyckliga stéllen.

* ArrayBuffer

242 KAPITEL 7. SEKVENSER OCH ENUMERATIONER

- Foranderlig: snabb indexering & uppdatering.
- Kan dndra storlek efter allokering. Snabb att indexera 6verallt.

® ListBuffer

- Forianderlig: snabb indexering & uppdatering i borjan.
— Snabb om du bygger upp sekvens genom manga tillagg i bérjan.

® Array eller scala.collection.mutable.ArraySeq

- Foranderlig: snabb indexering & uppdatering.
- Kan ej andra storlek; storlek ges vid allokering.
— Har séarstillning i JVM: ger snabb allokering och access.

7.1.6 Vilken sekvenssamling ska jag vdlja?
* Vilj Vector om ...

a) du vill ha oféranderlighet: val xs = Vector[Int](1,2,3)

b) du behover fordnderlighet (notera var):
var xs = Vector.empty[Int]

¢) du dnnu inte vet vilken sekvenssamling som ar bést; du kan alltid dndra
efter att du métt prestanda och kollat flaskhalsar vid upprepade koérningar.

Vilj List om ...

du har en rekursiv sekvensalgoritm eller mestadels jobbar i borjan.

Valj ArrayBuffer om ...

det behovs av prestandaskéil och du inte vet storlek vid allokering:
val xs = scala.collection.mutable.ArrayBuffer.empty[Int]

* Vilj ListBuffer om ...

det behovs av prestandaskél och du bara behéver ldgga till i borjan:
val xs = scala.collection.mutable.ListBuffer.empty[Int]

Valj Array eller ArraySeq om ...

det verkligen behovs av prestandaskéil och du vet storlek vid allokering:
val xs = Array.fill(initSize) (initValue)

7.1.7 Ndagra konstigheter med Array
¢ Referenslikhet (och inte innehallslikhet):

scala> Vector(1,2,3) == Vector(1,2,3) //innehdllslikhet
val res0: Boolean = true

scala> Array(1,2,3) == Array(1,2,3) // referenslikhet
val resl: Boolean = false // aaargh!!

Notera: Metoden == mellan tva ArraySeq ger innehallslikhet.
¢ Special-syntax for allokering utan explicit initialisering:
val xs = new Array[String] (1000) // 1000 null-referenser

7.1. TEORI 243

* Fungerar inte lika bra med generiska typer:

scala> def box[T](x: T) = Vector[T](x) //funkar fint

scala> def abox[T](x: T) = Array[T](x)
error: No ClassTag available for T

7.1.8 Ofdranderlig eller féréndringsbar?

¢ Oforanderlig: Kan ej dndra elementreferenserna, men effektiv pa att skapa
kopia som &r (delvis) forandrad Vector eller List
¢ Forandringsbar: kan dndra elementreferenserna

- Kan ej dndra storlek efter allokering:

Array eller ArraySeq: indexera och uppdatera varsomhelst
- Kan 4dven &dndra storlek efter allokering:

ArrayBuffer eller ListBuffer

¢ Ofta funkar oforinderlig sekvenssamling utmérkt, men om man efter
prestandamétning uppticker en flaskhals kan man dndra fran Vector till
t.ex. ArrayBuffer.

7.1.9 Vad dr en sekvensalgoritm?

¢ En algoritm &r en stegvis beskrivning av l6sningen pa ett problem.

* En sekvensalgoritm ir en algoritm dir element i sekvens utgor en viktig
del av problembeskrivningen eller 16sningen.

¢ Exempelproblem: sortera en sekvens av personer efter deras alder.

¢ Sju ofta aterkommande programmeringsproblem som léses med en sekvensalgo-
ritm:

Kopiering av alla element i en sekvens till en ny sekvens
Uppdatering av sekvensen: ta bort, l14gga till, &ndra enskilda element
Transformering: applicera en funktion pa alla element

Filtrering: urval av vissa element som uppfyller ett villkor

Sokning efter ett element som uppfyller ett sokkriterium

Sortering enligt nagon ordning

Registrering kategorisera eller rdkna element med vissa egenskaper

KUT FSSR

7.1.10 Anvdanda fardiga sekvenssamlingsmetoder

¢ Ofta kan man implementera sekvensalgoritmer genom anrop av en eller flera
fardiga metoder.

* Dessa fiardiga metoder dr optimerade och viltestade och ar att foredra om
mojligt.

https://youtu.be/0ArlUSVDQIw?t=27s

N o AW NP

244 KAPITEL 7. SEKVENSER OCH ENUMERATIONER

¢ Studera quickref for att se vad man kan gora med fiardiga samlingar.

* Det dr larorikt att "uppfinna hjulet” och implementera nagra grundlidggande
sekvensalgoritmer sjilv for battre forstaelse, 4ven om de redan finns fardiga i
Scalas samlingsbibliotek.

¢ Fordjupning: En 6versikt av samlingarna i Scalas standardbibliotek: https:
//docs.scala-lang.org/overviews/collections-2.13/introduction.html

¢ (Det kommer mer om implementation av samlingar och algoritmer i fordjup-
ningskursen pfk.)

7.1.11 Nd&gra anvdndbara samlingsmetoder vid implementation av
sekvensalgoritmer

xs.map(f) transformering, motsv. for x <- xs yield f(x)
Xs.map(x => x) kopiering, motsv. for x <- xs yield x

xs.filter(p) filtrering, ta med x om p(x)

xs.filterNot(p) filtrering, ta med x om !p(x)

xs.distinct filtrering, ta bort dubbletter

xs.take(n) ny sekvens med de férsta n elements, resten skippade
xs.drop(n) ny sekvens dar de forsta n elements dr skippade
xs.takeWhile(p) filtrera, ta med i borjan sa lange p(x)

xs.dropWhile(p) filtrera, skippa i borjan sa lange p(x)

xs.find(p) sok framifran efter forsta element x dir p(x) ar sant
Xs.1index0f (x) s6k framifran efter index fér element som 4r samma som x
xs.lastIndex0f(x) sok bakifran efter index for element som dr samma som x
xs.sorted sortera med inbyggd (implicit given) ordning
xs.sorted.reverse sorteraiomvéind ordning

Xs.sortBy(f) sortera i ordning enligt f(x)

xs.sortWith(1t) sortera enligt "less than”-funktionen 1t: (A, A) => Boolean
Xs.count(p) riakna antalet element dar p(x) 4r sant

Lar dig fler smidiga metoder i quickref

7.1.12 Uppdaterad sekvens med kraftfulla metoden patch

Metoden patch kan anvindas sa: xs.patch(fromPos, ys, nbrReplaced)
for att skapa en ny sekvens dér ett eller flera element i xs ar...

* utbytta (eng. replaced)
* borttagna (eng. removed)
¢ tillagda (eng. inserted)

.. med nya element ur ys

scala> val xs = Vector(1,2,3)

scala> xs.patch(2, Vector(-1), 1) // replaced one elem

res®: scala.collection.immutable.Vector[Int] = Vector(l, 2, -1)

scala> xs.patch(1l, Vector(42), 0) // inserted one elem
resll: scala.collection.immutable.Vector[Int] = Vector(1l, 42, 2, 3)

https://docs.scala-lang.org/overviews/collections-2.13/introduction.html
https://docs.scala-lang.org/overviews/collections-2.13/introduction.html

7.1. TEORI 245

scala> xs.patch(0, Vector(), 2) // removed two elems

res2: scala.collection.immutable.Vector[Int] = Vector(3)

7.1.13 Anvéanda for-uttryck for filtrering med hjélp av gard

I ett for-uttryck kan man ha en gard (eng. guard) i form av ett booleskt uttryck efter
nyckelordet if. Da kommer uttrycket efter yield bara goras om gard-uttrycket ar
sant.

Syntaxen ar sa héir: (parenteser behovs ej runt gard-uttrycket)

for x <- xs if uttryckl yield uttryck2

Exempel:

scala> val udda = for x <- 1 to 6 if x % 2 == 1 yield x

udda blir Vector(1, 3, 5)

7.1.14 Anvénda samlingsmetoden filter for filirering

Alla samlingari scala.collection har metoden filter. Den har ett predikat som pa-
rameter p: T => Boolean och ger en ny samling med de element for vilka predikatet
ar sant.

xs.filter(p)

Exempel: Antag att xs ar (1 to 6).toVector

xs.filter(_ % 2 == 1)

uttryckets resultat blir Vector(1l, 3, 5), vilket motsvarar:
for x <- xs if x % 2 == 1 yield x

I sjalva verket skriver Scala-kompilatorn om for-uttryck med gard till anrop av meto-
den filter fore kodgenerering sker.

7.1.15 Vanliga sekvensproblem som funktionshuvuden

Indata och utdata for nagra vanliga sekvensproblem:

def copy(xs: Vector[Int]): Vector[Int] = 7?7
def filter(xs: Vector[Int], p: Int => Boolean): Vector[Int] = ???
def findIndices(xs: Vector[Int], p: Int => Boolean): Vector[Int] = ???

def sort(xs: Vector[Int]): Vector[Int] = ?7??

246 KAPITEL 7. SEKVENSER OCH ENUMERATIONER

def freq(xs: Vector[Int]): Vector[(Int, Int)] = ??? // (heltal, frekvens)

Ovning: Hur implementera dessa med for-uttryck eller firdiga samlingsmetoder?
Tips: For sort&freq se sorted, distinct, count i quickref

7.1.16 Implementation av sekvensproblem med for-uttryck eller far-
diga samlingsmetoder

def copy(xs: Vector[Int]): Vector[Int] = for x <- xs yield x

def filter(xs: Vector[Int], p: Int => Boolean): Vector[Int] =
for x <- xs if p(x) yield x

def findIndices(xs: Vector[Int], p: Int => Boolean): Vector[Int] =
(for i <- xs.indices if p(xs(i)) yield i).toVector

def sort(xs: Vector[Int]): Vector[Int] = xs.sorted // mer om sortering sen

def freq(xs: Vector[Int]): Vector[(Int, Int)] = // mer om registrering snart
for x <- xs.distinct yield x -> xs.count(_ == Xx)

Ovning: Hur implementera dessa med map och filter eller andra fardiga samlings-
metoder?

7.1.17 Implementation av sekvensproblem med map, filter

def copy(xs: Vector[Int]): Vector[Int] = xs.map(x => Xx)
def filter(xs: Vector[Int], p: Int => Boolean): Vector[Int] = xs.filter(p)

def findIndices(xs: Vector[Int], p: Int => Boolean): Vector[Int] =
xs.indices.filter(i => p(xs(i))).toVector

def sort(xs: Vector[Int]): Vector[Int] = xs.sorted // mer om sortering sen

def freq(xs: Vector[Int]): Vector[(Int, Int)] = // mer om registrering snart
xs.distinct.map(x => x -> xs.count(_ == X))

7.1.18 Hierarki av samlingstyper i scala.collection v2.13

Iterable har metoder som &r im-
plementerade med hjilp av:
def foreach[U](f: Elem => U): Unit

Seq

https://fileadmin.cs.lth.se/pgk/quickref.pdf

0 N o U~ WN =

7.1. TEORI 247

def iterator: Iterator[A] Set: unika element

Map: kel, va
Seq: ordnade i sekvens ap: par av (nyckel, varde)

Samlingen Vector dr en Seq som &r en Iterable.
De konkreta samlingarna ar uppdelade i dessa paket:

scala.collection.immutable dar flera 4r automatiskt importerade
scala.collection.mutable som maste importeras explicit
(undantag: primitiva scala.Array)

7.1.19 Ladmna det 6ppet: anvdnd Seq

Typen collection.immutable.Seq ar supertyp till alla sekvenssamlingari collection.immutable.
Exempel: kopiering av sekvens:

¢ Kopiering av specifik heltalssekvens:

def copyIntVector(xs: Vector[Int]): Vector[Int] = for x <- xs yield x

¢ Kopiering som fungerar for alla oférdnderliga heltalssekvenser:

def copyIntSeq(xs: Seq[Int]): Seq[Int] = for x <- xs yield x

scala> val xs

= Vector(1,2,3)
xs: Vector[Int] =

Vector(1l, 2, 3)

scala> val ys copyIntVector(xs)

ys: Vector[Int] = Vector(1l, 2, 3)

scala> val zs = copyIntSeq(xs)
val zs: Seq[Int] = Vector(l, 2, 3)

7.1.20 Implementation med generiska funktioner

Genom att generalisera funktionshuvudena blir vara lésningar anvindbara for alla
sekvenser av typen Seq[T], ddr den obundna typparametern T vid anrop kan bindas
till godtycklig typ. (Mer om typparametrar senare.)

def copy[T](xs: Seql[T]): Seq[T] = xs.map(x => Xx)
def filter[T](xs: Seql[T], p: T => Boolean): Seq[T] = xs.filter(p)

def findIndices[T](xs: Seq[T], p: T => Boolean): Seq[Int] =
xs.indices.filter(i => p(xs(i))).toVector

def sort[T: Ordering](xs: Seq[T]): Seq[T] = xs.sorted // mer om Ordering sen

def freq[T](xs: Seq[T]): Seq[(T, Int)] =
xs.distinct.map(x => x -> xs.count(_ == X))

O 00 N O Ul A W N

R e e
w N = o

248 KAPITEL 7. SEKVENSER OCH ENUMERATIONER

Standardbibliotekets metoder forsoker ordna sa att det blir samma konkreta typ in
som ut, men ibland viljs annan lamplig konkret samling, t.ex. kan en Array bli en
ArrayBuffer.

7.1.21 Férdjupning: Anvénda Java-samlingar i Scala med CollectionConverters

Med hjalp av import scala.jdk.CollectionConverters.*
far man smidig interoperabilitet med Java och dess standardbibliotek,
speciellt metoderna asJava och asScala:

scala> import scala.jdk.CollectionConverters.x*

scala> Vector(1,2,3).asJava
res@: java.util.List[Int] = [1, 2, 3]

scala> val xs = new java.util.ArraylList[String]()
xs: java.util.ArrayList[String] = []

scala> xs.add("hej")
resl: Boolean = true

scala> xs.asScala
res2: scala.collection.mutable.Buffer[String] = Buffer(hej)

Las mer har:
https://docs.scala-lang.org/overviews/collections-2.13/conversions-between-java-and-scala-collections.
html

7.1.22 Fordjupning: Skapa generisk Array

¢ 1 JVM bytekod gar det tyvarr inte att skapa en primitiv generisk array.

¢ Maskinkoden maste istéllet skapa en array av den mest generella referenstypen
Object och sedan typtesta och typkonvertera under kortid.
Se t.ex. Java-implementationen av ArraylList:
http://developer.classpath.org/doc/java/util/ArrayList-source.html

* Men det gar att skapa en generisk array i Scala (men inte i Java). Da behovs en
reflect.ClassTag som mdjliggor typinformation vid kortid for arrayer.

scala> def fyll[T](n: Int, x: T): Array[T] = Array.fill(n) (x)
-- Error:
1 |def fyll[T](n: Int, x: T): Array[T] = Array.fill(n) (x)

| ~

| No ClassTag available for T

scala> def fyll[T: reflect.ClassTag](n: Int, x: T): Array[T] = Array.fill(n) (x)

scala> fyll(42, "hej")
res2: Array[String] = Array(hej, hej, hej, hej, hej, hej, hej, hej, hej, hej, hej

¢ Kompilatorn skapar da maskinkod som automatiskt gor typkonverteringarna.

https://docs.scala-lang.org/overviews/collections-2.13/conversions-between-java-and-scala-collections.html
https://docs.scala-lang.org/overviews/collections-2.13/conversions-between-java-and-scala-collections.html
http://developer.classpath.org/doc/java/util/ArrayList-source.html

7.1. TEORI 249

7.1.23 Repeterade parametrar blir sekvens
Med en asterisk efter parametertypen kan antalet argument variera:
def sumSizes(xs: Stringx): Int = xs.map(_.length).sum

scala> sumSizes("Zaphod")
res@: Int = 6

scala> sumSizes("Zaphod", "Beeblebrox")
resl: Int = 16

scala> sumSizes("Zaphod", "Beeblebrox","Ford", "Prefect")
res3: Int = 27

scala> sumSizes()
res4d: Int =0

Repeterade parametrar (eng. repeated parameters) blir en sekvens av typen Seq och
som mer specifikt 4r en ArraySeq

7.1.24 Sekvenssamling som argument till repeterade parametrar

def sumSizes(xs: Stringx): Int = xs.map(_.size).sum
val veg = Vector("gurka","tomat")

Om du redan har en sekvenssamling sa kan du applicera den pa en funktion som har
repeterade parametrar med hjilp av en asterisk
Den ska skrivas direkt efter den sekvenssamling, som du vill att kompilatorn ska

tolka som en sekvens av argument, sa héar:

scala> sumSizes (vegx)
res5: Int = 10

7.1.25 Enumerationer har en ordning

En upprékning av farger i en kortlek med enum:

enum Suit:
case Spade, Heart, Club, Diamond

Viktiga enum-metoder for att hantera elementens ordning:
ordinal fromOrdinal values valueOf

250 KAPITEL 7. SEKVENSER OCH ENUMERATIONER

scala> Suit.Spade.ordinal // fran element till heltal
val res@: Int = 0

scala> Suit.Club.ordinal
val resl: Int = 2

scala> Suit.fromOrdinal(3) // fran heltal till element
val res2: Suit = Diamond

scala> Suit.values // alla element i ordning
val res3: Array[Suit] = Array(Spade, Heart, Club, Diamond)

scala> Suit.valueOf("Spade") // fran strang till element
val res4: Suit = Spade

7.1.26 Enumerationer kan ha parametrar och mediemmar
En enum kan ha parametrar. Anviand val for extern synlighet:

enum Color(val consoleColor: String):
case Black extends Color(Console.BLUE) //Bla farg syns pa svart bakgrund
case Red extends Color(Console.RED)

I enum-kroppen kan du ha medlemmar, tex metoder:

enum Suit(val color: Color):
def show(isConsoleColor: Boolean = true): String =
if isConsoleColor then color.consoleColor + toString + Console.RESET
else toString

case Spade extends Suit(Color.Black)
case Heart extends Suit(Color.Red)
case Club extends Suit(Color.Black)
case Diamond extends Suit(Color.Red)

scala> println(Suit.Club.show(isConsoleColor = false))

Club

7.1.27 Enum kan motsvara fullfiGdrade case-klasser

Vill du kunna géra monster-matching pa enum-viarden sa behovs parametrar pa
alternativen for att det ska bli motsvarande case-klasser:

enum Veg:
def taste: String
case Tomato(taste: String)
case Banana(taste: String)

Ovan expanderas automatiskt av kompilatorn till motsvarande detta:

7.1. TEORI 251

sealed trait Veg:
def taste: String

object Veg:
case class Tomato(taste: String) extends Veg
case class Banana(taste: String) extends Veg

7.1.28 Enum och ménster-matchning
Med parametrar pa varje fall och en abstrakt medlem for varje attribut...

enum Veg:
def taste: String
case Tomato(taste: String)
case Banana(taste: String)

...s& gor den automatiska expansionen till case-klasser att detta fungerar fint:

scala> val v = Veg.Tomato("nice")
val v: Veg = Tomato(nice) // notera typen : Veg

scala> v.taste // funkar eftersom Veg har en taste
val res@: String = najs

scala> val dontLikeBananas = v match:
case Veg.Tomato(t) => t
case Veg.Banana(_) => "always bad!"

Den abstrakta medlemmen def taste: String behovs for att attributet ska synas
via referenser som &r av den mindre specifika typen Veg.
(Mer om abstrakta medlemmar i veckan om arv.)

7.1.29 Fordelar med enum jGmfért med upprdkning med heltal
Varfor inte bara sa har?

val (spade, heart, club, diamond) = (0, 1, 2, 3)

Alla element har samma specifika typ enligt enum-deklarationen:

scala> Suit.Heart // alla element ar av typen Suit

val res5: Suit = Heart

* Detta ar sidkrare jamfort med att bara anvanda heltalsvirden: kompilatorn
kan hjalpa dig att skilja pa element av olika typ och ge felmeddelande om du
anvinder fel typ oavsiktligt.

¢ Ejtillatna varden kan inte representeras (jmf alla mojliga heltal, dar bara nagra
ar relevanta).

Tréna pa enum pa veckans 6vning sequences och labb shuffle.

252 KAPITEL 7. SEKVENSER OCH ENUMERATIONER

7.1.30 Registrering

* Registrering innefattar algoritmer for att kategorisera eller rakna antalet
forekomster av element med vissa specifika egenskaper.

¢ Exempel:
Utfallsfrekvens vid kast med en tdrning 1000 ganger:

utfall antal
178
187
167
148
155
165

L

SOk W N

7.1.31 Registrering av térningskast i Array

Vi later plats O representera antalet ettor, plats 1 representerar antalet tvaor etc.

Ovning: implementera ?7??
scala> def rollDice(): Int = scala.util.Random.nextInt(6) + 1

scala> val reg = new Array[Int](6)
reg: Array[Int] = Array(06, 0, 06, 0, 0, 0)

scala> for k <- 1 to 1000 do
val i = ??? //kasta tarning, rakna ut ratt index
??? //registrera kast i reg pa ratt plats

scala> for i <- 1 to 6 do println(s"$i: ${reg(i - 1)}")
: 178
: 187
: 167
: 148
: 155
: 165

7.1.32 Registrering av tarningskast i Array

Losning:

scala> def rollDice() = scala.util.Random.nextInt(6) + 1

scala> val reg = new Array[Int](6)
reg: Array[Int] = Array(0, 0, 0, 0, 0, 0)

scala> for k <- 1 to 1000 do
val i = rollDice() - 1
reg(i) = reg(i) + 1 // eller: reg(i) +=1

scala> for i <- 1 to 6 do println(s"$i: ${reg(i - 1)}")

7.1. TEORI 253

7.1.33 Skapa lésningar pd sekvensproblem frén grunden

¢ Normalt anvinder man fiardiga samlingsmetoder

* Det finns ofta en firdig metod som gor det man vill

¢ Annars kan man ofta gora det man vill genom att kombinera flera fiardiga
samlingsmetoder

¢ Vi ska nu i larosyfte implementera nagra egna varianter av uppdatering fran
grunden.

For problem av typen KUTFSSR ingéar det i kursen att kunna 1) 16sa dessa med
fardiga samlingsmetoder, och 2) implementera egna l6sningar med hjélp av sekvens,
alternativ, repetition, abstraktion (SARA).

7.1.34 Skapa ny sekvenssamling eller éindra pé plats?

Tva olika principer vid sekvensalgoritmkonstruktion:

¢ Skapa ny sekvens utan att fordndra insekvensen
e Andra pa plats (eng. in-place) i forandringsbar sekvens

Vilja mellan att skapa ny sekvens eller &ndra pa plats?

e Ofta ar det liattast att skapa ny samling och kopiera éver elementen efter
eventuella forandringar medan man loopar.

* Om man har mycket stora samlingar kan man behova dndra pa plats for att
spara tid/minne.

7.1.35 Algoritm: SEQ-COPY

Pseudokod for algoritmen SEQ-COPY som kopierar en sekvens, hir en Array med
heltal:

254 KAPITEL 7. SEKVENSER OCH ENUMERATIONER

Indata :Heltalsarray xs
Utdata:En ny heltalsarray som &r en kopia av xs.

result — en ny array med plats for xs.length element
i—0
while i < xs.length do
result(i) «— xs(i)
i—i+1
end
result

E - R B U

7.1.36 Implementation av SEQ-COPY med while

object seqCopy:

1

2

3 def arrayCopy(xs: Array[Int]): Array[Int] =
4 val result = new Array[Int](xs.length)

5 var 1 = 0

6 while i < xs.length do

7 result(i) = xs(i)

8

9

i+=1

result
10
11 def test: String =
12 val xs = Array(1,2,3,4,42)
13 val ys = arrayCopy(xs)
14 if xs sameElements ys then "OK!" else "ERROR!"
15

16 def main(args: Array[String]): Unit = println(test)

xs.sameElements(ys) behovs da == pa en Array ger referenslikhet.

7.1.37 Typ-adlias fér att abstrahera typnamn

Med hjalp av nyckelordet type kan man deklarera ett typ-alias for att ge ett alter-
nativt namn till en viss typ. Exempel:

scala> type Pt = (Int, Int) // typalias
scala> type Pts = Vector[Pt] // nastlad typalias

scala> def distToOrigo(pt: Pt): Double = math.hypot(pt._1, pt._2)

scala> val xs: Pts = Vector((1,1), (2,2), (3,4))
val xs: Pts = Vector((1,1), (2,2), (3,4))

O 00 N O Ul A W N

scala> xs.head
val res0: Pt = (1,1)

=
(S

)
N

scala> xs.map(distToOrigo)

7.1. TEORI 255

ikl val resl: Vector[Double] = Vector(1.4142135623730951, 2.8284271247461903, 5.0)

Typ-alias kan vara bra nér:

* man har en lang och kranglig typ och vill anvianda ett kortare namn,
¢ man vill kunna l4tt byta implementation senare
(t.ex. om man vill anvinda en case-klass i stillet for en tupel).

7.1.38 Exempel: SEQ-INSERT/REMOVE-COPY

Nu ska vi "uppfinna hjulet” och som traning implementera insattning och bort-
tagning till en ny sekvens utan anvindning av sekvenssamlingsmetoder (forutom
length och apply):

object PointSeqUtils:
type Pt = (Int, Int) // a type alias to make the code more concise

def primitivelnsertCopy(pts: Array[Pt], pos: Int, pt: Pt): Array[Pt] = ???

def primitiveRemoveCopy(pts: Array[Pt], pos: Int): Array[Pt] = ?7?7?

7.1.39 Pseudo-kod for SEQ-INSERT-COPY

Indata :pts: Array[Pt], pt: Pt, pos: Int

Utdata:En kopia av pts men dér pt dr infogat pa plats pos

result — en ny Array[Pt] med plats for pts.length + 1 element
for i — 0 to pos—1do
‘ result(i) — pts(i)
end
result(pos) — pt
for i — pos+1toxs.length do
‘ result(i) — pts(i—1)
end
result

© W O W N

e
W N = O

Ovning: Skriv pseudo-kod for SEQ-REMOVE-COPY

7.1.40 Insattning/borttagning i kopia av primitiv Array

256 KAPITEL 7. SEKVENSER OCH ENUMERATIONER

object PointSeqUtils:

type Pt = (Int, Int) // a type alias to make the code more concise

def primitivelnsertCopy(pts: Array[Pt], pos: Int, pt: Pt): Array[Pt] =
val result = new Array[Pt](pts.length + 1) // initialized with null
for i <- 0 until pos do result(i) = pts(i)
result(pos) = pt
for i <- pos + 1 to pts.length do result(i) = pts(i - 1)
result

def primitiveRemoveCopy(pts: Array[Pt], pos: Int): Array[Pt] =
if pts.length > 0 then
val result = new Array[Pt](pts.length - 1) // initialized with null
for i <- 0 until pos do result(i) = pts(i)
for i <- pos + 1 until pts.length do result(i - 1) = pts(i)
result
else Array.empty

// ovan metoder implementerade med hjalp av den kraftfulla metoden patch:
def insertCopy(pts: Array[Pt], pos: Int, pt: Pt) = pts.patch(pos, Array(pt), 0)

def removeCopy(pts: Array[Pt], pos: Int) = pts.patch(pos, Array.empty[Pt], 1)

Man gor mycket litt fel pa granser/specialfall: +-1, to/until, tom sekvens etc.

7.1.41 Exempel: PolygonWindow

¢ En polygon kan representeras som en punktsekvens, dar varje punkt &r ett heltalspar.
* PolygonWindow nedan &r ett fonster som kan rita en polygon.

© 0 ~TI0 UL W R

class PolygonWindow(width: Int, height: Int):
val w = new introprog.PixelWindow(width, height, title = "PolygonWindow")
def draw(pts: Seq[(Int, Int)]): Unit =
if pts.size > 0 then
for i <- 1 until pts.size do
w.line(pts(i - 1)._1, pts(i - 1)._2, pts(i)._1, pts(i)._2)
val last = pts.length - 1
w.line(pts(last)._1, pts(last)._2, pts(0)._1, pts(0)._2)
object PolygonTest:
val star = Array((100,180), (150,100), (180,180), (90,130), (200, 130))
val pw = new PolygonWindow(400,400)
def main(args: Array[String]): Unit = pw.draw(star.toSeq)

Ao b M

7.1.42 Implementera Polygon

¢ En polygon kan representeras som en sekvens av punkter.
¢ Vivill kunna lagga till punkter, samt ta bort punkter.
¢ En polygon kan implementeras pa manga olika sétt:

0030 Otk W -

7.1. TEORI 257

— Forandringsbar (eng. mutable)

* Med punkterna i en Array

* Med punkterna i en ArrayBuffer

* Med punkterna i en ListBuffer

* Med punkterna i en Vector

* Med punkternaien List

- Oforanderlig (eng. immutable)

* Som en case-klass med en oférianderlig Vector som returnerar nytt ob-
jekt vid uppdatering. Vi kan lata datastrukturen vara publik eftersom
allt ar oféranderligt.

* Som en “vanlig” klass med nagon lamplig privat datastruktur dar vi
inte mojliggor fordndring av efter initialisering och dér vi returnerar
nytt objekt vid uppdatering.

Val av implementation beror pa sammanhang & anvindning!

7.1.43 Exempel: PolygonArray, éndring pd plats

class PolygonArray(val maxSize: Int):
type Pt = (Int, Int)
private val points = new Array[Pt](maxSize) // initialized with null
private var n = 0
def size = n

def draw(w: PolygonWindow): Unit = w.draw(points.take(n).toSeq)

def append(pts: Ptx): Unit =
for i <- pts.indices do points(n + i) = pts(i)
n += pts.length

def insert(pos: Int, pt: Pt): Unit = // exercise: change pt to varargs pts
for i <- n until pos by -1 do points(i) = points(i - 1)
points(pos) = pt
n+=1

def remove(pos: Int): Unit = // exercise: change pos to fromPos, replaced
for i <- pos until n do points(i) = points(i + 1)

n -=1

override def toString = points.mkString("PolygonArray(",",",")")

* Fran borjan ar points fylld med null.
® Variabeln n haller reda pa hur manga som verkligen anvands.

7.1.44 Exempel: PolygonVector, variabel referens till oférénderlig da-
tastruktur

0030 Otk W+

258 KAPITEL 7. SEKVENSER OCH ENUMERATIONER

class PolygonVector:

type Pt = (Int, Int)
private var points = Vector.empty[Pt] // note var declaration to allow mutation
def size = points.size

def draw(w: PolygonWindow): Unit = w.draw(points.take(size))

def append(pts: Ptx): Unit =
points ++= pts.toVector

def insert(pos: Int, pt: Pt): Unit = // exercise: change pt to varargs pts
points = points.patch(pos, Vector(pt), 0)

def remove(pos: Int): Unit = // exercise: change pos to fromPos, replaced
points = points.patch(pos, Vector(), 1)

override def toString = points.mkString("PrimitivePolygon(",",",")")

7.1.45 Exempel: Polygon som oféréinderlig case class

object Polygon:

type Pt = (Int, Int)
type Pts = Vector[Pt]
def apply(pts: Pt*x) = new Polygon(pts.toVector)

case class Polygon(points: Polygon.Pts):

import Polygon.Pt

def size = points.size // for convenience but not really necessary (why?)
def append(pts: Ptx): Polygon = copy(points ++ pts.toVector)

def insert(pos: Int, pts: Ptx): Polygon = copy(points.patch(pos, pts, 0))

def remove(pos: Int, replaced: Int = 1): Polygon =
copy(points.patch(pos, Seq(), replaced))

override def toString = points.mkString("Polygon(", "," ,")")

7.1.46 Attt sortera och jamfora strangar lexikografiskt
Teckenstandard UTF-8: Alla stora bokstiaver dr "mindre” dn alla sméa:

scala> Array("hej","Hej","qurka").sorted

res0: Array[String] = Array(Hej, gurka, hej)

¢ Antag att vi vill 16sa detta problem "fran scratch”:
att sortera en sekvens med striangar

https://sv.wikipedia.org/wiki/UTF-8
https://www.youtube.com/watch?v=MijmeoH9LT4

7.1. TEORI 259

¢ Foljdfragor:
— Vad betyder det att tva striangar ar "lika”?
— Vad betyder det att en string 4r "mindre” 4n en annan?
¢ For att sortera en strangsekvens behover vi 16sa dessa delproblemen:

- att jamfora striangar
- sokning i sekvenser
— SWAP (om pa-plats-sortering i forandringsbar sekvens)

Vi anviander har striangjamforelse, sokning och sortering for att illustrera typiska
imperativa algoritmer. Normalt anvinder man fiardiga losningar pa dessa pro-
blem!

7.1.47 Jamféra strangar: likhet

Antag att vi inte kan gora sl == s2 utan bara kan jamfora striangar tecken for
tecken, t.ex. sa har: s1(i) == s2(i). Antag ocksa att vi inte har tillgang till annat
an metoderna length och apply pa striangar, samt while och variabler av grundtyp.
Los problemet att avgora om tva stringar dar lika.

* Indata: tva strangar
e Utdata: true om lika annars false

1. Klura ut din 16sningsidé
Formulera algoritmen i pseudokod
3. Implementera algoritmen i Scala:
def isEqual(sl: String, s2: String): Boolean = ???

N

7.1.48 Algoritmexempel: stréinglikhet, pseudokod

def isEqual(sl: String, s2: String): Boolean =
if (/x lika langder x/) then
var foundDiff = false
var i = /x forsta index x/
while !foundDiff && /* i inom indexgrans x*/ do
if /x tecken pd plats i &r olika */ then foundDiff = true
else i = /* nasta index *x/
end while
foundDiff
else false
end isEqual

Detta dr en variant av s.k. linjarsokning dér vi séker fran bérjan i en sekvens till vi
hittar det vi soker efter (har soker vi efter tecken som skiljer sig at).

Hur ser implementationen i exekverbar Scala ut?

260 KAPITEL 7. SEKVENSER OCH ENUMERATIONER

7.1.49 Algoritmexempel: strénglikhet, implementation

def isEqual(sl: String, s2: String): Boolean =
if sl.length == s2.length then
var foundDiff = false
var i = 0
while !'foundDiff && i < sl.length do
if s1(i) !'= s2(i) then foundDiff = true
else i +=1
end while
I foundDiff
else false
end isEqual

7.1.50 Jamféra stréingar: “mindre an”

Med s1 < s2 menar vi att strangen s1 ska sorteras fore stringen s2 enligt hur de
enskilda tecknen 4r ordnade med uttrycket s1(i) < s2(i).

Antag ocksa att vi inte har tillgang till annat 4n metoderna length och apply pa
strangar, samt while och variabler av grundtyp, samt math.min

Los problemet att avgora om en strdang dr “mindre” dn en annan.

¢ Indata: tva striangar, s1, s2
e Utdata: true om sl ska sorteras fore s2 annars false

1. Klura ut din 16sningsidé
2. Formulera algoritmen i pseudokod
3. Implementera algoritmen i Scala:
def islLessThan(sl: String, s2: String): Boolean = ?7??

7.1.51 Jamféra stréingar: “mindre an”
Pseudokod:
def islLessThan(sl: String, s2: String): Boolean =

val minLength = /% minimum av laéngderna pa sl och s2 x/

def firstDiff(sl: String, s2: String): Int =
/* index for forsta skillnaden (om de bdérjar lika: minLength) x*/

val diffIndex = firstDiff(sl, s2)
if diffIndex == minLength then /x sl ar kortare an s2 x/
else /x tecknet sl(diffIndex) ar mindre an tecknet s2(diffIndex) x/

7.1. TEORI 261
7.1.52 Jamféra strdngar: "mindre dn”

def islLessThan(sl: String, s2: String): Boolean =
val minLength = math.min(sl.length, s2.length)

def firstDiff(sl: String, s2: String): Int =
var foundDiff = false
var 1 = 0
while !foundDiff & i < minLength do
if (sl(i) != s2(i)) foundDiff = true
else 1 +=1
end while
i
end firstDiff

val diffIndex = firstDiff(sl, s2)
if diffIndex == minLength then sl.length < s2.length
else sl(diffIndex) < s2(diffIndex)

end islLessThan

7.1.53 Soékning

¢ Sokning aterkommer i manga skepnader:
i en datastruktur, vilken det 4n ma vara, vill man ofta kunna
hitta ett element med en viss egenskap.
Nagra fardiga linjarsokningar i Scalas standardbibliotek:

scala> Vector("gurka", "tomat","broccoli").indexOf("tomat")
res@: Int =1

scala> Vector("gurka", "tomat","broccoli").indexWhere(_.contains("o0"))
resl: Int =1

scala> Vector("gurka", "tomat","broccoli").find(_.contains("0"))
res2: Option[String] = Some(tomat)

00 N o U~ W N R

* Sokning efter ett visst index i en sekvens:

— Indata: en sekvens och ett sokkriterium
— Utdata: index for forsta eftersokta element, annars -1

¢ Tva typiska varianter av s6kning i en sekvens:

— Linjarsokning: bérja fran borjan och sok tills ett eftersokt element ar funnet
- Binirsokning: antag sorterad sekvensen; borja i mitten, valj ratt halva ...

262 KAPITEL 7. SEKVENSER OCH ENUMERATIONER

7.1.54 Linjarsokning: hitta index for elementet x
Implementera index0f:

def indexOf(xs: Vector[Int], x: Int): Int ?77?

Utdata: index i dar xs(i) == x
Om viarde saknas. returnera -1

def indexOf(xs: Vector[Int], x: Int): Int
var i = 0
var found = false
while !'found &8 i < xs.length do
if (xs(i) == x) found = true
else i +=1
if (found) i else -1

(Ar du nyfiken pa binirsokning, se kapitel 12: Valfri fordjupning.)

7.1.55 Sortering

Problem: Vi har en osorterad sekvens med heltal. Vi vill ordna denna osorterade
sekvens i en sorterad sekvens fran minst till storst.

En generalisering av problement:

Vi har manga element av godtycklig typ och en ordningsrelation som séger vad vi
menar med att ett element ar mindre dn eller storre dn eller lika med ett annat element.

Vi vill 16sa problemet att ordna elementen i sekvens sa att for varje element pa plats i
sa ar efterfoljande element pa plats i + 1 storre eller lika med elementet pa plats .

¢ Insattningssortering losningsidé: Ta ett element i taget fran den osorterade
listan och sétt in det pa ratt plats i den sorterade listan och upprepa till det
inte finns fler osorterade element.

7.1.56 Algoritmisk komplexitet

¢ Komplexiteten hos en algoritm undersoks ofta genom att analysera hur min-
nesatgang och tidsatgang vixer om problemets storlek vaxer

¢ Exempel pa olika tidskomplexitet: tiden kan t.ex. véaxa linjért, exponentiellt,
eller logaritmiskt med antalet element

¢ Exempel linjarsokning (alltsa leta fran borjan tills hittat):
Antalet repretionsrundor ar proportionellt mot antalet element och i vérsta fall
behover vi soka dnda till slutet.

* Mer om komplexitet i ndsta kurs (pfk).

7.1. TEORI 263

7.1.57 Det finns méanga olika sorteringsalgoritmer

¢ Visualisering av 15 olika sorteringsalgoritmer pa 6 min:
https://www.youtube.com/watch?v=kPRAOW1KECg

¢ QOlika sorteringsalgoritmer har olika tids- & minneskomplexitet: i basta fall, i
virsta fall, i medeltal, for nidstan sorterad, ete.
https://en.wikipedia.org/wiki/Sorting_algorithm

* Olika sorteringsalgoritmer lampar sig olika val for parallellisering p4 manga
kéarnor.

7.1.58 Bogo sort

def bogoSort(xs: Vector[Int]) =
var result = xs

while result !'= result.sorted do
result = scala.util.Random.shuffle(result)
result
Nar blir denna fardig?

Antal jamforelser i medeltal vid n element: n - n!

https://en.wikipedia.org/wiki/Bogosort

7.1.59 Sortera till ny vektor med insattningssortering: pseudo-kod

Det ar nog lattare att forsta insertion sort om man sorterar till en ny vektor.
Vi ska sedan se hur man sorterar "pa plats” (eng. in place) i en array.

Indata: en osorterad vektor med heltal
Utdata: en ny, sorterad vektor med heltal

def insertionSort(xs: Vector[Int]): Vector[Int] =
val sorted = /* tom ArrayBuffer x/
for /x alla element i xs */ do
/* linjarsok ratt position i sorted =/
/* satt in element pd ratt plats i sorted */
end for
sorted.toVector

7.1.60 Sortera till ny vektor med inséttningssortering: implementation

https://www.youtube.com/watch?v=kPRA0W1kECg
https://en.wikipedia.org/wiki/Sorting_algorithm
https://en.wikipedia.org/wiki/Bogosort

N O U bW N

264 KAPITEL 7. SEKVENSER OCH ENUMERATIONER

def insertionSort(xs: Vector[Int]): Vector[Int] =
val sorted = scala.collection.mutable.ArrayBuffer.empty[Int]
for elem <- xs do
// linjarsok ratt position i sorted:
var pos = 0
while pos < sorted.length && sorted(pos) < elem do
pos += 1
end while
// satt in element pa ratt plats i sorted:
sorted.insert(pos, elem)
end for
sorted.toVector
end insertionSort

7.1.61 Sortera till ny samling med godtyckligt ordningspredikat

def sortWith(xs: Vector[Int])(lt: (Int, Int) => Boolean): Vector[Int] =
val sorted = scala.collection.mutable.ArrayBuffer.empty[Int]
for elem <- xs do // insertion sort using 1t as "less than"
var pos = 0
while pos < sorted.length && lt(sorted(pos), elem) do
pos += 1
end while
sorted.insert(pos, elem)
end for
sorted.toVector
end sortWith

scala> val xs = Vector(1,2,1,2,12,42,1)

scala> sortWith(xs)(_ < _)
val res0: Vector[Int] Vector(1l, 1, 1, 2, 2, 12, 42)

scala> sortWith(xs)(_ > _)
val resl: Vector[Int] Vector (42, 12, 2, 2, 1, 1, 1)

7.1.62 Insattningssortering pd plats — pseudo-kod

Indata: en array med heltal
Utdata: samma array, men nu sorterad

def insertionSortInPlace(xs: Array[Int]): Unit =
for i <- 1 until xs.length do //fran ANDRA till sista
var j = 1
while j > 0 && xs(j - 1) > xs(j) do

7.1. TEORI 265

/* byt plats pa xs(j) och xs(j - 1) %/
j -=1; // stega bakat

Se animering hér: Insédttningssortering pa wikipedia
Ga igenom alla specialfall och kolla sa att detta fungerar!

7.1.63 Insdttningssortering pd plats — implementation
def insertionSortInPlaceSwap(xs: Array[Int]): Unit =
def swap(i: Int, j: Int): Unit =
val temp = xs(i)
xs(i) = xs(j)
xs(j) = temp
end swap

for i <- 1 until xs.length do //fran ANDRA till sista
var j = 1
while j > 0 && xs(j - 1) > xs(j) do
swap(j, j - 1)
j -=1; // stega bakat
end while
end for
end insertionSortInPlaceSwap

https://sv.wikipedia.org/wiki/Ins%C3%A4ttningssortering

266

7.2
Mail
O

O

OO

oooo

KAPITEL 7. SEKVENSER OCH ENUMERATIONER

Ovning sequences

Kunna lasa och skriva pseudokod for sekvensalgoritmer och implementera
sekvensalgoritmer enligt pseudokod.

Kunna implementera sekvensalgoritmer, bade genom kopiering till ny sekvens
och genom forandring pa plats i befintlig sekvens.

Kunna anvinda inbyggda metoder for uppdatering av, linjarsokning i, och sorte-
ring av sekvenssamlingar.

Kunna beskriva skillnaden i anvandningen av férdnderliga och oforianderliga
sekvenser, speciellt vid uppdatering.

Forsta hur sorteringsordningen ar definierad for strangar.

Kunna sortera sekvenssamlingar innehéallande objekt av grundtyper med hjilp
av inbyggda och egendefinierade sorteringsordningar med metoderna sorted,
sortBy och sortWith.

Kunna implementera linjarsokning enligt olika sokkriterier.

Kunna beskriva egenskaperna hos sekvenssamlingarna Vector, List, Array,
ArrayBuffer och ListBuffer.

Forsta bieffekter av uppdatering av delade referenser till forédnderliga element.
Kunna anvinda funktioner med repeterade parametrar.

Kinna till hur man implementerar funktioner med repeterade parametrar.
Kunna implementera heltalsregistrering i en heltalsarray.

Forberedelser

O

7.2.1

Studera begreppen i kapitel 7

Grunduppgifter; forberedelse infor laboration

Uppgift 1. Para ihop begrepp med beskrivning.

Koppla varje begrepp med den (forenklade) beskrivning som passar bést:

element 1 A | definierar hur element av en viss typ ska ordnas
samling 2 B | datastruktur med element av samma typ
samlingsbibliotek 3 C | algoritm som ordnar element i en viss ordning
sekvens(samling) 4 D | algoritm som letar upp element enligt sokkriterium
sekvensalgoritm 5 E | hur exekveringstiden vixer med problemstorleken
ordning 6 F | sokalgoritm som letar i sekvens tills element hittas
sortering 7 G | objekt i en datastruktur

sokning 8 H | algoritm som riknar element med vissa egenskaper
linjarsokning 9 I | l6sning pa problem som drar nytta av sekvenssamling
registrering 10 J | manga fardiga samlingar med olika egenskaper
tidskomplexitet 11 K | hur minnesatgangen vixer med problemstorleken
minneskomplexitet | 12 L | noll el. flera element av samma typ i viss ordning

7.2. OVNING SEQUENCES 267

Uppgift 2. Olika sekvenssamlingar. Koppla varje sekvenssamling med den (férenkla-
de) beskrivning som passar bést:

Vector 1 A | forandringsbar, snabb indexering, kan éndra storlek
List 2 B | oférdanderlig, ger snabbt godtyckligt &indrad samling
Array 3 C | oféranderlig, ger snabbt ny samling &dndrad i borjan
ArrayBuffer | 4 D | primitiv, fordndringsbar, snabb indexering, fix storlek
ListBuffer | 5 E | forandringsbar, snabb att dndra i bérjan

Uppgift 3. Anvdnda sekvenssamlingar. Antag att nedan variabler finns synliga i
aktuell namnrymd:

val xs: Vector[Int] = Vector(l, 2, 3)
val x: Int = 0

a) Koppla varje uttryck till vinster med motsvarande resultat till hoger. Om du ar
osdker pa resultatet, l4s 1 snabbreferensen och testa i REPL.
Tips: “colon on the collection side”.

X +: XS 1 A | true

XS +: X 2 B | Vector(2, 2, 3)

XS i+ X 3 C |1

XS ++ XS 4 D | error: value tail is not a member of Int
xs.indices 5 E | (0 until 3)

xs apply 0 6 F | Vector(1l, 2, 3)

xs(3) 7 G | Vector(0, 1, 2, 3)

xs.length 8 H | false

xs.take(4) 9 I | java.lang.IndexOutOfBoundsException
xs.drop(2) 10 J | Vector(1l, 2, 3, 0)

xs.updated(0, 2) | 11 K | Vector(3)

xs.tail.head 12 L | error: value +: is not a member of Int
xs.head.tail 13 M | Vector(1, 2, 3, 1, 2, 3)

XS.1isEmpty 14 N |2

Xs.nonEmpty 15 O |3

b) Vid tre tillfdllen blir det fel. Varfor? Ar det kompileringsfel eller exekveringsfel?

Tips infor fortsdtiningen: Scalas standardbibliotek har manga anvindbara samling-
ar med enhetlig metoduppséttning. Om du lar dig de viktigaste samlingsmetoderna
far du en kraftfull verktygslada. Las mer hér:

¢ snabbreferensen (enda tentahjalpmedel):
https://fileadmin.cs.lth.se/pgk/quickref.pdf

¢ oversikt (av Prof. Martin Odersky, uppfinnare av Scala, m.fl.):
https://docs.scala-lang.org/overviews/collections-2.13/introduction.
html

https://fileadmin.cs.lth.se/pgk/quickref.pdf
https://docs.scala-lang.org/overviews/collections-2.13/introduction.html
https://docs.scala-lang.org/overviews/collections-2.13/introduction.html

v A W N

268 KAPITEL 7. SEKVENSER OCH ENUMERATIONER

¢ api-dokumentation:
https://www.scala-lang.org/api/current/scala/collection/

Uppgift 4. Kopiering av sekvenser. Klassen Mutant nedan kan anvindas for att skapa
forandringsbara instanser med heltal.!

class Mutant(var int: Int = 0)

Figur 7.1: En instans av klassen
Mutant dar int kanske ar 5.

Kor nedan i REPL efter studier av detta: https://youtu.be/dpdOUEe9mm4

scala> val fem = new Mutant(5)
scala> val xs Vector(fem, fem, fem)

scala> val ys Xs.toArray // kopierar referenserna till ny Array
scala> val zs = xs.map(x => new Mutant(x.int)) // djupkopierar till ny Vector
scala> xs(0).int = (new Mutant).int

a) Fyllitabellen nedan genom att till héger skriva virdet av varje uttryck till vinster.
Forklara vad som hénder. Tips: Metoden eq jamfor alltid referenser (ej innehall).

xs(0)

ys(0).int

zs(0).int

xs(0) eq ys(0)

xs(0) eq zs(0)

(ys.toBuffer :+ new Mutant).apply(0).int

b) Implementera med hjilp av en while-sats funktionen deepCopy nedan som gor
djup kopiering, d.v.s skapar en ny array med nya, innehallskopierade mutanter.

def deepCopy(xs: Array[Mutant]): Array[Mutant] = ?7?

10m den inbyggda grundtypen Int, i likhet med Mutant, knasigt nog kunnat anvéndas for att skapa
forandringsbara instanser hade heltalsmatematiken i Scala omvandlats till ett skrammande kaos.

https://www.scala-lang.org/api/current/scala/collection/
https://youtu.be/dpdOUEe9mm4

7.2. OVNING SEQUENCES 269

Anvind denna algoritm:

Indata : En mutantarray xs

Utdata: En djup kopia av xs

result — en ny mutantarray med plats for lika manga element som i xs

i—0

while i mindre dn antalet element do
skapa en kopia av elementet xs(i) och lagg kopian i result pa platsen i
oka i med 1

end

result

N IR I U

c¢) Testa att din funktion och kolla sa att inga ldskiga muteringar genom delade
referenser gar att gora, s som med xs och ys i férsta deluppgiften.

d) Ar det vanligt att man, for sikerhets skull, gér djupkopiering av alla element i
oforanderliga samlingar som enbart innehaller oféréanderliga element?

Tips infor fortsdttningen: Ofta kan du losa grundlaggande delproblem med inbyggda
samlingsmetoder ur standardbiblioteket. Till exempel kan ju kopieringen i deepCopy
i foregaende uppgift enkelt géras med hjalp av samlingsmetoden map.

Men det dr mycket bra for din forstaelse om du kan implementera grundldggande
sekvensalgoritmer sjédlv 4ven om det normalt &r béttre att anvanda fardiga, valtes-
tade metoder. I kommande uppgifter ska du darfér géra egna implementationer av
nagra sekvensalgoritmer som redan finns i standardbiblioteket.

Uppgift 5. Uppdatering av sekvenser. Deklarera dessa variabler i REPL:

val xs = (1 to 4).toVector
val buf = xs.toBuffer

a) Uttrycken till vinster evalueras uppifran och ned. Para ihop med rétt resultat.

{ buf(0) = -1; buf(0) } 1 A | error: value update is not a member
{ xs(0) = -1; xs(0) } 2 B | Vector(5, 2, 3, 4)

buf.update(1, 5) 3 C | ArrayBuffer(-1, 5, 3, 4, 5)
XS.updated(0, 5) 4 D| -1

{ buf += 5; buf } 5 E | Vector(1, -1, 5)

{ xs += 5; xs } 6 F | (): Unit
xs.patch(1l,Vector(-1,5),3) | 7 G | error: value += is not a member

XS 8 H | Vector(1, 2, 3, 4)

Tips: Las om metoderna i snabbreferensen och undersok i REPL. Exempel:

scala> Vector(1,2,3,4).patch(from = 1, other = Vector(0,0), replaced = 3)

val res0: Vector[Int] = Vector(l, 0, 0)

b) Implementera funktionen insert nedan med hjilp av sekvenssamlingsmetoden
patch. Tips: Ge argumentet 0 till parametern replaced.

/** Skapar kopia av xs men med elem insatt p& plats pos. */
def insert(xs: Array[Int], elem: Int, pos: Int): Array[Int] = ???

o Ul A W N =

270 KAPITEL 7. SEKVENSER OCH ENUMERATIONER

¢) Skriv pseduokod for en algoritm som implementerar insert med hjélp av while.

d) Implementera insert enligt din pseudokod. Testa i REPL och se vad som hénder
om pos ir negativ? Vad hiander om pos ar precis ett steg bortom sista platsen i xs?
Vad héinder om pos ar flera steg bortom sista platsen?

Tips infor fortsdtiningen: Det ar inte latt att fa ratt pa alla specialfall dven i sma
algoritmer s& som insert ovan. Det ar darfor viktigt att noga téanka igenom sin
sekvensalgoritm med avseende pa olika specialfall. Anvind denna checklista:

Vad hénder om sekvensen ar tom?

Fungerar det for exakt ett element?

Kan index bli negativt?

Kan index bli mer 4n ldngden minus ett?

Kan det bli en odndlig loop, t.ex. p.g.a. saknad loopvariabeluppriakning?

U 0N

Ibland vill man att vettiga undantag ska kastas vid ogiltig indata eller andra
feltillstand och da &r require eller assert bra att anvanda. I andra fall vill man
att resultatet t.ex. ska bli en tom sekvenssamling om indata ar ogiltigt. Sddana
beteenden behover dokumenteras sa att andra som anvéander dina algoritmer (eller
du sjalv efter att du glomt hur det var) forstar vad som hénder i olika fall.

Uppgift 6. Jamfora strangar i Scala. 1Scala kan strangar jamforas med operatorerna
==, =, <, <=, >, >=, dir likhet/olikhet avgors av om alla tecken i strangen ér lika eller
inte, medan storre/mindre avgors av sorteringsordningen i enlighet med varje teckens
Unicode-virde.?

a) Vad ger foljande jamforelser for virde?

scala> 'b!
scala> C-EEER
scala> "bbb"

scala> "AAA" "aaa"
scala> "AAA" "000"
scala> "ARA" < "AAA"

Tyvérr sa foljer ordningen av AAO inte svenska regler, men det ignorerar vi i fort-
sattningen for enkelhets skull; om du &r intresserad av hur man kan fixa detta, gor
uppgift 20.

b) Vilken av strangarna sl och s2 kommer forst (d.v.s. 4r "mindre”) om s1 utgor
bérjan av s2 och s2 innehaller fler tecken &n s1?

Uppgift 7. Linjarsokning enligt olika sokkriterier. Linjarsokning innebér att man letar
tills man hittar det man séker efter i en sekvens. Detta delproblem aterkommer ofta!
Vanligen borjar linjarsokning fran borjan och haller pa tills man hittar nagot element
som uppfyller kriteriet. Beroende pa vad som finns i sekvensen och hur kriteriet ser

2Qverkurs: Alla tecken i en java.lang.String representeras enligt UTF-16-standarden
(https://en.wikipedia.org/wiki/UTF-16), vilket innebér att varje Unicode-kodpunkt (eng. code point)
lagras som antingen ett eller tva 16-bitars heltal. Strangjamforelse i Scala och Java jamfor egentligen
inte varje tecken, utan varje 16-bitars heltal. Denna skillnad har ingen betydelse nér en string bara
innehéaller tecken som tar upp ett 16-bitars heltal var, och praktiskt nog &ar néstan alla tecken som
anvinds vardagligen av den typen. De flesta tecken som kréver tva 16-bitars heltal 4r sillsynta kinesiska
tecken, sillsynta symboler, tecken fran utdéda spréak och emoji. Vi kommer att bortse fran sddana tecken
i den hér kursen.

https://en.wikipedia.org/wiki/UTF-16

O 00 N O Ul A W N =

e el =
2 W N R O

7.2. OVNING SEQUENCES 271

ut kan det hdnda att man maste ga igenom alla element utan att hitta det som soks.

a) Linjarsokning med inbyggda sekvenssamlingsmetoder.

val xs = ((1 to 5).reverse ++ (0 to 5)).toVector

Deklarera ovan variabel i REPL och para ihop uttrycken nedan med réatt varden.
Forklara vad som hénder.

xs.index0f(0) 1 A | Vector(1, 1)
xs.1index0f (6) 2 B -1
xs.indexWhere(_ < 2) 3 C | true
xs.indexWhere(_ != 5) 4 D | Some(1)
xs.find(_ == 1) 5 E | Vector(1, 0, 1)
xs.find(_ == 6) 6 F |5
xs.contains(0) 7 G | Vector(4, 6)
xs.filter(_ == 1) 8 H|4
xs.filterNot(_ > 1) 9 I|1
xs.zipWithIndex.filter(_._1 == 1).map(_._2) | 10 J | None

b) Implementera linjarsokning i strangvektor med striangpredikat.

/** Returns first index where p is true. Returns -1 if not found. */
def indexOf(xs: Vector[String], p: String => Boolean): Int = ?7?

Ett strangpredikat p: String => Boolean &r en funktion som tar en string som
indata och ger ett booleskt varde som resultat. Implementera index0f med hjilp av
en while-sats. Du kan t.ex. anvinda en lokal boolesk variabel found for att halla reda
pa om du har hittat det som eftersoks enligt predikatet.

Nér element som uppfyller predikatet saknas maste man bestamma vad som ska
héanda. Kravet pa din implementation i detta fall ges av dokumentationskommentaren
ovan.

Din funktion ska fungera enligt nedan:

scala> val xs = Vector("hej", "pa", "dej")
val xs: Vector[String] = Vector(hej, pa, dej)

scala> index0f(xs, _.contains('p"'))
val res0: Int =1

scala> index0f(xs, _.contains('q"'))
val resl: Int = -1

scala> indexOf(Vector(), _.contains('q"'))
val res2: Int = -1

scala> indexOf(Vector("q"), _.length == 1)
val res3: Int = 0

Uppgift 8. Labbforberedelse: Implementera heltalsregistrering i Array. Registrering
innebar att man réknar antalet forekomster av olika virden. Varje gang ett nytt varde

272 KAPITEL 7. SEKVENSER OCH ENUMERATIONER

forekommer behover vi rdkna upp en frekvensriknare. Det behovs en raknare for varje
viarde som ska registreras. Vi ska fortsétta ridkna dnda tills alla viarden &r registrerade.

Pa veckans laboration ska du registrera forekomsten av olika kortkombinatio-
ner i kortspelet poker. I denna 6vning ska du som tréning infor laborationen lésa
ett liknande registreringsproblem: frekvensanalys av manga tarningskast. Vid tér-
ningsregistrering behovs sex olika riknare. Man kan med fordel da anvidnda en
sekvenssamling med plats for sex heltal. Man kan t.ex. lata plats 0 héaller reda pa
antalet ettor, plats 1 halla reda pa antalet tvaor, etc.

a) Implementera nedan algoritm enligt pseudokoden:

def registreraTarningskast(xs: Seq[Int]): Vector[Int] =
val result = ??? /* Array med 6 nollor */
xs.foreach{ x =>
require(x >= 1 & x <= 6, "tarningskast ska vara mellan 1 & 6")
??? /*x rakna forekomsten av x */

}

result.toVector

b) Anvind funktionen kasta nedan néir du testar din registreringsalgoritm med en
sekvenssamling innehallande minst 1000 tarningskast.

def kasta(n: Int) = Vector.fill(n) (util.Random.nextInt(6) + 1)

Uppgift 9. Inbyggda metoder for sortering. Det finns fler olika satt att ordna sekvenser
efter olika kriterier. For grundtyperna Int, Double, String, etc., finns inbyggda ord-
ningar som gor att sekvenssamlingsmetoden sorted fungerar utan vidare argument
(om du 4r nojd med den inbyggda ordningsdefinitionen). Det finns ocksa metoderna
sortBy och sortWith om du vill ordna en sekvens med element av nagon grundtyp
efter egna ordningsdefinitioner eller om du har egna klasser i din sekvens.

val xs = Vector(1l, 2, 1, 3, -1)
val ys = Vector("abra", "ka", "dabra").map(_.reverse)
val zs = Vector('a', 'A', 'b', 'c').sorted

case class Person(fdérnamn: String, efternamn: String)

val ps = Vector(Person("Kim", "Ung"), Person("kamrat", "Clementin"))

Deklarera ovan i REPL och para ihop uttryck nedan med rétt resultat.

Tips: Stora bokstéver sorteras fore sma bokstéver i den inbyggda ordningen foér grund-
typerna String och Char. Dessutom har svenska tecken knasig ordning.?

L&s om sorteringsmetoderna i snabbreferensen och prova i REPL.

30rdningen kommer ursprungligen fran foraldrade teckenkodningsstandarder: https://sv.
wikipedia.org/wiki/ASCII

https://sv.wikipedia.org/wiki/ASCII
https://sv.wikipedia.org/wiki/ASCII

7.2. OVNING SEQUENCES 273

'a' < 'A! 1 A | "ka"
"AAOS" < "AAOS" 2 B|1
xs.sorted.head 3 C| -1
xs.sorted.reverse.head 4 D | error:
ys.sorted.head 5 E | false
zs.index0f('a"') 6 F|o
ps.sorted.head.fdérnamn.take(2) 7 G |3
ps.sortBy(_.fdrnamn).apply(1l).foérnamn.take(2) | 8 H | true
xs.sortWith((x1,x2) => x1 > x2).index0f(3) 9 I | "ak"

Vi ska senare i kursen implementera egna sorteringsalgoritmer som traning, men i
normala fall anvinder man inbyggda sorteringar som ér effektiva och viltestade. Dock
ar det inte ovanligt att man vill definiera egna ordningar for egna klasser, vilket vi
ska undersoka senare i kursen.

Uppgift 10. Inbyggd metod for blandning. Pa veckans laboration ska du implementera
en egen blandningsalgoritm och anvidnda den for att blanda en kortlek. Det finns redan
en inbygg metod shuffle i singelobjektet Random i paketet scala.util.

a) Sok upp dokumentationen fér Random.shuffle och studera funktionshuvudet.
Det star en hel del invecklade saker om CanBuildFrom etc. Detta smarta krangel, som
vi inte gar ndrmare in pa i denna kurs, ar till for att metoden ska kunna returnera
lamplig typ av samling. Nar du ser ett sddant funktionshuvud kan du anta att metoden
fungerar fint med flera olika typer av lampliga samlingar i Scalas standardbibliotek.

Klicka pa shuffle-dokumentationen sa att du ser hela texten. Vad siager doku-
mentationen om resultatet? Ar det blandning pa plats eller blandning till ny samling?

b) Prova upprepade blandningar av olika typer av sekvenser med olika typer av
element i REPL.

Uppgift 11. Repeterade parametrar. Det gar att deklarera en funktion som tar en
argumentsekvens av godtycklig langd, 4.k. varargs. Syntaxen bestar av en asterisk *
efter typen. Funktion sigs da ha repeterade parametrar (eng. repeated parameters). 1
funktionskroppen far man tillgang till argumenten i en sekvenssamling. Argumenten
anges godtyckligt manga med komma emellan. Exempel:

/**x Ger en vektor med stranglangder for godtyckligt antal strangar. x/
def stringSizes(xs: Stringx): Vector[Int] = xs.map(_.size).toVector

a) Deklarera och anviand stringSizes i REPL. Vad hander om du anropar stringSizes
med en tom argumentlista?

b) Det hdnder ibland att man redan har en sekvenssamling, t.ex. xs, och vill skic-
ka med varje element som argument till en varargs-funktion. Syntaxen for detta ar
xs: _x* vilket gor att kompilatorn omvandlar sekvenssamlingen till en argumentse-
kvens av ratt typ.

Prova denna syntax genom att ge en xs av typen Vector[String] som argument
till stringSizes. Fungerar det 4ven om xs ar en sekvens av langden 0?

274 KAPITEL 7. SEKVENSER OCH ENUMERATIONER
7.2.2 Extrauppagifter; tréina mer

Uppgift 12. Registrering av booleska virden. Singla slant.

a) Implementera en funktion som registrerar manga slantsinglingar enligt nedan
funktionshuvud. Indata &ar en sekvens av booleska virden dar krona kodas som true
och klave kodas som false. For registreringen ska du anvinda en lokal Array[Int].]
resultatet ska antalet utfall av krona ligga pa forsta platsen i 2-tupeln och pa andra
platsen ska antalet utfall av klave ligga.

def registerCoinFlips(xs: Seq[Boolean]): (Int, Int) = ??77?

b) Skapa en funktion flips(n) som ger en boolesk Vector med n stycken slantsing-
lingar och anvind den nir du testar din slantsinglingsregistreringsalgoritm.

Uppgift 13. Kopiering och tilldgg pa slutet. Skapa funktionen copyAppend som im-
plementerar nedan algoritm, efter att du rattat de tva buggarna nedan:

Indata :Heltalsarray xs och heltalet x
Utdata:En ny heltalsarray som som ar en kopia av xs men med x tillagt pa
slutet som extra element.
ys < en ny array med plats for ett element mer dn i xs
i<—0
while i <xs.length do
‘ ys(i) — xs(i)
end
lagg x pa sista platsen i ys
ys

Granska din kod enligt checklistan i tidigare tipsruta. Testa din funktion for de olika
fallen: tom sekvens, sekvens med exakt ett element, sekvens med manga element.

QO R W N =

Uppgift 14. Kopiera och reversera sekvens. Implementera seqReverseCopy enligt:

Indata :Heltalsarray xs
Utdata:En ny heltalsarray med elementen i xs i omvind ordning.
n — antalet element i xs
ys — en ny heltalsarray med plats for n element
i—0
while i <n do
ys(n—1i—1) — xs(i)
i—i+1
end
ys

® O O G R WD =

a) Anvind en while-sats pad samma sédtt som i algoritmen. Prova din implementation
i REPL och kolla sa att den fungerar i olika fall.

b) Gor en ny implementation som i stéllet anvander en for-sats som borjar bakifran.
Kor din implementation i REPL och kolla sa att den fungerar i olika fall.

Uppgift 15. Kopiera alla utom ett. Implementera kopiering av en array utom ett
element pa en viss angiven plats. Skriv forst pseudokod innan du implementerar:

def removeCopy(xs: Array[Int], pos: Int): Array[Int]

7.2. OVNING SEQUENCES 275

Uppgift 16. Borttagning pad plats i array. Ibland vill man ta bort ett element pa en
viss position i en array utan att kopiera alla element till en ny samling. Ett sitt att
gora detta ar att flytta alla efterfoljande element ett steg mot lagre index och fylla ut
sista positionen med ett utfyllnadsvarde, t.ex. 0. Skriv forst pseudokod for en sadan
algoritm. Implementera sedan algoritmen i en funktion med denna signatur:

def removeAndPad(xs: Array[Int], pos: Int, pad: Int = 0): Unit

Uppgift 17. Kopiering och insdttning.

a) Implementera en funktion med detta huvud enligt efterféljande algoritm:

def insertCopy(xs: Array[Int], x: Int, pos: Int): Array[Int]

Indata :En sekvens xs av typen Array[Int] och heltalen x och pos
Utdata:En ny sekvens av typen Array[Int] som ar en kopia av xs men déar x
ar infogat pa plats pos
n — antalet element xs
ys — enny Array[Int] med plats for n + 1 element
fori —0to pos—1do
‘ ys(i) — xs(i)
end
ys(pos) — x
for i — poston—1do
| ysGi+1) —xs(i)
end
ys

© W R W N =

[y
=}

b) Vad maste pos vara for att det ska fungera med en tom array som argument?
¢) Vad hinder om din funktion anropas med ett negativt argument for pos?
d) Vad hinder om din funktion anropas med pos lika med xs.size?

e) Vad hinder om din funktion anropas med pos storre dn xs.size?

Uppgift 18. Insdtining pa plats i array. Ett siatt att implementera insdttning i en
array, utan att kopiera alla element till en ny array med en plats extra, ar att alla
elementen efter pos flyttas fram ett steg till hogre index, sa att plats bereds for det
nya elementet. Med denna 16sning far det sista elementet "férsvinna” genom brutal
overskrivning eftersom arrayer inte kan dndra storlek.

Skriv forst en sadan algoritm i pseudokod och implementera den sedan i en
procedur med detta huvud:

def insertDropLast(xs: Array[Int], x: Int, pos: Int): Unit

Uppgift 19. Fler inbyggda metoder for linjirsokning.

a) Lasisnabbreferensen om metoderna lastIndex0f, index0fSlice, segmentLength
och maxBy och beskriv vad var och en kan anvéndas till.

b) Testa metoderna i REPL.

276 KAPITEL 7. SEKVENSER OCH ENUMERATIONER

7.2.3 Fordjupningsuppagifter; utmaningar

Uppgift 20. Fixa svensk sorteringsordning av AAO. Svenska bokstédver kommer i, for
svenskar, konstig ordning om man inte vidtar speciella atgiarder. Med hjilp av klassen
java.text.Collator kan man fa en Comparator for striangar som foljer lokala regler
for en massa sprak pa planeten jorden.

a) Verifiera att sorteringsordningen blir ratt i REPL enligt nedan.

scala> fel = Vector("o6","a","a","z").sorted
scala> svColl = java.text.Collator.getInstance(new java.util.Locale("sv"))

scala> svOrd = Ordering.comparatorToOrdering(svColl)
scala> ratt = Vector("6","3","a","z").sorted(sv0rd)

b) Anvind metoden ovan for att skriva ett program som skriver ut raderna i en textfil
i korrekt svensk sorteringsordning. Programmet ska kunna kéras med kommandot:
scala sorted -sv textfil.txt

¢) Lé&s mer har:
stackoverflow.com/questions/24860138/sort-list-of-string-with-localization-in-scala

Uppgift 21. Fibonacci-sekvens med ListBuffer. Samlingen ListBuffer &r en forand-
ringsbar sekvens som &r snabb och minnessnal vid tilligg i borjan (eng. prepend).
Undersok vad som hinder har:

scala> val xs = scala.collection.mutable.ListBuffer.empty[Int]
scala> xs.prependAll(Vector(l, 1))

scala> while xs.head < 100 do {xs.prepend(xs.take(2).sum); println(xs)}
scala> xs.reverse.tolList

Talen i sekvensen som produceras pa rad 4 ovan kallas Fibonacci-tal 4 och blir snabbt
mycket stora.

a) Definera och testa foljande funktion. Den ska internt anvéinda forandringsbara
ListBuffer men returnera en sekvens av oforianderliga List.

/x*x Ger en lista med tal ur Fibonacci-sekvensen 1, 1, 2, 3, 5, 8 ...
* dar det storsta talet ar mindre an max. x/
def fib(max: Long): List[Long] = 7?77

b) Hur lang ska en Fibonacci-sekvens vara for att det sista elementet ska vara sa
nira Int.MaxValue som mojligt?

¢) Implementera fibBig som anvander BigInt i stéllet for Long och lat din dator fa
anvinda sitt stora minne medan planeten virms upp en aning.

Uppgift 22. Omvdnda sekvens pa plats. Implementera nedan algoritm i funktionen

4sv.wikipedia.org/wiki/Fibonaccital

http://stackoverflow.com/questions/24860138/sort-list-of-string-with-localization-in-scala
https://sv.wikipedia.org/wiki/Fibonaccital

7.2. OVNING SEQUENCES 277

reverseChars och testa sa att den fungerar for olika fall i REPL.

Indata :En array xs med tecken
Utdata:xs uppdaterat pa plats, med tecknen i omvind ordning
n — antalet element i xs
for i —0to 5 -1do
temp — xs(1)
xs(i) —xs(n—i—-1)
xs(n—i—1)—temp

S A WD =

end

Uppgift 23. Palindrompredikat. En palindrom® &r ett ord som forblir oféréndrat om
man ldser det baklianges. Exempel pa palindromer: kajak, dallassallad.
Ett satt att implementera ett palindrompredikat visas nedan:

def isPalindrome(s: String): Boolean = s == s.reverse

a) Implementationen ovan kan innebéra att alla tecken i stringen gas igenom tva
ganger och behover minnesutrymme for dubbla antalet tecken. Varfor?

b) Skapa ett palindromtest som gar igenom elementen max en gang och som inte
behéver extra minnesutrymme for en kopia av striangen. Losningsidé: Jamfor parvis
forsta och sista, nést forsta och nést sista, ete.

Uppgift 24. Fler anvindbara sekvenssamlingsmetoder. S6k pa webben och 1lds om
dessa metoder och testa dem i REPL:

* xs.tabulate(n) (f)
* xs.forall(p)

® xs.exists(p)

® xs.count(p)

® xs.zipWithIndex

Uppgift 25. Arrays don’t behave, but ArraySeqs do! Aven om Array ar primitiv s&
finns smart krangel "under huven” i Scalas samlingsbibliotek for att arrayer ska bete
sig néastan som “riktiga” samlingar. Darmed behover man inte dgna sig at olika typer
av specialhantering, t.ex. s.k. boxning, wrapperklasser och typomvandlingar (eng. type
casting), vilket man ofta behover kimpa med som Java-programmerare.

Dock finns fortfarande begransningar och anomalier vad géller till exempel lik-
hetstest. Om du vill att en array ska bete sig som andra samlingar kan du enkelt
“wrappa” den med metoden toSeq som vid anrop pa arrayer ger en ArraySeq. Denna
beter sig som en helt vanlig oféranderlig sekvenssamling utan att offra snabbheten
hos en primitiv array.

val as Array(1,2,3)
val xs = as.toSeq

a) Hur fungerar likhetstest mellan tva ArraySeqs? Vad har xs ovan for typ? Gar det
att uppdatera en wrappad array?

5https ://sv.wikipedia.org/wiki/Palindrom

https://sv.wikipedia.org/wiki/Palindrom

278 KAPITEL 7. SEKVENSER OCH ENUMERATIONER

b) Vilken typ av argumentsekvens far du tillgang till i kroppen for en funktion med
repeterande parametrar?

¢) Lashér: http://docs.scala-lang.org/overviews/collections/arrays.html *
och ge ett exempel pa vad mer man inte kan géra med en array, forutom innehallslik-
hetstest.

Uppgift 26. List eller Vector? Jamfor tidskomplexitet mellan List och Vector vid *
hantering i borjan och i slutet, baserat pa efterféljande REPL-session i din egen
kormiljo. Kérningen nedan gjordes pa en AMD Ryzen 7 5800X (16) @ 3.800GHz under
Arch Linux 5.12.8-arch1-1 med Scala 3.0.1 och openjdk 11.0.11, men du ska anvinda
det du har pa din dator.

Hur snabbt gar nedan pa din dator? Nar Ar List snabbast och nir dr Vector
snabbast? Hur stor &r skillnaderna i prestanda? ®

> head -5 /proc/cpuinfo

processor : 0

vendor_id : AuthenticAMD

cpu family 1 25

model : 33

model name : AMD Ryzen 7 5800X 8-Core Processor

scala> def time(n: Int)(block: => Unit): Double =
[def now = System.nanoTime
[var timestamp = now
| var sum = OL
[var i = 0
| while i < n do
[block
| sum = sum + (now - timestamp)
I
I
|
|
|

timestamp now

i=1i+1
val average = sum.toDouble / n
println("Average time: " + average + " ns")
average

// Exiting paste mode, now interpreting.

time: (n: Int)(block: => Unit)Double

100000
List.fill(n) (math.random())
Vector.fill(n) (math.random())

scala> val n
scala> val 1
scala> val v

scala> (for i <- 1 to 20 yield time(n){l.take(10)}).min
average time: 97.66952 ns
average time: 91.90033 ns
average time: 79.88311 ns
average time: 69.5963 ns
average time: 69.69892 ns
average time: 69.8033 ns
average time: 69.7705 ns

8Denna typ av métningar lir du dig mer om i LTH-kursen ”Utvérdering av programvarusystem”,
som ges i slutet av arskurs 1 for Datateknikstudenter.

http://docs.scala-lang.org/overviews/collections/arrays.html

7.2. OVNING SEQUENCES 279

average time: 69.68491 ns
average time: 69.54222 ns
average time: 69.66051 ns
average time: 69.73661 ns
average time: 69.54112 ns
average time: 69.69141 ns
average time: 69.46341 ns
average time: 69.4098 ns
average time: 61.34162 ns
average time: 41.1333 ns
average time: 40.97051 ns
average time: 40.9075 ns
average time: 41.12321 ns
val res0: Double = 40.9075

scala> (for i <- 1 to 20 yield time(n){v.take(10)}).min
average time: 84.56978 ns
average time: 75.20167 ns
average time: 57.16529 ns
average time: 34.84469 ns
average time: 34.38478 ns
average time: 34.77709 ns
average time: 34.77179 ns
average time: 35.0506 ns
average time: 34.7967 ns
average time: 35.04258 ns
average time: 34.82559 ns
average time: 36.3673 ns
average time: 34.91029 ns
average time: 34.87239 ns
average time: 34.51958 ns
average time: 34.83949 ns
average time: 34.56169 ns
average time: 34.80719 ns
average time: 34.84459 ns
average time: 34.89468 ns
val resl: Double = 34.38478

scala> (for i <- 1 to 20 yield time(1000){1l.takeRight(10)}).min
average time: 131365.106 ns
average time: 118632.787 ns
average time: 118440.066 ns
average time: 118687.567 ns
average time: 118428.487 ns
average time: 118871.686 ns
average time: 118964.797 ns
average time: 119030.236 ns
average time: 119262.534 ns
average time: 119228.344 ns
average time: 119226.494 ns
average time: 119310.933 ns
average time: 119352.854 ns
average time: 119121.913 ns
average time: 119133.664 ns
average time: 119015.193 ns
average time: 119276.674 ns
average time: 119224.882 ns

280 KAPITEL 7. SEKVENSER OCH ENUMERATIONER

average time: 119301.771 ns
average time: 119444.401 ns
val res2: Double = 118428.487

scala> (for i <- 1 to 20 yield time(1000){v.takeRight(10)}).min
average time: 805.989 ns
average time: 365.219 ns
average time: 225.49 ns
average time: 125.92 ns
average time: 124.98 ns
average time: 130.689 ns
average time: 139.86 ns
average time: 128.29 ns
average time: 132.59 ns
average time: 125.729 ns
average time: 125.46 ns
average time: 130.59 ns
average time: 122.03 ns
average time: 121.9 ns
average time: 119.69 ns
average time: 120.48 ns
average time: 125.239 ns
average time: 126.09 ns
average time: 125.92 ns
average time: 125.91 ns
val res3: Double = 119.69

Varfor gar olika rundor i for-loopen olika snabbt dven om varje runda gér samma sak?

Uppgift 27. Tidskomplexitet for olika samlingar i Scalas standardbibliotek. *
Studera skillnader i tidskomplexitet mellan olika samlingar hér:
docs.scala-lang.org/overviews/collections/performance-characteristics.html

Léas daven kritiken av forenklingar i ovan beskrivning har:
www.lihaoyi.com/post/ScalaVectoroperationsarentEffectivelyConstanttime.html

Las denna grundliga empirisk genomgang av prestanda i Scalas samlingsbibliotek:
www.lihaoyi.com/post/BenchmarkingScalaCollections.html

Du far lara dig mer om hur man resonerar kring komplexitet i kommande kurser.

http://docs.scala-lang.org/overviews/collections/performance-characteristics.html
http://www.lihaoyi.com/post/ScalaVectoroperationsarentEffectivelyConstanttime.html
http://www.lihaoyi.com/post/BenchmarkingScalaCollections.html

7.3. LABORATION: SHUFFLE 281

7.3 Laboration: shuffle
Mal
[0 Kunna skapa och anvinda sekvenssamlingar.
[l Kunna implementera sekvensalgoritmen SHUFFLE som modifierar innehéallet i

en array pa plats.
[0 Kunna registrera antalet forekomster av olika virden i en sekvens.

Forberedelser

[0 Gor 6vning sequences i avsnitt 7.2

[0 Las igenom hela laborationen och sikerstill att du forstar hur SHUFFLE-
algoritmen nedan fungerar.

[0 Hamta given kod via kursen github-plats.

7.3.1 Bakgrund

Denna uppgift handlar om kortblandning. Att blanda kort sa att varje mojlig permu-
tation (ordning som korten ligger i) &ar lika sannolik dr icke-trivialt; en osystematisk
blandning leder till en skev fordelning.

Givet en bra slumpgenerator gar det att blanda en kortlek genom att ldgga alla
kort i en hog och sedan ta ett slumpvist kort fran hogen och ldgga det 6verst i leken,
tills alla kort ligger i leken. Fisher-Yates-algoritmen’ (éven kallad Knuth-shuffle),
fungerar pa det sittet. Har bendmner vi denna algoritm SHUFFLE. Den aterfinns i
pseudokod nedan. Notera speciellt att den 6vre griansen for r inkluderar i.

Indata : Array xs med n st virden som ska blandas "pa plats”
Utdata:xs uppdaterad pa plats med sina varden omflyttade i sSlumpméssig
ordning
fori—(n-1)to 0do
dra slumptal r sd att 0 <=r <=1
byt plats pa xs(i) och xs(r)
end

W N e

En kortlek (eng. deck) har 52 kort, vart och ett med olika valér (eng. rank) och farg
(eng. suit, pa svenska dven svit). Kortspelet poker handlar om att dra kort och fa upp
vissa kombinationer av kort, s.k. ”hander”®. Dessa dr ordnade fran battre till sémre;
den spelare som far bast hand vinner. Det ar darfor intressant att veta med vilken
sannolikhet en viss hand dyker upp vid dragning fran en blandad kortlek.

De vanliga pokerhinderna ér, i fallande varde, fargstege (straight flush), fyrtal
(four of a kind), kak (full house), farg (flush), stege (straight), triss (three of a kind),
tvapar (two pair) och par (pair). Dessa finns illustrerade i avsnitt 7.3.5. Det finns
ytterligare en hand, s.k. royal (straight) flush som betecknar en fiargstege med ess som
hogsta kort, men dess sannolikhet dr for lag for att man vid simulering kan férviantas
patraffa den inom rimlig tid.

Under laborationen ska du borja med att goéra klar den ofiardiga klassen Deck som
visas i avsnitt 7.3.2, och aterfinns i workspace pa GitHub.

Labbinstruktionerna i avsnitt 7.3.3 ger tips om hur du ska ersitta ??? i givna
kodskelett med dina l6sningar. Med hjilp av klasserna Test och Test kan du testa sa

7 https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle#The_modern_algorithm
8ht‘cps://sv.wikipedia.01“g/wiki/Pokerhand

https://github.com/lunduniversity/introprog/tree/master/workspace/
https://en.wikipedia.org/wiki/Fisher%E2%80%93Yates_shuffle#The_modern_algorithm
https://sv.wikipedia.org/wiki/Pokerhand

=
= O © 00 -1 O W N -

=
=W N

282

KAPITEL 7. SEKVENSER OCH ENUMERATIONER

package poker

case class Card(rank: Card.Rank, suit: Card.Suit):
lazy val show = s"${rank.toString.head}${Card.suitChars(suit.ordinal)}"

object Card:
enum Rank:
case Ace, 2°, 3", 4°, °5°, ‘6", 7", "8, "9, Ten, Jack, Queen, King

enum Suit:

case Spades, Hearts, Clubs, Diamonds

val suitChars = "&Q& "
end Card

Figur 7.2: Den fardigimplementerade, oférianderliga case-klassen Card.

att dina implementationer fungerar.

7.3.2 Given kod

Nar dina implementationer av metoderna full och shuffle fungerar ska du anvéinda
Deck i singelobjektet PokerProbability for att ta reda pa sannolikheter for att olika
pokerhiander uppkommer nir man delar ut 5 kort ur en bra blandad kortlek.

Till din hjalp har du nedan kodfiler, dar nagra har ofiardig kod som du ska fardig-
stdlla. All kod ligger i ett paket med namnet poker.?

Card.scalai fig. 7.2 pa sidan 282 innehaller den fardigimplementerade case-
klassen Card som representerar ett kort och har en koncis toString med valor
(eng. rank) och svit (farg) (eng. suit).

Deck.scalai fig. 7.3 pa sidan 283 innehaller den férdndringsbara klassen Deck,
dér du ska implementera kortblandning i metoden shuffle. Kompanjonsobjek-
tet har metoder for att skapa kortlekar. Du ska implementera metoden full
som skapar en fullsténdig kortlek med de 52 korten ordnade efter valor och firg.

Hand.scala i fig. 7.4 pa sidan 284 innehaller en case-klass Hand som repre-
senterar en pokerhand och har metoder for att avgora vilken hand det &r. I
kompanjonsobjektet finns fabriksmetoder som kan skapa en ny hand fran en-
skilda kort eller genom att dra kort ur en kortlek. Du ska implementera tally
som registrerar antalet kort av en viss valor i en array indexerad med det
nollbaserade ordinal-heltalet for resp. korts rank.

PokerProbability.scalaifig. 7.5 pa sidan 285 har en main-metod som réaknar
ut pokersannolikheter, samt hjalpmetoden register som du ska implementera.

Singelobjektet Test.scala som ocksa finns i veckans givna kod ska du anvéanda
for att testa din implementation av shuffle med en kortlek som endast inne-
haller tre kort. Upprepade blandningar gors och férekomsten av varje majlig
permutation registreras.

9Du kan bléddra bland klasserna hér:
https://github.com/lunduniversity/introprog/tree/master/workspace/w07_shuffle/

https://github.com/lunduniversity/introprog/tree/master/workspace/w07_shuffle/

7.3. LABORATION: SHUFFLE 283

package poker
import scala.collection.immutable.ArraySeq

class Deck private (val initCards: ArraySeq[Card]):

© 00 3O O W N

O W W W W W WOwWOWDHNDDNDDDDDNDDNDDNDNDDNFEFEMFHH = = = e
W00 Ok WNHFHOOWWWJO0 Tk WNHFHOO©OWOWJO0 U bk wNHO

private var cards: Array[Card] = initCards.toArray
def reset(): Unit = cards = initCards.toArray

def apply(i: Int): Card = cards(i)

def toSeq: ArraySeq[Card] = cards.to(ArraySeq)

def show: String = cards.map(_.show).mkString(" ")

def peek(n: Int): ArraySeq[Card] =
cards.take(n).to(ArraySeq)

def remove(n: Int): ArraySeq[Card] =
val init = peek(n)
cards = cards.drop(n)
init

end remove

def prepend(moreCards: Cardx*): Unit =
cards = (moreCards ++ cards).toArray

/** Swaps cards at position a and b. x/
def swap(a: Int, b: Int): Unit = 7?77

/** Randomly reorders the cards in this deck. x/
def shuffle(): Unit = 7?77

object Deck:

def apply(cards: Seq[Card]): Deck = new Deck(cards.to(ArraySeq))

/*xx Creates a new full Deck with 52 cards in rank and suit order. x/
def full(): Deck = ?77??

Figur 7.3: Den ofirdiga klassen Deck med foréandringsbar kortlek.

284 KAPITEL 7. SEKVENSER OCH ENUMERATIONER

1 package poker

2

3 import scala.collection.immutable.ArraySeq

4

5 case class Hand(cards: ArraySeq[Card]):

6 import Hand._

7

8 VAT

9 * Yields a sequence of length 13, with positions 0-12 containing the
10 * number of cards of that card's rank's ordinal number (zero based).
11 */

12 lazy val tally: ArraySeq[Int] = 7?7

13

14 lazy val ranksSorted: ArraySeq[Int] = cards.map(_.rank.ordinal).sorted
15

16 lazy val isFlush: Boolean = cards.length > 0 && cards.forall(_.suit == cards(0).suit)

18 lazy val isStraight: Boolean =

19 def isInSeq(xs: ArraySeq[Int]): Boolean =

20 xs.length > 1 && (0 to xs.length - 2).forall(i => xs(i) == xs(i + 1) - 1)
21

22 isInSeq(ranksSorted) || // special case with ace interpreted as 13:
23 (ranksSorted(0) == 0) && isInSeq(ranksSorted.drop(l) :+ 13)

24

25 lazy val isStraightFlush: Boolean = isStraight && isFlush

26 lazy val isRoyalFlush: Boolean = ???

27 lazy val isFour: Boolean = tally.contains(4)

28 lazy val isFullHouse: Boolean = tally.contains(3) && tally.contains(2)
29 lazy val isThrees: Boolean = tally.contains(3)

30 lazy val isTwoPair: Boolean = tally.count(_ == 2) ==

31 lazy val isOnePair: Boolean = tally.contains(2)

32

33 lazy val category: Category =

34 if /* isRoyalFlush then Category.RoyalFlush

35 else if x/ isStraightFlush then Category.StraightFlush

36 else if isFour then Category.Fours

37 else if isFullHouse then Category.FullHouse

38 else if isFlush then Category.Flush

39 else if isStraight then Category.Straight

40 else if isThrees then Category.Threes

41 else if isTwoPair then Category.TwoPair

42 else if isOnePair then Category.OnePair

43 else Category.HighCard

44

45 object Hand:
46 def apply(cardSeq: Cardx*): Hand = new Hand(cardSeq.to(ArraySeq))
47 def from(deck: Deck): Hand = Hand(deck.peek(5))

48 def removeFrom(deck: Deck): Hand = Hand(deck.remove(5))
49

50 enum Category:

51 case

52 RoyalFlush, StraightFlush, Fours, FullHouse, Flush,
53 Straight, Threes, TwoPair, OnePair, HighCard

54 end Hand

Figur 7.4: Den ofirdiga, oféranderliga klassen Hand som representerar en pokerhand.

© 0030 U W

CONDMNDMNMONNNNNDIDRERR B 1 H e
SOWPXTIOTNE WL OWOWOW--TIO R WN R O

7.3. LABORATION: SHUFFLE

package

poker

import scala.collection.immutable.ArraySeq

object PokerProbability:

VAT

* For a given number of iterations, shuffles a deck, draws a hand and
* returns a sequence with the frequency of each hand category.
* Prints a dot every dotStep iteration

*/

def register(n: Long, deck: Deck, dotStep: Long = le6.toLong): ArraySeq[Int] =

777

end register

@main
val
val
val
val
val
val
for

end
val

def simulate: Unit =
defaultIter = 5

in = scala.io.StdIn.readLine(s"number of million iterations ($defaultIter):

n = (in.toIntOption.getOrElse(defaultIter) * 1le6).tolLong
deck = Deck.full()

t0 = System.currentTimeMillis()

frequencies = register(n, deck)

c <- Hand.Category.values do

val name = c.toString

val percentages = frequencies(c.ordinal).toDouble / n * 100
println(f"$name%16s $percentages%s10.67%%")

for

secs = (System.currentTimeMillis() - t0)/1000.0

println:
f"\n*xxx Total execution time: $secs%3.2f seconds"

285

Figur 7.5: Det ofardiga singelobjektet PokerProbability som tar reda pa sannolik-
heter for olika pokerhéinder.

286 KAPITEL 7. SEKVENSER OCH ENUMERATIONER

7.3.3 Obligatoriska uppgifter

Uppgift 1. Implementera algoritmen SHUFFLE.

a) Skapa din egen implementation av metoden shuffle i klassen Deck. F6lj den
givna algoritmen i stycke 7.3.1 noga. Du kan anvinda cards. length for att fa fram
langden pa kortleken, men du kan girna istillet anvianda cards.indices. reverse.
Implementera och anviand metoden swap.

b) Kor testShuffle i Test som kontrollerar att blandningen &r jaimnt fordelad
genom att blanda en kortlek med tre kort och rikna hur ofta varje mojlig permutation
dyker upp. Du bor fa en utskrift med sex (3!) procentsatser som ska vara néstan lika.

Uppgift 2. Skapa en fullstindig, ordnad kortlek.
a) Implementera metoden full som skapar en 52-korts standardlek ordnad efter
farg och valor. Anvéand Range-viardena i kompanjonsobjektet Card.

b) Kor testCreate i Test och kontrollera sa att du far kort av alla fyra farger, samt
bade ess och kungar.

Uppgift 3. Gor fardigt och testa Hand.

a) Implementera tally som ska ge en indexerbar sekvens med 13 platser dar varje
index representerar antalet av respektive valor. Ess ridknas som lagst.

b) Testa klassen Hand med hjilp av Test.

Uppgift 4. Ta fram sannolikheterna for olika pokerhinder.

a) Implementera metoden registeriPokerProbability. Anvand fromoch category
i Hand for att skapa och kategorisera en hand fran en kortlek. Lagra frekvenserna i en
lokal array som du, nér resultatet ar fardigt, gér om till en sekvens med to(ArraySeq).

b) Koér huvudprogrammet i PokerProbability, forslagsvis med femtio miljoner ite-
rationer, beroende pa ditt tdlamod och din dators snabbhet. Du bor fa ungeféir dessa
sannolikheter!?:

hand | sannolikhet

Straight flush (exkl. Royal flush) | 0.00139%
Fyrtal | 0.02401%

Kak | 0.1441%

Farg (exkl. Royal och Straight flush) | 0.1965%

Stege | 0.3925%

Uppgift 5. Simulera dven sannolikheten for Royal flush (en fargstege med ess som
hogsta kort). Det krévs i storleksordningen 108 iterationer for en noggrannhet pa 2
vardesiffror. Detta kan ta manga minuter pa en nagorlunda snabb dator, sa det kan

10https ://en.wikipedia.org/wiki/Poker_probability

https://en.wikipedia.org/wiki/Poker_probability

7.3. LABORATION: SHUFFLE 287

vara lage fore en paus under simuleringen...

Uppgift 6. Diskutera med handledare vid redovisningen vilka fordelarna med att
anvanda specifika uppriaknade virden med enum i stéllet for allménna heltal och
strangar.

Uppgift 7. Diskutera med handledare vid redovisningen férdelar och nackdelar med
att anvanda lazy val i stillet for val eller def i en oforénderlig klass.

7.3.4 Frivilliga extrauppgifter

Uppgift 8. Implementera ett interaktivt kortspel, t.ex. ndgon enkel pokervariant.
Borja med nagot mycket enkelt, till exempel hogst-kort-vinner, och bygg vidare med
sadant som du tycker verkar roligt.

Du kan t.ex. skapa en metod def compareTo(other: Hand): Comparison i case-
klassen Hand som ger Comparison.Worse om other ar sédmre, Comparison.Equal
om héinderna &r lika bra, och Comparison.Better om other ar battre. Du kan steg
for steg gora sa att det gar att jamfora fler och fler hiander enligt de specialregler
som géller for nar olika hdnder anses battre eller lika. Léds om reglerna hér: https:
//en.wikipedia.org/wiki/List_of_poker_hands

7.3.5 Bilder med exempel pd olika pokerhdnder

Figurerna 7.6 — 7.14 visar bilder pa olika korthinder i poker.

’5‘*] 2* A 2‘) ZQ‘Q 2*** Figur 7.6: Par (eng. pair): tva kort har sam-
L A AN AN Q*Q ma valor.
CPry VY VY VY VY

3 3 4 4 2
L A 4 ‘ov X S 3 Figur 7.7: Tva par (eng. two pair): handen
A \ 4 har tva olika par.
Vy asbbte, ¥y
8 8 8 7 9
**** ’**‘ "" ““ *:*: Figur 7.8: Triss (eng. three of a kind): tre
*** Q*$ "' +¢ PP kort har samma valor.
L 22 AT Y SRS L
% ‘ .‘;’. & i AN 2 ‘ ’ E’ ’ Figur 7.9: Stege (eng. straight): kortens va-
& ¢ *¢ I6rer bildar en f6ljd, ess kan vara antingen
1 eller 14.
A A AL RAS

2’ 4 ﬁ’ L 4 z"’ 12:0: . ¢4 Figur 7.10: Firg (eng. flush): alla kort har
¢4 2 samma farg.
4. ¢

<+
<
<
<+

L J
Yo
<+

N

https://en.wikipedia.org/wiki/List_of_poker_hands
https://en.wikipedia.org/wiki/List_of_poker_hands

288

PP YN
"""?; ¢4

<+
NS

e o

KAPITEL 7. SEKVENSER OCH ENUMERATIONER

Figur 7.11: Kak (eng. full house): bade
triss och par.

Figur 7.12: Fyrtal (eng. four of a kind): fy-
ra kort har samma valor.

Figur 7.13: Fargstege (eng. straight flush):
bade stege och farg. Specialfall: Om fargste-
gens hogsta kort ar ett ess kallas den royal
flush eller royal straight flush.

Figur 7.14: Hogt kort (eng. high card): ing-
et monster finns.

Del lli

Losningar

289

Kapitel L

Losningar till dvningarna

291

292 KAPITEL L. LOSNINGAR TILL OVNINGARNA

L.1 Losning expressions

L.1.1 Grunduppgifter; forberedelse infér laboration

Losn. uppg. 1. Para ihop begrepp med beskrivning.

litteral 1 ~~ D | anger ett specifikt datavirde

striang 2 ~~ G | en sekvens av tecken

sats 3 ~~ F | en kodrad som gor nagot; kan sirskiljas med semikolon
uttryck 4 ~~ H | kombinerar varden och funktioner till ett nytt virde
funktion 5 ~~ K | vid anrop beridknas ett returvarde

procedur 6 ~~ J | vid anrop sker (sido)effekt; returviardet dr tomt
exekveringsfel 7 ~~> N | kan intraffa medan programmet kor
kompileringsfel | 8 ~~ M | kan intriffa innan exekveringen startat

abstrahera 9 ~~> A | att inféra nya begrepp som forenklar kodningen
kompilera 10 ~> C | att oversatta kod till exekverbar form

typ 11 ~> 1 | beskriver vad data kan anvindas till

for-sats 12 ~> O | bra da antalet repetitioner ar bestamt i férviag
while-sats 13 ~> P | bra da antalet repetitioner ej ar bestamt i forvag
tilldelning 14 ~> L | for att dndra en variabels varde

flyttal 15 ~> E | decimaltal med begriansad noggrannhet

boolesk 16 ~~ B | antingen sann eller falsk

Losn. uppg. 2. Utskrift i Scala REPL.

a) Till exempel:

scala> println("hejsan svejsan")

b) Om hogerparentes fattas far man fortsatta skriva pa nista rad. Detta indikeras
med vertikalstreck i borjan av varje ny rad:

scala> println("hejsan svejsan"
I + II!II
|)

hejsan svejsan!

Losn. uppg. 3. Konkatenering av strdangar.
a)

scala> "qgurk" + "burk"
resl: String = gurkburk

varde: "gurkburk", typ: String
b)

scala> resl *x 42

res2: String = gurkatomatgurkatomatgurkatomatgurkatomatgurkatomatgurkatomatgur

u A W N =

L.1. LOSNING EXPRESSIONS 293

Losn. uppg. 4. Nar upptdcks felet?

a) Typ: String, viarde: "hejhejhej"
b) Kortidsfel:

scala> "hej" * Int.MaxValue

java.lang.OutOfMemoryError: Java heap space

¢) Kompileringsfel: (indikeras av texten <console> ... error:)

scala> "hej" x true
<console>:12: error: type mismatch;

found : Boolean(true)
required: Int
"hej" * true

Ett typfel innebar att kompilatorn inte kan fa typerna att 6verensstamma i t.ex. ett
funktionsanrop. I Scala far vi reda pa typfel redan vid kompilering medan i andra
sprak (t.ex. Javascript) uppticks sadana fel under exekveringen, i virsta fall genom
svarhittade buggar som kanske forst marks langt senare.

Losn. uppg. 5. Litteraler och typer.

a)

1 1 ~> E | Int

1L 2 ~> G | Long
1.0 3 ~> J | Double
1D 4 ~> F | Double
1F 5 ~~» H | Float
1! 6 ~> I | Char
"1 7 ~> A | String
true 8 ~~ C | Boolean
false | 9 ~> B | Boolean
() 10 ~> D | Unit

b) Vardet gar 6ver griansen for vad som far plats i ett 32 bitars heltal och "bérjar om”
pa det minsta mojliga heltalet Int.MinValue eftersom det 4r si binir aritmetik med
begriansat antal bitar fungerar i CPU:n.

scala> Int.MaxValue + 1
res3: Int = -2147483648

scala> Int.MinValue
res4: Int = -2147483648

¢) Bada ar heltal men Long kan representera storre tal 4n Int.

d) Bada ar flyttal men Double har dubbel precision och kan representera storre tal
med fler decimaler.

Losn. uppg. 6. Matematiska funktioner. Anvinda dokumentation.

a) Berikning av 254 — 1 med math.pow enligt nedan ger ungefir 1.8-10°

294 KAPITEL L. LOSNINGAR TILL OVNINGARNA

scala> math.pow(2, 64) - 1

res0@: Double = 1.8446744073709552E19

b) Ja, returtyp-annoteringen : Double kan uteldmnas.

¢ Varfor kan returtyp uteldmnas?
Eftersom kompilatorns typharledning kan héirleda returtypen.

Varfor kan man vilja utelamna den?
Det blir kortare att skriva utan.

Anledningar att ange returtyp:

— Med explicit returtyp far du hjalp av kompilatorn att redan under kompile-
ringen kontrollera att uttrycket till hoger om likhetstecknet har den typ
som forvantas.

— Genom att du anger returtypen explicit far de som enbart ldser metodhu-
vudet (och inte implementationen) tydligt se vad som returneras.

¢) Cabs00km.

scala> omkrets (12750 / 2) / 80
res@: Double = 500.6913291658733

Losn. uppg. 7. Variabler och tilldelning. Fordndringsbar och ofordnderlig variabel.

a)

Efterrad 1: a: Int 13

Efterrad 2: a: Int 13 b: Int 14

Efterrad 3: a: Int| 13 b: Int| 14 c: Double| 54.0
Efterrad 4: a: Int 13 b: Int 14 c: Double| 54.0
Efterrad 5: a: Int 0 b: Int 14 c: Double| 54.0

Efterrad 6: a: Int| © b: Int| 14 c: Double| 35.0

N o U AW N

L.1. LOSNING EXPRESSIONS 295

b) Oféranderliga variabler deklareras med nyckelordet val. Det gar inte att tilldela
en oforidnderlig variabel ett nytt varde; vid forsok blir det kompileringsfel som ly-
der error: reassignment to val. Kompileringsfel kidnns igen med hjilp av texten
error:, sa som visas nedan:

scala> b = 0
<console>:12: error: reassignment to val

b=20

A

Losn. uppg. 8. Slumptal med math. random().

a) Ur dokumentationen:

/** Returns a Double value with a positive sign,

* greater than or equal to 0.0 and less than 1.0.
*/

def random(): Double

Dokumentationskommentarer, som borjar med /+** och slutar med */, ger oss en
beskrivning av hur funktionen fungerar. Efter dokumentationskommentaren kommer
funktionshuvudet, som hir berattar att funktionen heter random och alltid kommer
att returnera en Double. (Verktyget scaladoc kan med hjilp av dokumentationskom-
mentarerna automatiskt generera webbsajter med speciella dokumentationssidor och
sokfunktioner.)

b)

scala> def roll: Int = (math.random() * 6 + 1).toInt

scala> roll
res@: Int = 4

scala> roll
resl: Int =1

Losn. uppg. 9. Repetition med for, foreach och while.
a)

for i <- 1 to 100 do print(s"$roll, ")

b)
(1 to 100).foreach(i => print(s"$roll, "))

c)

var i = 1

while i <= 100 do { print(s"$roll, "); i =i + 1}
var i =1

while i <= 100 do
print(s"$roll, ")
i+=1

296 KAPITEL L. LOSNINGAR TILL OVNINGARNA
Losn. uppg. 10. Alternativ med if-sats och if-uttryck.
a)

for i <- 1 to 100 do
if roll == 6 then print("GRATTIS! ") else print(": (")

eller

for (i <- 1 to 100) if (roll == 6) print("GRATTIS! ") else print(":(")

b)
var i = 1
var n = 0

while i <= 100 do
if roll == 6 then n=n + 1
i=1+1

println("Antalet sexor: " + n)

c)

def isAdult(age: Int) = age >= 18

Losn. uppg. 11. Sekvens, sats och block.

a) Satserna skapar denna utskrift:

san!hej
san!hej
san!hej
san!hej

scala> def p = { print("hej"); print("san"); println("!")}
scala> p;p;p;p

c)

¢ Klammerparenteser anviands for att gruppera flera satser. Klammerparenteser
beh6vs om man vill definiera en funktion som bestar av mer 4n en sats. Sedan
scala 3 kan man istéllet anvinda indentering for att definera en funktion med
flera rader och satser.

¢ Semikolon sirskiljer flera satser. Semikolon beh6vs om man vill skriva manga
satser pa samma rad.

Losn. uppg. 12. Heltalsdivision.

L.1. LOSNING EXPRESSIONS 297

4 / 42 1~ F 0: Int
42.0 / 2 2~ C 21.0: Double
42 / 4 3 ~ B 10: Int
42 % 4 4 ~ G 2: Int
4 % 42 5 ~ A 4: Int
40 % 4 == 6 ~ D | true : Boolean
42 % 4 == 7 ~ E | false: Boolean

Losn. uppg. 13. Booleska vdarden.

a) true
b) false
c¢) true
d) true
e) false
f) true
g) true
h) true

i) Undantag kastas: java.lang.ArithmeticException: / by zero
j) false

Losn. uppg. 14. Booleska variabler.

2: Ingenting skrivs ut.

4: akta dig!!!

Losn. uppg. 15. Turtle graphics med Kojo.

a) Genom att borja din Kojo-program med sudda s& startar du exekveringen i samma
utgangslége: en tom rityta (eng. canvas) diar paddan pekar uppat, pennan ir nere
och pennans fiarg ar rod. Da blir det lattare att resonera om vad programmet gor
fran borjan till slut, jamfort med om exekveringen beror pa resultatet av tidigare
exekveringar.

b)

sudda

fram; vanster
fram; vanster
fram; vanster
fram; vanster

c)

sudda

fram; vanster
fram; hdger

298

fram;
fram;

fram;
fram;

fram;

vanster
héger

vanster
héger

vanster

KAPITEL L. LOSNINGAR TILL OVNINGARNA

L.1. LOSNING EXPRESSIONS

L.1.2 Extrauppgifter; trdna mer

Losn. uppg. 16. Typ och varde.

1.0 + 18 1 ~ H
(41 + 1).toDouble 2 ~ K
1.042e42 + 1 3 ~ A
12E6.tolLong 4 ~>o 1
32.toChar.toString | 5 ~ K
'"A'.tolInt 6 ~~> B
0.toInt 7 ~> F
'0'.toInt 8 ~> D
'9'.tolnt 9 ~ L
‘At + 'O 10 ~ C
(‘A" + '0').toChar | 11 ~> J
"x1%#" . charAt(0) 12 ~~ G

Losn. uppg. 17. Satser och uttryck.

299

19.0: Double
42.0: Double
1.042E42: Double
12000000: Long

" ": String
65: Int

0: Int

48: Int

57: Int
113: Int
‘q': Char
"x': Char

a) Ett utryck kan evalueras och resulterar da i ett anviandbart varde. En sats gor
nagot (t.ex. skriver ut nagot), men resulterat inte i ndgot anviandbart virde.

b) println()

c)
vardeSaknas innehaller Unit
Skriver ut Unit
Skriver ut " ()"
Skriver ut " ()"

Skriver forst ut hej med det innersta anropet och sen () med det yttre anropet

d) Unit
e) Unit

Losn. uppg. 18. Procedur med parameter.

a)

var highscore = 0

b)

def updateHighscore(points: Int): Unit =

if points > highscore then
highscore = points
println("REKORD!")

else println("GE INTE UPP!")

c)

def updateHighscore(points: Int): String =

if points > highscore then

N o s W N

300 KAPITEL L. LOSNINGAR TILL OVNINGARNA

highscore = points
"REKORD!"
else "GE INTE UPP!"

Losn. uppg. 19. Flyttalsaritmetik.

a)

scala> Double.MinPositiveValue
res0: Double = 4.9E-324

scala> Double.MaxValue + Double.MinPositiveValue == Double.MaxValue
res2: Boolean = true

Losn. uppg. 20. if-sats.

1. Utskrift: falskt
2. Utskrift: sant
3. Inget skrivs ut, funktionen deklareras men kors e;j.

4. Utskrift: 1:krona 2:klave 3:krona 4:krona 5:klave eller liknande beroen-
de pa vilka slumptal math. random() ger.

Losn. uppg. 21. if-uttryck. Notera typen Any pa de sista tva uttrycken.

scala> if gronsak == "tomat" then "gott" else "inte gott"
res0@: String = inte gott

scala> if frukt == "banan" then "gott" else "inte gott"
resl: String = gott

scala> if true then grdonsak else 42
res2: Any = gurka

scala> if false then gronsak else 42
res3: Any = 42

Losn. uppg. 22. Modulo-operatorn % och Booleska virden.

a)

scala> def isEven(n: Int): Boolean = n % 2 ==

scala> isEven(42)
res0: Boolean = true

scala> isEven(43)
resl: Boolean = false

b)

N O U W N

© 00 N O U A W N -

SO, DA A DWW WW W W W W W WNNNDNNDNNDNNDNNDNNDNNMNNDNRPRRPR®RRE®R®RPERH R =B 2
A W N HF O O 0O NO UL WNFH O OOWSNOUU AWNROGGOOOWNOUU B WNRHE OO

L.

1. LOSNING EXPRESSIONS

scala> def isOdd(n: Int): Boolean = !isEven(n)

scala> is0dd(42)
res2: Boolean = false

scala> is0dd(43)
res3: Boolean = true

Losn. uppg. 23. Skillnader mellan var, val, def.

a)

scala> var x
x: Int = 30

scala> x + 1
res6: Int = 31

scala> =x + 1
x: Int 31

scala> x == x + 1
res7: Boolean = false

scala> val y = 20
y: Int = 20

scala>y =y + 1
<console>:12: error: reassignment to val
y=y +1

scala> var z = { println("hej z!"); math.random() }
hej z!
z: Double = 0.3381365875903367

scala> def w { println("hej w!"); math.random() }
w: Double

scala> z
res8: Double 0.3381365875903367

scala> z
res9: Double 0.3381365875903367

scala> z =2z + 1
z: Double = 1.3381365875903368

scala> w
hej w!
resl0: Double 0.06420209879434557

scala> w
hej w!
resll: Double = 0.5777951341051852

301

302 KAPITEL L. LOSNINGAR TILL OVNINGARNA

45 scala> w=w + 1
46 <console>:12: error: value w_= is not a member of object
47 w=w+1

b)

* var namn = uttryck anvinds for att deklarera en foriandringsbar variabel.
Namnet kan med hjalp av en tilldelningssats referera till nya virden.

¢ val namn = uttryck anvinds for att deklarera en oférianderlig variabel som
efter initialisering inte kan foridndras med tilldelningssatser. Vid forsok ges
kompileringsfel.

¢ def namn = uttryck anvands for att deklarera en funktion vars uttryck evalue-
ras varje gang den anropas.

Losn. uppg. 24. Skillnaden mellan if och while.

¢ Rad 3: Har du tur (50% chans) far du vinst en gang.

¢ Rad 4: Har du tur far du manga vinster i rad. Sannolikheten for n vinster i rad
5 (10
ar (g) .

L.1. LOSNING EXPRESSIONS 303
L.1.3 Fordjupningsuppgifter; utmaningar

Losn. uppg. 25. Logik och De Morgans Lagar.
a) poang > 1000

b) poang > 100

¢) poang <= highscore

d) poang <= 0 || poang >= highscore

e) poang >= 0 && poang <= highscore

f) klar

g) lklar

Losn. uppg. 26. Stranginterpolatorn s.
a)

Namnet 'Kim Finkodare' har 12 bokstaver.

println(s"$f har ${f.size} bokstaver.")
println(s"$e har ${e.size} bokstaver.")

Losn. uppg. 27. Tilldelningsoperatorer.

Efter radl: a: Int 40

Efter rad2: a: Int| 40 b: Int 80
Efter rad3: a: Int| 50 b: Int| 80
Efter rad4: a: Int| 30 b: Int| 70
Efter rad5: a: Int| 100 b: Int 70
Efter rad6: a: Int| 100 b: Int| 35

Losn. uppg. 28. Stora tal.

a) BigInt kan anvindas i stéllet for Int vid mycket stora heltal. Det finns forstass
dven Long som har dubbelt omfang jamfort med Int, medan BigInt kan ha godtyckligt
manga siffror (dnda tills minnet tar slut) och kan darmed representera ofantligt stora
tal. BigDecimal kan anvéndas i stéllet for Double vid mycket stora decimaltal.

W 00 N O Ul A W N =

e
= ©

304 KAPITEL L. LOSNINGAR TILL OVNINGARNA

scala> BigInt(2).pow(64)
res0: scala.math.BigInt = 18446744073709551616

¢) Beridkningar gar mycket langsammare och de ar lite krangligare att anvinda.

Losn. uppg. 29. Precedensregler

a) 77: Int
b) 13: Int
¢) -13: Int

Losn. uppg. 30. Dokumentation av paket i Java och Scala.

a) Scala: Pi, Java: PI
b) Man kan soka och filtrera fram alla forekomster av en viss teckenkombination.

¢) Réaknar ut hypotenusan (Pythagoras sats) utan risk for avrundningsproblem i
mellanberikningar.

Losn. uppg. 31. Noggrannhet och undantag i aritmetiska uttryck.

a) -2147483648 vilket motsvarar Int.MinValue.
b) Ett undantag kastas: java.lang.ArithmeticException: / by zero
c) 1.0000000000000001E8 (som forvantat)

d) Avrundas till 1E9 (flyttalsaritmetik med noggrannhetsproblem: ett stort flyttal
plus ett (alltfor) litet flyttal kan ge samma tal. Det lilla talet "forsvinner”).

e) 45.00000000000001 (flyttalsaritmetik med noggrannhetsproblem: enligt "normal”
aritmetik ska det bli exakt 45.)

f) Infinity (som &ven ges av Double.PositiveInfinity och som representerar
den positiva odndligheten).

g) 2147483647 vilket motsvarar Int.MaxValue.

h) NaN vilket betyder "Not a Number”.

i) NaN vilket betyder "Not a Number”.

j) Ett undantag kastas: java.lang.Exception: PANG!!!

Losn. uppg. 32. Modulo-rikning med negativa tal. I Scala har resultatet samma

tecken som dividenden.

scala> 1 % 2
res@: Int =1

scala> -1
resl: Int -1

scala> -1 -2
res2: Int -1

scala> 1% -2
res3: Int =1

o Ul A W N R

U A W N =

L.1. LOSNING EXPRESSIONS 305

Losn. uppg. 33. Bokstavliga identifierare.

a) Variabeln far namnet ‘bokstavlig val’, bakat-apostrofer (eng. backticks) gor att
man kan namnge variabler till annars otillatna namn, t.ex. med mellanrum eller
nyckelord i sig.

b) Backticks i Scala mojliggor alla méjliga tecken i namn. Exempel pa anviandning: I
java finns en metod som heter java.lang.Thread.yield men i Scala ar yield ett nyc-
kelord; for att komma runt det gar det att i Scala skriva java.lang.Thread. yield"

Losn. uppg. 34. java. lang. Integer, hexadecimala litteraler, BigDecimal.
a)

scala> import Integer.{toBinaryString => toBin, toHexString => toHex}

scala> for i <- Seq(33, 42, 64) do println(s"$i \t ${toBin(i)} \t ${toHex(i)}"

33 100001 21
42 101010 2a
64 1000000 40

b) Det hexadecimala heltalet 10c kan anges med litteralen 0x10c i Scala, Java och

méanga andra sprak: !
[
scala> 0x10c

res@: Int = 268

c) 2

scala> val c = 299792458
c: Int = 299792458

scala> BigDecimal(0x10).pow(c)
res68: scala.math.BigDecimal = 2.124892963227906613060986110887672E+360986089

Losn. uppg. 35. Strangformatering.

val str = f"Jattegurkan ar $g%1.3f meter 1ang"

(Om du tycker att $g%1.3f ser kryptiskt ut, s kan du trosta dig med att du nu far
chansen att fora vidare ett anrikt arv fran det urgamla spraket C och den sdgenom-
spunna funktionen printf till kommande generationer av invigda kodmagiker.)

Losn. uppg. 36. Multiplikationsvarning.

a) Den andra multiplikationen flodar 6ver (eng. overflow) grinsen for stérsta maj-
liga vardet av en Int. I den tredje multiplikationen kastas i stéllet ett undantag
java.lang.ArithmeticException: integer overflow

scala> Math.multiplyExact(1l, 2)
res70: Int = 2

scala> Int.MaxValue * 2
res71: Int = -2

Ihttps://en.wikipedia.org/wiki/0x10c
2https://c418.bandcamp.com/album/@xl@c

https://en.wikipedia.org/wiki/0x10c
https://c418.bandcamp.com/album/0x10c

0 N O U B~ W N

306 KAPITEL L. LOSNINGAR TILL OVNINGARNA

scala> Math.multiplyExact(Int.MaxValue, 2)
java.lang.ArithmeticException: integer overflow

at java.lang.Math.multiplyExact(Math.java:867)
. 42 elided

b) Anvinds da man vill vara helt sidker pa att overflow-buggar "sméller” direkt i
stallet for att generera felaktiga resultat vars konsekvenser kanske manifesterar sig
langt senare. Dock dr multiplyExact aningen langsammare dn vanlig multiplikation.

Losn. uppg. 37. Extra operatorer for exakt multiplikation.
a)

scala> Int.MaxValue *! 1
resO0: Int = 2147483647

scala> Int.MaxValue *! 2

java.lang.ArithmeticException: integer overflow
at java.lang.Math.multiplyExact(Math.java:867)
at IntExtra.$times$bang(<console>:16)
. 32 elided

b)

extension (i: I

nt)
def x!(j: Int) =
)
)

Math.multiplyExact(i,j)
Math.addExact(i,j)
Math.subtractExact(i,j)

def +!(j: Int
def -!(j: Int

¢) Det blir 14tt valdigt kryptiskt med namn som bestar av flera specialtecken. Om du
verkligen vill ha sddana operatorer ar det mycket 1ampligt att ocksa erbjuda varianter
i klartext:

extension (i: Int)
def mulExact(j: Int) = Math.multiplyExact(i,j)
def x!(j: Int) = i mulExact j

def addExact(j: Int) = Math.addExact(i,j)
def +!(j: Int) = i addExact j

def subExact(j: Int) = Math.subtractExact(i,j)
def -!(j: Int) = i subExact j

1

1

L.2. LOSNING PROGRAMS 307

L.2 Losning programs

L.2.1 Grunduppgifter

Losn. uppg. 1. Para ihop begrepp med beskrivning.

kompilera 1 ~~ C | maskinkod skapas ur en eller flera killkodsfiler
skript 2 ~~ G | ensam kodfil, huvudprogram behovs ej

objekt 3 ~~ M | samlar variabler och funktioner

@main 4 ~~ K | dar exekveringen av kompilerat program startar
programargument | 5 ~> L | kan 6verforas via parametern args till main
datastruktur 6 ~~ J | manga olika element i en helhet; elementvis atkomst
samling 7 ~~ K | datastruktur med element av samma typ
sekvenssamling 8 ~~ F | datastruktur med element i en viss ordning

Array 9 ~~ D | en forandringsbar, indexerbar sekvenssamling
Vector 10 ~> B | en oférinderlig, indexerbar sekvenssamling

Range 11 ~> N | en samling som representerar ett intervall av heltal
yield 12 ~» A | anvénds i for-uttryck for att skapa ny samling
algoritm 13 ~» H | stegvis beskrivning av en losning pa ett problem
implementation 14 ~~ 1 | en specifik realisering av en algoritm

Losn. uppg. 2. Anvinda terminalen.

a)

> mkdir hello
> cd hello
> pwd

Losn. uppg. 3. Skapa och kora ett Scala-skript.

a)

Summan av de 1000 forsta talen ar: 500500
L

b) Kompileringsfelet blir: ')' expected, but eof found

¢) Filen ska se ut sa har:

val n = args(0).toInt
val summa = (1 to n).sum
println(s"Summan av de $n forsta talen ar: $summa")

Utskriften blir sa héar:

Summan av de 5001 forsta talen ar: 12507501

308 KAPITEL L. LOSNINGAR TILL OVNINGARNA

d) Kortidsfelet blir:

java.lang.ArrayIndexOutOfBoundsException: Index @ out of bounds for length 0

Eftersom arrayen args dr tom om programargument saknas sa finns ej platsen med
index 0.

Losn. uppg. 4. Scala-applikation med @main.

a) Kompilatorn har skapat 5 filer i underkataloger till .scala-build som heter:

'hello$package.class' ‘'hello$package$.class' 'hello$package.tasty'

run.class run.tasty

b) Felmeddelandet far du om du tar bort den sista krullparentesen. eof i felmedde-
landet star for end-of-file. Detta felmeddelande &r vanligt vid oparade parenteser, men
kompilatorn har ofta extra svart att ge bra felmeddelande om en av parenteserna i ett
parentespar saknas och det kan hinda att den pekar ut felaktig rad for positionen dar
det som saknas borde sta.

¢) Syntax Error: Expected a toplevel definition. Utan klammerparenteser
sé ar det indenteringarna som bestdmmer vilka delar av koden som hér samman. Om
du tar bort indenteringen pa den sista raden med utskrift-satsen sa tolkar kompilatorn
detta som att denna ligger utanfor main-funktionen och du far ett felmeddelande
eftersom det inte ar tillatet att ha ensamma satser pa toppniva. (Det gar dock bra att
ha ensamma satser i ett skript med .sc i slutet av namnet pa kodfilen.)

d) Annoteringen @main berittar for kompilatorn att funktionen &r ett huvudprogram
kan utgora en startpunkt for exekveringen.

Under huven skapar kompilatorn ett objekt med samma namn som ditt huvudpro-
gram. I det objektet genererar kompilatorn i sin tur en metod med namnet main som
tar en strang-array som parameter och har returtypen Unit. Ett kompilerat program
maste ha minst ett objekt med exakt en sddan main-metod eftersom exekveringsmil-
jon JVM forutsitter detta och anropar en sddan main-metoden med en striang-array
innehallande eventuella programargument nér exekveringen startar.

Ett alternativ till @main ar att definiera en s.k. primitiv main-metod i ett singel-
objekt. (Detta dr nodviandigt i gamla Scala 2, innan den enklare @main.annoteringen
kom i Scala 3.)

object Hello:
def main(args: Array[String]): Unit =
val message = "Hello world!"
println(message)

Losn. uppg. 5. Skapa och anvinda samlingar.

L.2. LOSNING PROGRAMS 309

val xs = Vector(2) 1 ~~ 1 | ny referens till sekvens av langd 1

val ys = Array.fill(9)(0) | 2 ~~ C | ny referens till forandringsbar sekvens
Vector.fill(9)(' ') 3 ~~ J | ny oféranderlig sekvens med blanktecken
xs(0) 4 ~~ E | forkortad skrivning av apply(0)
xs.apply(0) 5 ~~ F | indexering, ger forsta elementet

XS :+ 0 6 ~~ A | ny samling med en nolla tillagd pa slutet

0 +: xs 7 ~~ H | ny samling med en nolla tillagd i borjan
ys.mkString 8 ~~ K | ny strdng med alla element intill varandra
ys.mkString(",") 9 ~~> G | ny strang med komma mellan elementen
xs.map(_.toString) 10 ~» D | ny samling, elementen omgjorda till strangar
xs.map(_.toInt) 11 ~~» B | ny samling, elementen omgjorda till heltal

Losn. uppg. 6. Jimfor Array och Vector.

a)

Vector | 1 ~> B | oférdnderlig

Array | 2 ~> A | forandringsbar

b)

Vector | 1 ~~> B | varianter med fler/andra element skapas snabbt ur befintlig
Array | 2 ~> A | langsam vid 4ndring av storlek (kopiering av rubbet krivs)
c)

Vector | 1 ~» A | xs == ys idr true om alla element lika

Array | 2 ~~> B | olikt andra Scala-samlingar kollar == ej innehallslikhet

Losn. uppg. 7. Rakna ut summa, min och max i args.

@main def sumMinMax(args: Intx): Unit =
println(s"${args.sum} ${args.min} ${args.max}")

> scala run sum-min-max.scala -- hej

Illegal command line: java.lang.NumberFormatException: For input string: "hej"

Losn. uppg. 8. Algoritm: SWAP.

a) Pseudokoden kan se ut sahir:

Deklarera heltalsvariabel temp.
Kopiera vardet fran x till temp.
Kopiera vardet fran y till x.

Kopiera vardet fran temp till vy.

b)
Du behover deklarera en temporér variabel dir du kan spara undan ett av viardena,
sa det inte skrivs over vid forsta tilldelningen.

310 KAPITEL L. LOSNINGAR TILL OVNINGARNA

val temp = x
X =y
y = temp

Losn. uppg. 9. Indexering och tilldelning i Array med SWAP.

@main def swapFirstLastArg(args: Stringx*): Unit =
val xs = args.toArray
if xs.length > 1 then
val temp = xs(0)
xs(0) = xs(xs.length - 1)
xs(xs.length - 1) = temp
println(xs.mkString(" "))

Losn. uppg. 10. for-uttryck och map-uttryck.

for x <- xs yield x * 2 1 ~> A | Vector(2, 4, 6)
for i <- xs.indices yield i |2 ~> E | Vector(0, 1, 2)
Xs.map(x => x + 1) 3 ~~ D | Vector(2, 3, 4)
for i <- 0 to 1 yield xs(i) |4 ~> B | Vector(1l, 2)
(1 to 3).map(i => 1) 5 ~» C | Vector(l, 2, 3)
(1 until 3).map(i => xs(i)) |6 ~> F | Vector(2, 3)

Losn. uppg. 11. Algoritm: SUMBUG

a) Bugg: Eftersom i inte inkrementeras, fastnar programmet i en odndlig loop. Fix:
Lagg till en sats i slutet av while-blocket som 6kar viardet pa i med 1. Bugg: Eftersom
man bara 6kar summan med 1 varje gang, kommer resultatet att bli summan av n
stycken 1lor, inte de n forsta heltalen. Fix: Andra sa att summan 6kar med i varje
gang, istéllet for 1. For -1, blir resultatet 0. Forklaring: i borjar pa 1 och ar alltsa aldrig
mindre 4n n som ju ar -1. while-blocket genomfors alltsa noll ganger, och efter att sum
far sitt ursprungsvirde foriandras den aldrig.

b) Summan blir 39502716.
Sahar kan en implementation se ut:

@main def sumn(n: Int): Unit =
var sum = 0
var i =1
while i <= n do
sum = sum + 1
i=1i+1
println(sum)

L.2. LOSNING PROGRAMS 311
L.2.2 Extrauppgifter; trdna mer

Losn. uppg. 12. Algoritm: MAXBUG

a) Bugg: i inkrementeras aldrig. Programmet fastnar i en oandlig loop. Fix: Lagg
till en sats som okar i med 1, i slutet av while-blocket.

b) Sa hir kan implementationen se ut:

@main def maxn(args: Stringx): Unit =
var max = Int.MinValue
val n = args.length
var i =0
while i < n do
val x = args(i).toInt
if x > max then
max = X
i+=1
println(max)

¢) Raden dar max initieras dndras till var max = args(0).toInt

d) For att inte fa java.lang.IndexOutOfBoundsException: 0 behovs en kontroll
som sidkerstéller att inget gors om samlingen args &r tom:

@main def maxn(args: Stringx): Unit =
if args.size > 0 then
var max = args(0).tolInt
val n = args.size
var i =0
while i < n do
val x = args(i).toInt
if x > max then

max = X
i+=1
println(max)

else
println("Empty")

Losn. uppg. 13. Algoritm MIN-INDEX.

a) En onddig jaimforelse sker, men resultatet paverkas ej.
b)

def indexO0fMin(xs: Array[Int]): Int =

var minPos = 0
var i =1
while i < xs.size do

if xs(i) < xs(minPos) then

minPos = i

i+=1

if xs.size > 0 then minPos else -1

312 KAPITEL L. LOSNINGAR TILL OVNINGARNA

Losn. uppg. 14. Datastrukturen Range.
a) varde: Range(l1,2,3,4,5,6,7,8,9)
typ: scala.collection.immutable.Range
b) varde: Range(1,2,3,4,5,6,7,8,9,10)
typ: scala.collection.immutable.Range
¢) véarde: Range(0,5,10,15,20,25,30,35,40,45)
typ: scala.collection.immutable.Range
d) varde: 10, typ: Int
e) varde: Range(0,5,10,15,20,25,30,35,40,45,50)
typ: scala.collection.immutable.Range
f) wvarde: 11, typ: Int
g) varde: Range(0,1,2,3,4,5,6,7,8,9)
typ: scala.collection.immutable.Range
h) varde: Range(o,1,2,3,4,5,6,7,8,9)
typ: scala.collection.immutable.Range
i) véarde: Range(0,1,2,3,4,5,6,7,8,9)
typ: scala.collection.immutable.Range
j) véarde: Range(0,1,2,3,4,5,6,7,8,9,10)
typ: scala.collection.immutable.Range.Inclusive
k) véarde: Range(0,1,2,3,4,5,6,7,8,9,10)
typ: scala.collection.immutable.Range.Inclusive
1) wvarde: Range(0,5,10,15,20,25,30,35,40,45)
typ: scala.collection.immutable.Range
m) varde: Range(0,5,10,15,20,25,30,35,40,45,50)
typ: scala.collection.immutable.Range
n) véarde: 11, typ: Int
0) véarde: 500500, typ: Int

O 00 N O Ul A W N

N NN KH 2 B 2B 2 2 B B B 9
N P © © o N O Ul o WN R O

L.2. LOSNING PROGRAMS 313
L.2.3 Fordjupningsuppgifter; utmaningar

Losn. uppg. 15. Sten-Sax-Pdse-spel. En (lattbegriplig?) 16sning som provar alla
kombinationer:

def winner(user: Int, computer: Int): String =

if choices(user) == "Sten" && choices(computer) == "P3se" then "Datorn"
else if choices(user) == "Sten" && choices(computer) == "Sax" then "Du"
else if choices(user) == "Pase" && choices(computer) == "Sten" then "Du"
else if choices(user) == "P&se" && choices(computer) == "Sax" then "Datorn"
else if choices(user) == "Sax" && choices(computer) == "Sten" then "Datorn"
else if choices(user) == "Sax" && choices(computer) == "Pase" then "Du"

else "Ingen"

En klurigare 16sning (och svarbegripligare?) med hjalp av modulo-rakning:

def winner(user: Int, computer: Int): String =
val result = (user - computer + 3) % 3
if user == computer then "Ingen"
else if result == 1 then "Du"
else "Datorn"

Modulordkningen kréaver att elementen i choices ar i forlorar-over-ordning, alltsa
Sten, Pase, Sax. Addition med 3 gors for att undvika negativa tal, som beter sig
annorlunda i modulordkning.

Losn. uppg. 16. Jaimfor exekveringstiden for storleksfordndring mellan Array och
Vector.

a) Med en dator som har en 17-4790K CPU @ 4.00GHz blev det sa hér:

scala> def time(block: => Unit): Double =

| val t = System.nanoTime

| block

| (System.nanoTime - t)/1le6 // ger millisekunder
def time(block: => Unit): Double

scala> val as = Array.fill(le6.toInt)(0)
val as: Array[Int] = Array(0, 0, 6, 6, 0, 0, 0, 6, 0, 0, 0, 0, 0, 0, O,
large output truncated, print value to show all

scala> val vs = Vector.fill(1le6.toInt) (0)
val vs: Vector[Int] = Vector(o, 0, 0, 0, 0,
large output truncated, print value to show all

scala> val ast = (for i <- 1 to 10 yield time(as :+ 0)).sum / 10.0
val ast: Double = 1.8719819999999998

scala> val vst = (for i <- 1 to 10 yield time(vs :+ 0)).sum / 10.0
val vst: Double = 0.006485099999999999

scala> ast / vst
val res3: Double = 288.6589258453995

b) Vector ar tva tiopotenser snabbare i detta exempel. Anledningen &r att varje
storleksforiandring av en Array kriver allokering och elementvis kopiering av en helt

W 00 N O Ul A W N

e e T e e e
o U A W N R O

© 00 N O Ul A W N -

e e e e e e =
© © N o U A~ WNKHO

314 KAPITEL L. LOSNINGAR TILL OVNINGARNA

ny Array medan den oférdnderliga Vector kan ateranvianda hela datastrukturen med
redan allokerade element nér nya element laggs till.

Losn. uppg. 17. Minnesatgdang for Range.

a) Variabeln intervall refererar till objekt som tar upp 12 bytes.

b) Variabeln sekvens refererar till objekt som tar upp ca 4 miljarder bytes.

Losn. uppg. 18. Undersok den genererade byte-koden.

a) Sa har ser funktionen plusxy ut:

public int plusxy(int, int);
descriptor: (II)I
flags: (0x0001) ACC_PUBLIC
Code:
stack=2, locals=3, args_size=3
: iload_1
: iload_2
: iadd
: ireturn
LineNumberTable:
line 2: 0
LocalVariableTable:
Start Length Slot Name Signature
0 4 0 this Lplusxy$package$;
(0] 4 1 X I
0 4 2 y I

Det ar instruktionen iadd som gor sjdlva additionen.

b) Det har tillkommit en parameter till i byte-koden. Instruktionen iadd goérs nu tva
ganger. Instruktionen iadd adderar exakt tva tal i taget.

public int plusxyz(int, int, int);
descriptor: (III)I
flags: (0x0001) ACC_PUBLIC
Code:
stack=2, locals=4, args_size=4
: iload_1
: iload_2
: iadd
: iload_3
: iadd

: ireturn
LineNumberTable:
line 2: 0
LocalVariableTable:

Start Length Slot Name Signature
0 6 0 this Lplusxyz$package$;
0 6 X I
0 6 y I
0 6 z I

¢) Prefixet iiinstruktionsnamnet iadd star for "integer” och anger att heltalsdivi-
sion avses.

L.3. LOSNING FUNCTIONS 315

L.3 LOAsning functions

Losn. uppg. 1. Para ihop begrepp med beskrivning.

funktionshuvud 1 ~~ C | har parameterlista och eventuellt en returtyp
funktionskropp 2 ~~ N | koden som exekveras vid funktionsanrop
parameterlista 3 ~~ A | beskriver namn och typ pa parametrar

block 4 ~~ O | kan ha lokala namn; sista raden ger virdet
namngivna argument | 5 ~~ H | gor att argument kan ges i valfri ordning
defaultargument 6 ~~ L | gor att argument kan utelamnas

vardeanrop 7 ~~ B | argumentet evalueras innan anrop

namnanrop 8 ~~> D | fordrojd evaluering av argument

map 9 ~~ F | applicerar en funktion pa varje element i en samling
akta funktion 10 ~~ 1 | ger alltid samma resultat om samma argument
predikat 11 ~>» G | en funktion som ger ett booleskt virde

slumptalsfro 12 ~> M | ger aterupprepningsbar sekvens av pseudoslumptal
anonym funktion 13 ~» E | funktion utan namn; kallas dven lambda

rekursiv funktion 14 ~~ K | en funktion som anropar sig sjalv

stack trace 15 ~~ J | lista anropskedja vid kortidsfel

Losn. uppg. 2. Definiera och anropa funktioner.

a)

def oka(x: Int = 1): Int = x + 1

b) 5
c)

def minska(x: Int = 1): Int = x - 1

d 1

e)

* Kort, forenklad forklaring: Parametern i funktionshuvudet ir ett lokalt namn
pa indata som kan anvandas i funktionskroppen, medan argumentet ar sjdlva
vardet pa parametern som skickas med vid anrop.

o Ldangre, mer exakt forklaring: En parameter ir en deklaration av en oforian-
derlig variabel i ett funktionshuvud vars namn finns tillgangligt lokalt i funk-
tionskroppen. Vid anrop binds parameternamnet till ett specifikt argument. Ett
argument ar ett uttryck som appliceras pa en funktion vid anrop. Normalt
evalueras argumentet innan anropet sker, men om parametertypen foregas av
=> fordrojs evalueringen av argumentet och sker i stillet varje gang parameter-
namnet forekommer i funktionskroppen.

Losn. uppg. 3. Implementera funktion pad olika sdtt.

a)

316 KAPITEL L. LOSNINGAR TILL OVNINGARNA

]
-~
-~
-~

def sumFirst(n: Int): Int

b)

def sumFirst(n: Int): Int (1 to n).sum

scala> sumFirst(-1)

val res0: Int = 0

c)

def sumFirst(n: Int): Int =
var result = 0
var i =1
while i <= n do
result += i
i+=1
end while
result
end sumFirst

scala> sumFirst(-1)
val resl: Int = 0

Losn. uppg. 4. Textspelet AliensOnEarth.

1
2

1.1_2
t3'573

a) "penguin" dr basta alternativ med sannolikheten 3

b)

options.indices heltalssekvens med alla index i en sekvens

"1X2".toLowercase gor om en strang till sma bokstéver
Random.nextInt(n)

try { } catch { }

slumptal i intervallet @ until n
fangar undantag for att forhindra krasch
striang som kan stricka sig over flera kodrader

s.stripMargin tar bort marginal till och med vertikalstreck

A A A A A
QUHEEQ> W

e.printStackTrace skriver ut information om ett undantag

Losn. uppg. 5. Akta funktioner.

¢ Funktionerna inc, addY och isPalindrome &r dkta. Notera att y-variablen ini-
tialiseras till 0 och kan sedan inte dndras eftersom den dr deklarerad med
nyckelordet val.

Losn. uppg. 6. Applicera funktion pa varje element i en samling. Funktion som
argument.

L.3. LOSNING FUNCTIONS 317

for i <- 1 to 3 yield dka(i) 1 ~» E | Vector(2, 3, 4)

Vector(2, 3, 4).map(i => oka(i)) | 2 ~~ A | xs

xs.map(6ka) 3 ~> B | Vector(4, 5, 6)
xs.map(dka).map(oka) 4 ~> D | Vector(5, 6, 7)
xs.foreach(d6ka) 5 ~» C | ()

Losn. uppg. 7. Anonyma funktioner.

(0 to 2).map(i =>1i + 1) 1 ~> B| (2 to 4).map(i=>1i-1)
(1 to 3).map(_ + 1) 2 ~> D | Vector(2, 3, 4)

(2 to 4).map(math.pow(2, _)) 3 ~> E | Vector(4.0, 8.0, 16.0)
(3 to 5).map(math.pow(_, 2)) 4 ~~ A | Vector(9.0, 16.0, 25.0)
(4 to 6).map(_.toDouble).map(_ / 2) |5 ~> C | Vector(2.0, 2.5, 3.0)

Losn. uppg. 8. Skapa din egen kontrollstruktur med hjdlp av namnanrop.

a)

def u

pprepa(n: Int)(block: => Unit): Unit =

var i = 0
while i < n do
block
i+=1
end while

b)

upprepa(100):
val tarningskast = (math.random() * 6 + 1).toInt
print(s"\$tarningskast ")

¢) Om parametern block inte vore deklarerad med namnanrop s hade argumentet
evaluerats en gang innan anropet och sedan hade det blivit samma resultat vid varje
iteration. Med namnanrop kan block innehalla kod som t.ex. uppdaterar en variabel

som v

i vill ska ske vid varje iteration. Namn-anrop liknar att koden for argumentet

“klistras in” pa varje plats i funktionskroppen dir parameternamnet férekommer.

Losn. uppg. 9. Lar dig ldsa en stack trace.En stack trace innehaller f6ljande informa-

tion:
1.
2.

ett felmeddelande

namn pa alla funktioner som anropats vid tiden for kortidsfelet, enligt alla
aktiveringsposter som ligger pa anropsstacken

. aktuell namnrymnd for varje funktionen, alltsa paket/singelobjekt

namnet pa kodfilen for varje funktion

. radnummer i varje funktion

den funktion som kommer forst dr den funktion dér felet intraffade

318 KAPITEL L. LOSNINGAR TILL OVNINGARNA

7. eventuellt kan felet intraffa i standardbibliotekets funktioner och d& dr din egen
funktion tidigare i anropskedjan

Exempel pa en stack trace:

> cat fel.scala
@main def run =

println("Hej Scala!" + Vector().head)
> scala run fel.scala
Compiling project (Scala 3.3.0, JVM)
Compiled project (Scala 3.3.0, JVM)

Exception in thread "main" java.util.NoSuchElementException: empty.head
at scala.collection.immutable.Vector.head(Vector.scala:279)
at fel$package$.run(fel.scala:2)
at run.main(fel.scala:1)

L.3.1 Extrauppgifter; trdna mer

Losn. uppg. 10. Funktion med flera parametrar.
a)

def sum(x: Int, y: Int): Int = X + vy
def diff(x: Int, y: Int): Int = x - vy

b) Det blir -100 efter som 0 - 100 == -100

c¢) Det blir 15 eftersom det néstlade anropet motsvarar
diff (100, 42 + 43) == (100 - 85)

d) Det blir 185 eftersom det néstlade anropet motsvarar

sum(42 + 43, 100 - 0) == (85 + 100)

e) Det blir 256 eftersom Byte.MaxValue == 127 och codeByte.MinValue == -128
och sum(127 + 128, 1) == 256

Losn. uppg. 11. Medelvdrde.

def avg(x: Int, y: Int): Double = (x +vy) / 2.0

Losn. uppg. 12. Funktionsanrop med namngivna argument.
a)

Namn: Triangelsson, Stina
Namn: Oval, Viktor

b)
¢ Anroparen kan sjilv vilja ordning.
¢ Koden blir lattare att begripa om parameternamnen ar sjialvbeskrivande.

¢ Hjalper till att forhindra buggar som beror pa forvixlade parametrar.

L.3. LOSNING FUNCTIONS 319

Losn. uppg. 13. Funktion som dkta virde.

a)

fleraAnrop(1l, halsa) 1 ~ D f2("Hej!")
fleraAnrop(3, halsa) 2 ~> B fleraAnrop(3, f1)
fleraAnrop(2, f1) 3 ~ A f2("Hej!\nHej!")
fleraAnrop(1l, f3) 4 ~ C f3()

b) floch f3 4r av typen () => Unit och f2 av typen String => Unit.
¢) Nej. f1och f2 ar av tva olika funktionstyper.
d) Ja, det gar fint.

e) Nej. Nar funktionen inte har nagon parameter behéver kompilatorn mer informa-
tion for att vara sdker pa att det ar ett funktionsviarde du vill ha.

f) Ja! Nu med typinformationen pa plats 4r kompilatorn séker pa vad du vill gora.

Losn. uppg. 14. Bortkastade resultatvdrden och returtypen Unit.

a) Procedurer returnerar tomma viardet och println dr en procedur. Niar tomma
vardet skrivs ut visas ().

b) Procedurer returnerar tomma virdet. Om du anger returtyp Unit explicit, har du
battre chans att kompilatorn kan ge varning da utridkningar kommer att kastas bort.
En varning avbryter inte exekveringen, utan ar ett satt for kompilatorn att ge dig tips
om saker som kan behéva fixas till i din kod.

¢) I Scala ar variabeldeklaration, precis som en tilldelningssats, och inte ett uttryck
och saknar virde.

d) Koden blir lattare att 14sa och kompilatorn far béttre maojlighet att hjilpa till med
varningar om resultatvarden riskerar att bli bortkastade.

Losn. uppg. 15. Namnanrop.
Blocket ar ett uttryck som har vérdet (): Unit. Evalueringen av blocket sker dér
namnet b forekommer i procedurkroppen, vilket 4r tva ganger.

scala> gorDettaTvaGanger { println("goddag") }

goddag
goddag

320 KAPITEL L. LOSNINGAR TILL OVNINGARNA
L.3.2 Férdjupningsuppgifter; utmaningar

Losn. uppg. 16. Fordnderlighet av parametrar.

a) Nej, i Scala ar parametern oféranderlig och det blir kompileringsfel om man
forsoker tilldela den ett nytt varde i funktionskroppen.

b) c¢) Jadet gar utméirkt i bade Java och Python att dndra vardet pa parametern i

funktionskroppen med tilldelning, men koden riskerar att bli férvirrande.
https://stackoverflow.com/questions/2970984
Losn. uppg. 17. Virdeanrop och namnanrop.

a) Vid varje anrop av snark sker en utskrift och en fordrojnig innan 42 returneras.
42 + 42 == 84 vilket blir virdet av uttrycket.

scala> snark + snark
Yl snark snark val resl: Int = 84

b) Uttrycket snark evalueras direkt vid anropet och parametern x binds till vardet
42 och i funktionskroppen berdknas 42 + 42. Utskriften sker bara en gang.

il callByValue(snark)
yMll snark val res2: Int = 84

c¢) Evalueringen av uttrycket snark fordrgjs tills varje forekomst av parametern x i
funktionskroppen. Utskriften sker tva ganger.

il callByName(snark)
Yl snark snark val res3: Int = 84

d) Evalueringen av uttrycket zzz fordréjs tills varje forekomst av parametern x i
funktionskroppen. Utskriften sker en gang eftersom val-variabler tilldelas sitt viarde
en gang for alla vid den fordréjda initialiseringen.

il callByName(zzz)
Yl snark val res4: Int = 84

Losn. uppg. 18. Skapa egen kontrollstruktur for iteration med loop-variabel.

a)

def repeat(n: Int)(p: Int => Unit): Unit =
var i = 0
while i < n do
p(i)
i+=1
end while
end repeat

b)

repeat(100){ i =>
print("i ")
println(math.random())
}

https://stackoverflow.com/questions/2970984

U A W N =

L.3. LOSNING FUNCTIONS 321

Du kan anvinda farre klammerparenteser med hjélp av kolon:

repeat(100): i =>
print("i ")
println(math.random())

Losn. uppg. 19. Uppdelad parameterlista och stegade funktioner.
a)

scala> def add2(a: Int)(b: Int) =a + b
def add2(a: Int)(b: Int): Int

scala> add2(1) (1

)
val res0: Int = 2

b)
e Rad 3:

doremi doremi doremi

e Rad 5:

lalalalalalala

Losn. uppg. 20. Rekursion.

a) countdown skriver ut x och gor ett rekursivt anrop med x - 1 som argument,
men bara om basvillkoret x > 0 &ar uppfyllt. Resultatet blir en 4ndlig repetition.
finalCountdown anropar sig sjalv rekursivt men saknar ett basvillkor som kan av-
bryta rekursionen, vilket genererar en odndlig repetition. Vid -128 blir det overflow
eftersom bitarna inte ricker till for stérre negativa tal och riakningen borjar om pa
127. (Om minskar fordrgjningen till Thread.sleep(1) blir det ganska snabbt stack
overflow)

b) Eftersom vi hade 1/x efter det rekursiva anropet i foregaende deluppgift, sa kom
vi aldrig till denna (potentiellt 6desdigra) berdkning, utan lade bara aktiveringsposter
pa hog pa stacken vid varje anrop. Om vi placerar 1/x fore det rekursiva anropet, sa
nar vi detta uttryck direkt och det kastas ett undantag p.g.a. division med noll.

¢) Den sista raden leder till manga fler rekursiva anrop, sa som basvillkoret och det
rekursiva anropet ar konstruerade. Lagg gidrna in en println-sats fore det rekursiva
anropet och undersok i detalj vad som sker.

Losn. uppg. 21. Undersok svansrekursion genom att kasta undantag. countdown ar
svansrekursiv eftersom det rekursiva anropet star sist och kan da optimeras till en
while-loop av kompilatorn. Det gar fint att kora dnda till det exploderar, Zven med
10000 anrop, och i felmeddelandet finns det endast ett anrop till countdown.

countdown? &r inte svansrekursiv eftersom den har ett uttryck efter det rekur-
siva anropet. I felutskriften syns alla rekursiva anrop till countdown2 innan basvill-
koret intraffade. Vid countdown2(10000) uppfylls inte basvillkoret innan det blir
StackOverflowError.

322 KAPITEL L. LOSNINGAR TILL OVNINGARNA

Losn. uppg. 22. @tailrec-annotering. Forsta gangen countNoTailrec(100000L) an-
ropas blir det StackOverflowError. Med annoteringen @tailrec far vi ett kompile-
ringsfel eftersom kompilatorn inte kan optimera en icke svansrekursiv funktion. Om
funktionen skrivs om kan kompilatorn optimera funktionen sa att rekursionen byts ut
mot en while-loop och vi kan kora sa ldnge vi orkar utan att stacken flédar 6ver. Och
himla snabbt gar det!!

N o o AW N

L.4. LOSNING 0BJECTS 323

L4 Losning objects

L.4.1 Grunduppgifter; férberedelse infér laboration

Losn. uppg. 1. Para ihop begrepp med beskrivning.

modul 1 ~~ C | kodenhet med abstraktioner som kan ateranviandas
singelobjekt 2 ~~ B | modul som kan ha tillstand; finns i en enda upplaga

paket 3 ~~ D | modul som skapar namnrymd; maskinkod far egen katalog
import 4 ~~> F | gor namn tillgdngligt lokalt utan att hela sokvigen behovs
export 5 ~~ P | gor namn synligt utat som medlem i detta objekt

lat initialisering | 6 ~~ G | allokering sker forst nar namnet refereras

medlem 7 ~~ E | tillhor ett objekt; nds med punktnotation om synlig
attribut 8 ~~ H | variabel som utgor (del av) ett objekts tillstand

metod 9 ~~> A | funktion som dr medlem av ett objekt

privat 10 ~» K | modifierar synligheten av en objektmedlem

overlagring 11 ~» J | metoder med samma namn men olika parametertyper
namnskuggning | 12 ~> L | lokalt namn déljer samma namn i omgivande block
namnrymd 13 ~> 1 | omgivning dar dr alla namn 4r unika

enhetlig access 14 ~> M | andring mellan def och val paverkar ej anvandning
punktnotation 15 ~> O | anvéands for att komma at icke-privata delar

typalias 16 ~> N | alternativt namn pa typ som ofta 6kar lasbarheten

Losn. uppg. 2. Nastlade singelobjekt, import, synlighet och punktnotation.

a)

object Underjorden:
var x = 0
var y = 1

object Mullvaden:
var x = Underjorden.x + 10
var y = Underjorden.y + 9

object Masken:
private var x = Mullvaden.x
var y = Mullvaden.y + 190
def arMullvadsmat: Boolean = x == Mullvaden.x && y == Mullvaden.y

scala> :load Underjorden.scala
scala> import Underjorden.x
scala> Masken.arMullvadsmat

val res0: Boolean = false
scala> Masken.y = Mullvaden.y
scala> Masken.arMullvadsmat
val resl: Boolean = true

O 00 N O U A W N =

o e e
W N = O

324 KAPITEL L. LOSNINGAR TILL OVNINGARNA

scala> import Mullvaden.x*
scala> import Masken.x
scala> x = -1

scala> Mullvaden.x

val res2: Int = -1

scala> Masken.x
1 |Masken.x

|AAAAAAAA

|variable x cannot be accessed as a member of Underjorden.Masken.type from mq

scala> Underjorden.x
val res3: Int =0

Forklaring: Nar importen av Maskens alla synliga medlemmar sker kommer de som
ej ar privata att 6verskugga andra medlemmar med samma namn. Det dr Mullvadens
x-variabel som tilldelas - 1 eftersom Maskens x ar privat och ej syns utat. Underjordens
medlemmar blir 6verskuggade av Maskens y och Mullvadens x men man kan komma
at dem genom att anvinda punktnotation.

Losn. uppg. 3. Export.

a) Likhet: Bade import och export styr synlighet. Skillnad: import styr lokal syn-
lighet inuti ett objekt medan export styr synlighet utanfor ett objekt.

b) Man kan med export pa ett smidigt siatt plocka ihop medlemmar fran andra
objekt och gora dem synliga fran mitt eget objekt.

object MittObjekt:
export java.awt.Color.x // alla farger blir medlemmar i MittObjekt
export math.{atan2, Pi} // atan2 och Pi blir medlemmar i MittObjekt

scala> object MittObjekt:
| export java.awt.Color.x*
| export math.{atan2, Pi}

scala> MittObjekt.RED
val resO: java.awt.Color = java.awt.Color[r=255,9=0,b=0]

scala> MittObjekt.atan2(3,3) / MittObjekt.Pi
val resl: Double = 0.25

Losn. uppg. 4. Tupler.

a) djup har typen Double.

b) hemlis har typen (String, (Int, Int, Double)).
c)

object Underjorden3D:
private val hemlis = ("uppgangen till &éverjorden", (3, 4, 0.0))

object Mullvaden:
var pos = (5, 3, math.random() * 10 + 1)

o Ul A W N =

o U A~ W N =

O 00 N O U A W N =

e e e e e
o U A W N R O

L.4. LOSNING 0BJECTS 325

def djup: Double = pos._3

object Masken:
private var pos = (0, 0, 10.0)

def arMullvadsmat: Boolean = pos == Mullvaden.pos

def &rRaktUnderUppgangen: Boolean =
pos._1 == hemlis. 2.1 && pos._2 == hemlis._ 2. 2

d) Noll-tupeln.

Losn. uppg. 5. Lat initialisering.

a) "nu!" skrivs bara ut férsta gangen z anvinds.

scala> z
nu!
val resl9: Array[Int] Array(0, 0, 0, 0, 0, 0, 0, 0, 0, 0)

scala> z
val res20: Array[Int] Array(0, 0, 0, 0, 06, 0, 0, 0, 0, 0)

b) Allokeringen av arrayen sker forsta gangen z anvands (och inte vid deklarationen).

scala> lazy val z = { println("nu!"); Array.fill(1e9.toInt)(0)}
val z: Array[Int] <lazy>

scala> z
nu!
java.lang.OutOfMemoryError: Java heap space

¢) Utskriften av "nu!" sker forst nér singelobjektet zzz anvéands for forsta gangen.
Vi borde ldgga initialiseringen av b fore a eller gora a till en lazy val.

d)

scala> import test.x*
import test.x

scala> zzz.a // forst nar vi anvander zzz skrivs "nu!"
nu! // detta skedde xintex nar vi importerade test
val res0: Int 42

scala> buggig. // a blir 0 eftersom b inte ar initialiserad
val resl: Int = 0

scala> funkar. // med lazy val unviker vi problemet
val res2: Int = 42

scala> zzz.a // andra gangen &r init redan gjort och ingen "nu!"
val res3: Int 42

o U B W N

326 KAPITEL L. LOSNINGAR TILL OVNINGARNA

e) lazy val a = uttryck innebar att initialiseringsuttrycket evalueras en gang,
men evalueringen skjuts pa framtiden tills det eventuellt hdnder att namnet a anvénds,
medan def b = uttryck innebéar att funktionskroppens uttryck evalueras varje
gang namnet b (eventuellt) anvinds.

Losn. uppg. 6. Extensionsmetoder.

a)

scala> extension (i: Int) def inc

scala> extension (i: Int) def dec

c)

extension (i: Int)
def inc = math.incrementExact (i)
def dec = math.decrementExact(i)

d) Med math.incrementExact och math.decrementExact ges exception om vi gar
over gransen:

scala> math.incrementExact(Int.MaxValue)
java.lang.ArithmeticException: integer overflow
at java.base/java.lang.Math.incrementExact(Math.java:1023)
at scala.math.incrementExact (package.scala:418)
. 34 elided

Losn. uppg. 7. Extensionsmetoder.

a) Enligt dokumentationen har PixelWindow-klassen dessa parametrar:
e width : Int anger fonstrets bredd, defaultargument 800
* height: Int anger fonstrets hojd, defaultargument 640
e title : String anger fonstrets titel, defaultargument "PixelWindow"
* background: Color anger bakgrundsfirg, defaultargument java.awt.Color.black
e foreground: Color anger bakgrundsfirg, defaultargument java.awt.Color.green
Man kan skapa nya fonsterinstanser till exempel sa har:

val wl
val w2

new introprog.PixelWindow()
new introprog.PixelWindow(100, 200, "Mitt fina nya foénster")

b) Du kan &dven ladda ner senaste introprog sa hir:

curl -o introprog_3-1.4.0.jar -sLO https://fileadmin.cs.lth.se/introprog.jar

> scala repl --jar introprog_3-1.4.0.jar
= new introprog.PixelWindow(400,300,"HEJ")
scala> w.line (160, 100, 200, 100)
scala> w.line(200, 100, 200, 200)
scala> w.line(200, 200, 100, 200)
scala> w.line(100, 200, 100, 100)

scala> val w

L.4. LOSNING 0BJECTS 327

d)

package hello

object Main:
val w = new introprog.PixelWindow (400, 300, "HEJ")

var color = java.awt.Color.red

def square(p: (Int, Int))(side: Int): Unit =
if side > 0 then
// side == 1 ger en kvadrat som ar en enda pixel
val d = side - 1

w.line(p._1, p._2, p._1+d, p._2, color)
w.line(p._1 + d, p._2, p..1+d, p._.2 + d, color)
w.line(p._.1 +d, p._.2 +d, p._1, p._.2 + d, color)
w.line(p._1, p._2 +d, p._1, p._2, color)

def main(args: Array[String]): Unit =
println("Rita kvadrat:")
square(300,100) (50)

> scala run hello-window.scala --dep se.lth.cs::introprog:1.4.0 --main-class hg

g)

//> using scala 3.3
//> using dep se.lth.cs::introprog:1.4.0

Losn. uppg. 8. Farg.

a)

object Color:
import java.awt.{Color as JColor}

val mole = new JColor(51, 51, 0)
val soil = new JColor(153, 102, 51)
val tunnel = new JColor(204, 153, 102)

b)
package hello

object Color:
import java.awt.{Color as JColor}

328 KAPITEL L. LOSNINGAR TILL OVNINGARNA

val mole = new JColor(51, 51, 0)
val soil = new JColor(153, 102, 51)
val tunnel = new JColor(204, 153, 102)

object Main:
val w = new introprog.PixelWindow(width = 400, height = 300, title = "HEJ")

type Pt = (Int, Int)
var color = java.awt.Color.red

def rak(p: Pt)(d: Int)

w.line(p._1, p._2, p._.1 +d - 1, p._2, color)

def fyll(p: Pt)(s: Int) = for i <- O until s do rak((p._1, p._2 + 1))(s)

def square(p: (Int, Int))(side: Int): Unit =
if (side > 0) then

val d = side - 1 // side == 1 ska ge en kvadrat som ar en pixel stor
w.line(p._1, p._2, p._.1+d, p._2, color)
w.line(p._1 + d, p._2, p.-.1+d, p..2 +d, color)
w.line(p._1 +d, p._.2 +d, p._1, p._-2 + d, color)
w.line(p._1, p..2+d, p._1, p._2, color)

def main(args: Array[String]): Unit =

import Color.=*

color = soil

fyll(100,100) (75)

color = tunnel

fyll(100,100) (50)

color = mole

fyll(150,150) (25)

¢) Vid anropen av rak och fyll utnyttjas att man kan skippa tupelparenteserna om
ett tupelargument 4r ensamt i sin parameterlista.

Losn. uppg. 9. Handelser.

a) Den oforanderliga heltalsvariabeln KeyPressediintroprog.PixelWindow.Event
har vardet 1.

b) Kodraden nedan tar hand om knappnedtryckningsfallet:

case PixelWindow.Event.KeyPressed => println(s"lastKey == \$w.lastKey")

¢) Nar pil-upp-knappen pa tangentbordet trycks ned far w. lastKey strangvardet
"Up". Foljande skrivs ut av testprogrammet nar pil-upp-tangenten trycks ned och

sldpps upp:

lastEventType: => KeyPressed
lastKey == Up

lastEventType: => KeyReleased
lastKey == Up

d) En loop som later anvindaren rita linjer med musen:

L.4. LOSNING 0BJECTS 329

var start = (0,0)
while w.lastEventType != PixelWindow.Event.WindowClosed do
w.awaitEvent(10) // wait for next event for max 10 milliseconds
w.lastEventType match {
case PixelWindow.Event.MousePressed =>
start = w.lastMousePos

case PixelWindow.Event.MouseReleased =>
w.line(start._1, start._2, w.lastMousePos._1, w.lastMousePos._2)

case PixelWindow.Event.WindowClosed =>
println("Goodbye!");
case _ =>

}
PixelWindow.delay(100) // wait for 0.1 seconds

330 KAPITEL L. LOSNINGAR TILL OVNINGARNA
L.4.2 Extrauppgifter; trdna mer

Losn. uppg. 10. Funktioner dr objekt med en apply-metod.Ja det gar bra att skriva:

scala> plus(42, 43)

Kompilatorn fyller i .apply at dig.

Losn. uppg. 11. Skapa moduler med hjdlp av singelobjekt.

a)

scala> "paronisglass".split('i')
val res0: Array[String] = Array(paron, sglass)

scala> Test()

--- FREKVENSANALYS AV:

Fem myror &r fler a&n fyra elefanter. At gurka.
bokstaver: 36

ord : 9

meningar : 2

--- FREKVENSANALYS AV:

Galaxer i mina braxer. Tomat ar gott. Paronsplitt.
bokstaver: 40

ord : 8

meningar : 3

--- FREKVENSANALYS AV:

Fem myror &r fler &n fyra elefanter. At gurka. Galaxer i mina braxer. Toma
ar gott. Paronsplitt.

bokstaver: 76

ord 1 17

meningar : 5

¢) Objektet statistics har ett forandringsbart tillstand i variabeln history. Till-
standet dndras vid anrop av printFreq.

d)

object count:
extension (s: String)
def nbrOflLetters:Int = s.count(_.islLetter)
def nbrOfWords:Int = split.words(s).size
def nbrOfSentences: Int = split.sentences(s).size

Losn. uppg. 12. Tupler som parametrar.
def distxy(x1l: Int, yl: Int, x2: Int, y2: Int): Double =
hypot(x1l - x2, yl - y2)

def distpt(pl: (Int, Int), p2: (Int, Int)): Double =
hypot(pl._1 - p2._1, pl..2 - p2._2)

O 00 N O Ul A W N =

e el
w N = o

L.4. LOSNING 0BJECTS 331

def distp(pl: (Int, Int))(p2: (Int, Int)): Double =
hypot(pl._1 - p2._1, pl._2 - p2._2)

Losn. uppg. 13. Tupler som funktionsresultat.

def statistics(xs: Vector[Double]): (Int, Double, (Double, Double)) =
(xs.size, Xxs.sum / xs.size, (XSs.min, XS.max))

scala> statistics(Vector(0, 2.5, 5))

val resl0: (Int, Double, (Double, Double)) = (3,2.5,(0.0,5.0))

Losn. uppg. 14. Skapa moduler med hjdlp av paket.

a)
[
> code paket.scala

> scala paket.scala

> find . -type d # linuxkommando som listar alla subkataloger
.scala-build/project _103be31561-3d0d386400/classes
.scala-build/project_103be31561-3d0d386400/classes/main
.scala-build/project_103be31561-3d0d386400/classes/main/gurka
.scala-build/project_103be31561-3d0d386400/classes/main/gurka/tomat
.scala-build/project_103be31561-3d0d386400/classes/main/gurka/tomat/banan
.scala-build/project_103be31561-3d0d386400/classes/main/gurka/tomat/banan/p2
.scala-build/project_103be31561-3d0d386400/classes/main/gurka/tomat/banan/p2
.scala-build/project_103be31561-3d0d386400/classes/main/gurka/tomat/banan/pl
.scala-build/project_103be31561-3d0d386400/classes/main/gurka/tomat/banan/pl
.scala-build/project_103be31561-3d0d386400/classes/main/gurka/tomat/banan/pl

-/
-/
-/
-/
-/
-/
-/
-/
-/
-/

> scala run paket.scala --main-class gurka.tomat.banan.Main

Hej paket pl.pll!
Hej paket pl.pl2!
Hej paket p2.p21!

¢) Ja,iScala 3 far paket ha variabler och funktioner pa toppniva.
https://stackoverflow.com/a/56566166

L.4.3 Fordjupningsuppgifter; utmaningar

Losn. uppg. 15. Hur klara sig utan do while i Scala 3?
a) Det blir kompileringsfel:

> scala repl --scala 3
Welcome to Scala 3.1.3 (17.0.3, Java OpenJDK 64-Bit Server VM).
Type in expressions for evaluation. Or try :help.

scala> var i = 0
var i: Int =

scala> do i += 1 while (i < 10)
-- [E103] Syntax Error:

https://stackoverflow.com/a/56566166

332 KAPITEL L. LOSNINGAR TILL OVNINGARNA

1 |do i += 1 while (i < 10)

|/\A

|Illegal start of statement

> scala repl --scala 3
Welcome to Scala 3.1.3 (17.0.3, Java OpenJDK 64-Bit Server VM).
Type in expressions for evaluation. Or try :help.

scala> var i = 0
var i: Int = 0

scala> while
[i+=1
[i< 10
| do ()

scala> i
val res0: Int

Losn. uppg. 16. Postfixa operatorer for inkrementering och dekrementering.

extension (i: Int)
def ++ =i +1
def -- =1 -1

Losn. uppg. 17. Anvidnda fardigt paket: Fargudljare.
a) Den valda fargen returneras efter att anviandaren tryckt

scala> introprog.Dialog.selectColor()

val resl: java.awt.Color = java.awt.Color[r=0,9=204,b=0]

b) Default-fargen rod returneras efter att anvindaren tryckt
c¢) Fargvaljaren atergar till default-fargen.

Losn. uppg. 18. Anvdnda fardigt paket: anvindardialoger.

a)

scala> introprog.Dialog.show("Game over!")

b) Funktionen input returnerar en string som blir tomma striangen "" om anvéinda-

ren klickar

scala> val name = introprog.Dialog.input("Vad heter du?")

name: String = Oddput Superkodare

¢) Funktionen select returnerar en stréing med texten pa knappen som anvindaren
tryckte pa.

scala> introprog.Dialog.select("Vad valjer du?",Vector("Sten","Sax", "Pase"))

val res4: String = Pase

U A W N =

L.4. LOSNING 0BJECTS 333

Losn. uppg. 19. Skapa din egen jar-fil.

a)
jar -create -verbose -file <namn pa skapad jar-fil> <namn pa det som ska
packas>

b)

package hello

object Main:
def main(args: Array[String]): Unit = println("Hello package!")

[
scala compile hello.scala --destination .

c)

S ——————————————————————————————
> jar -c -v -f my.jar hello

> s

> scala repl --jar my.jar

scala> hello.Main.main(Array())

Hello package!

> scala run --jar my.jar --main-class hello.Main

Losn. uppg. 20. Hur stor dar JDK8? Med JDKS8-plattformen kommer 4240 fiardiga
klasser, som &r organiserade i 217 olika paket. Se Stackoverflow:
http://stackoverflow.com/questions/3112882

http://stackoverflow.com/questions/3112882

334 KAPITEL L. LOSNINGAR TILL OVNINGARNA

L5 Losning classes

L.5.1 Grunduppgifter; férberedelse infér laboration

Losn. uppg. 1. Para ihop begrepp med beskrivning.

klass 1 ~~ H | en mall for att skapa flera instanser av samma typ
instans 2 ~~ 1 | upplaga av ett objekt med eget tillstandsminne
konstruktor 3 ~~ M | skapar instans, allokerar plats for tillstAindsminne
klassparameter 4 ~~ K | binds till argument som ges vid konstruktion
referenslikhet 5 ~~ B | instanser anses olika dven om tillstdnden &r lika
innehallslikhet 6 ~~ J | instanser anses lika om de har samma tillstand
case-klass 7 ~~ F | slipper skriva new; automatisk innehallslikhet
getter 8 ~~ L | indirekt atkomst av attributvirde

setter 9 ~~ A | indirekt tilldelning av attributvirde
kompanjonsobjekt | 10 ~» D | ser privata medlemmar i klass med samma namn
fabriksmetod 11 ~> E | hjilpfunktion for indirekt konstruktion

null 12 ~> G | ett viarde som ej refererar till nagon instans

new 13 ~> C | nyckelord vid direkt instansiering av klass

Losn. uppg. 2. Klass och instans.

a)

Singelpunkt.x 1 ~ B|1
Punkt.x 2 ~» G | value is not a member of object
val p = new Singelpunkt 3 ~» C | Not found: type
val pl = new Punkt 4 ~> D | pl: Punkt = Punkt@27ala53c
val p2 = Punkt() 5 ~> F | p2: Punkt = Punkt@5lab04bd
{ pl.x =1; p2.x } 6 ~~ E |3
(new Punkt).y 7 ~ H |2
8 ~ A

{ val p: Punkt = null; p.x } java.lang.NullPointerException

b)

L.5. LOSNING CLASSES

335

fel typ forklaring
value is not a member of object kompileringsfel det finns ingen instans med
namnet Punkt.
Felmeddelandet syftar pa att
det i klassens autogenererade
konstruktor-ombud saknas en
variabel med namnet X.
Not found: type kompileringsfel det finns ingen klass som heter
Singelpunkt
NullPointerException kortidsfel det gar inte att referera attri-
but i en instans som inte finns
Losn. uppg. 3. Klassparametrar.
a)
val pl = Point(1, 2) 1 ~> C | pl: Point = Point@30ef773e
val p2 = Point() 2 ~> A | missing argument for parameter
val p2 = Point(3, 4) 3 ~~> E | p2: Point = Point@218cf600
p2.x - pl.x 4 ~~ B |2
Point(0, 1).y 5 ~ F |1
Point(0, 1, 2) 6 ~> D | too many arguments for constructor
b)
fel typ forklaring
missing argument for parameter kompileringsfel du maste ge argument vid kon-

too many arguments for constructor

kompileringsfel

struktion av klassen Point

antalet argument stiammer ej
overens med antalet klasspara-
metrar

Losn. uppg. 4. Ofordnderlig klass med defaultargument.

a)

336 KAPITEL L. LOSNINGAR TILL OVNINGARNA

val pl = Point3D() 1 ~» C | pl: Point3D = Point3D@2eb37eee
val p2 = Point3D(y = 1) 2 ~> F | p2: Point3D = Point3D@65a9%e8d7
Point3D(z = 2).z 3 ~> E | value cannot be accessed

p2.y = 0 4 ~> B | Reassignment to val

p2.y == 5 ~» A | false

pl.x == Point3D().x 6 ~> D | true

b) Problemet ar att s4 som klassen Point3D 4r deklarerad gar det inte att avldsa
z-koordinaten efter att en instans konstruerats. Det vore biattre om dven z-attributet
ar val.

Losn. uppg. 5. Case-klass, this, likhet, toString och kompanjonsobjekt.

a)

val pl = Pt(1, 2) 1 ~ E|Pt(1,2)
val p2 = Pt(y = 3) 2 ~» C | Pt(0,3)
val p3 = MutablePt(5, 6) 3 ~> A | MPt(5,6)
val p4 = Mutable() 4 ~> D | Not found
p2.moved(dx = 1) == Pt(1, 3) 5 ~» F | true
p3.move(dy = 1) == MutablePt(5, 7) | 6 ~> B | false

b) Kompilatorn hirleder MutablePt eftersom det ar typen pa sjalvreferensen this.

scala> :type new MutablePt().move()
MutablePt

¢) Instansiering med universella apply-metoder (eng. universal apply methods) ar
godis som gor koden enklare att ldsa och skriva. Detta dr mojligt tack vare att det vid
kompilering automatiskt skapas ett konstruktor-ombud (eng. constructor proxy) som
instansierar objektet med nyckelordet new. Ett konstruktor-ombud ar ett kompanjons-
objekt med tillh6rande apply-metod.

Ett fall da new uttryckligen maste anvindas &r vid implementering av egen apply-
metod i ett kompanjonsobjekt. Om new inte anvinds inuti apply-metoden, kommer
samma metod att anropas rekursivt istillet for att en ny instans skapas. Se féljande
exempel:

class Point3D(val x: Int, val y: Int, val z: Int)

object Point3D:
var secretNumber = 42
def apply(x: Int, y: Int, z: Int): Point3D =
if secretNumber == 42 then
Point3D(x, y, z) // Koden kommer fastna i en evig loop.

else new Point3D(x, y, z) // Funkar eftersom 'new' anvands.

d) En metod som avliser (delar av) ett objekts (privata) tillstdnd utan att dndra det
kallas for en getter.

L.5. LOSNING CLASSES 337

Losn. uppg. 6. Implementera delar av klasserna Pos, KeyControl, Mole och BlockWindow
som behovs under laborationen blockbattlel.Denna uppgift dr laborationsférberedel-
se. Utvardera dina lésningar genom egna tester i REPL.

a) Det gar inte att anropa Pos.moved(0,1). Anledningen till detta ar att moved
inte existerar i kompanjonsobjektet Pos, ddrav felmeddelandet "value moved is not a
member of object Pos”. For att anropa en metod definierad inuti en klass maste man
gora anropet via en (referens till en) instans av klassen.

L.5.2 Extrauppgifter; trdna mer

Losn. uppg. 7. Instansiering med new och vdrdet null.

a) Rad 3 och 7 ger bada felmeddelandet java.lang.NullPointerException, pa
grund av forsok att referera medlemmar med hjalp av en null-referens, som alltsa
inte pekar pa nagot objekt.

rad2: g Gurka
rad4d: g
radé: ¢

b)

Losn. uppg. 8. Skapa en punktklass som kan hantera poldra koordinater och en klass
som representerar en polygon m.h.a. dessa punkter.

a)

package graphics

case class Point(x: Double, y: Double):
val r: Double = math.hypot(x, y)
val theta: Double = math.atan2(y, x)
def +(p: Point): Point = Point(x + p.x, y + p.y)

object Point:
def polar(r: Double, theta: Double): Point =
Point(r = math.cos(theta), r x math.sin(theta))

b)

package graphics

case class Polygon(points: Vector[Point]):
val nbrOfCorners: Int = points.length

object Polygon:
def regular(nbrOfCorners: Int, radius: Double, midPoint: Point): Polygon =
val points = new Array[Point](nbrOfCorners)
for i <- 0 until nbrOfCorners do

A W N P

338 KAPITEL L. LOSNINGAR TILL OVNINGARNA

val theta =i *x (2 * math.Pi) / nbrOfCorners
points(i) = Point.polar(radius, theta) + midPoint
end for

Polygon(points.toVector)

¢) En perfekt cirkel gar inte att skapa, men det gar att komma tillrackligt néra for
att gora det omojligt att se hornen. Testa till exempel med 50 horn likt nedan.

scala> import graphics.x*
scala> val circle = Polygon.regular(50,70,Point(-25,-25))

scala> val window = PolygonWindow()
scala> window.draw(circle)

Aven en oregelbunden polygon gar att skapa. Anvind da konstruktorn till Polygon
direkt. Till exempel likt nedan.

scala> val irregular =
Polygon(Vector(Point(1,8), Point(33,14), Point(99,87), Point(42,56)))
scala> window.draw(irregular)

Losn. uppg. 9. Klasser, instanser och skrdp.

a) Vi skapar tva rymdvarelser, alien och predator, med vardera tva ben och tva
armar, samt vardera tva huvuden (dar det ena ar skalligt och det andra har har). Efter
det ar varken alien eller predator skallig eftersom bada har ett huvud med héar. Sen
later man referensen till predators huvud med har referera till aliens huvud utan
har. Nu ar predator helt skallig och delar huvud med alien.

Arm

. Rymdvarelse
alien Y arTiIWamter

Arm

-

G
en

Huvud ‘ArTiiinster

harkar[false | Huvud
= W
Arm

arillvanster| true |

edat Rymdvarelse
predator

Arm

arTi Il\n.l'anste'

I arIlII'Jansler

b) Eftersom det inte ldngre finns nagon referens som pekar pa det objektet kommer
skrapsamlaren att ta hand om det och det kommer forr eller senare skrivas éver av

© 00 N O Ul A W N =

N N NN NNNNR B2 B 2 B 2 2 B 93 2
N o U A WN B O© O 0 NOoOU A WN RO

L.5. LOSNING CLASSES 339
nagot annat néar platsen i minnet behovs. Objekt som inte har nagon referens till sig

gar inte att komma at.

Losn. uppg. 10. Case-klass. Ofordanderlig kvadrat.

a)

case class Square(val x: Int = 0, val y: Int = 0, val side: Int = 1):
val area: Int = side x side

def moved(dx: Int, dy: Int): Square = Square(x + dx, y + dy, side)
def isEqualSizeAs(that: Square): Boolean = this.side == that.side

def scale(factor: Double): Square =
Square(x, y, (side x factor).round.toInt)

object Square:
val unit: Square = Square()

b)

scala> val (sl, s2) = (Square(), Square(1l, 10, 1))
val sl: Square = Square(0,0,1)
val s2: Square = Square(1,10,1)

scala> val s3 = sl moved (1,-5)
val s3: Square = Square(l,-5,1)

scala> sl isEqualSizeAs s3 // lika storlek
val res0: Boolean = true

scala> s2 isEqualSizeAs sl // lika storlek
val resl: Boolean = true

scala> sl isEqualSizeAs Square.unit // sl har sidan 1
val res2: Boolean = true

scala> s2.scale(math.Pi) isEqualSizeAs s2 // olika storlek
val res3: Boolean = false

scala> s2.scale(math.Pi) == s2.scale(math.Pi) // lika innehdll
val res4: Boolean = true

scala> s2.scale(math.Pi) eq s2.scale(math.Pi) // olika objekt
val res5: Boolean = false

scala> Square.unit eq Square.unit // samma objekt
val res6: Boolean = true

N o B W N

340 KAPITEL L. LOSNINGAR TILL OVNINGARNA
L.5.3 Fordjupningsuppgifter; utmaningar

Losn. uppg. 11. Innehdllslikhet mellan olika typer.

scala> 42 == "Fyrtiotva"
1 |42 == "Fyrtiotva"

IAAAAAAAAAAAAAAAAA

|Values of types Int and String cannot be compared with == or !=

scala> Gurka(50) == Bil("Sedan")
val res0: Boolean = false

Det andra uttrycket ar problematiskt eftersom det alltid kommer resultera i false,
da klasserna Gurka och Bil dr tva ojamférbara typer som inte bor jamforas med
avseende pa innehallslikhet. Detta forsamrar typsédkerheten vilket 6kar risken for
svarupptickta buggar déar fel typer jamfors.

Likhetsjamforelser som sker mellan primitiva typer typkollas av kompilatorn och
kan darfor ge kompileringsfel om tva olika typer, sasom Int och String, jamfors med
varandra. Detta giller dock i regel inte egendefinierade typer, vilket alltsd innebar att
en likhetsjamforelse mellan olika egendefinierade typer alltid resulterar i false.

Det ar emellertid mdjligt att fa samma typkoll for egendefinierade typer som for
primitiva typer genom att importera scala.language.strictEquality.

import scala.language.strictEquality
class Gurka(val vikt: Int)

class Bil(val typ: String)

scala> Gurka(50) == Bil("Sedan")
1 |Gurka(50) == Bil("Sedan")

|AAAAAAAAAAAAAAAAAAAAAAAAA

|Values of types Gurka and Bil cannot be compared with == or !=

W 00 N O U A W N =

o e
N = ®

Losn. uppg. 12. Attributrepresentation. Privat konstruktor. Fabriksmetod.
a) Det blir kompileringsfel eftersom konstruktorn ar privat.

scala> class Point private (val x: Int, val y: Int)
| object Point:
| def apply(x: Int = 0, y: Int = 0): Point = new Point(x, y)
| val origo = apply()
|
// defined class Point
// defined object Point

scala> new Point (0, 0)
1 |new Point (0, 0)

I AAAAA

|constructor Point cannot be accessed as a member of Point from module class

b)

¢ Genom att ha en privat konstruktor och bara géra indirekt instansiering via
fabriksmetod &r latt andra attributrepresentation i framtiden utan att befintlig
kod behover édndras.

© 00 N O U A W N -

W W W NNNNNNRNNNNRRIRRRBRB R 2 B B
N R @ © ® N0 U & WN P ©WwNO U &b WN R o

L.5. LOSNING CLASSES 341

* Accessreglerna for kompanjonsobjekt dr sadana att kompanjoner ser varandras
privata delar.

c)

class Point private (private val p: (Int, Int)):
def x: Int = p._1
def y: Int = p._2

object Point:
def apply(x: Int = 0, y: Int = 0): Point = new Point(x, y)
val origo = apply()

Losn. uppg. 13. Synlighet av klassparametrar och konstruktor, private[this].

a) Gurka5 ar trasig. Eftersom vikten i Gurkab ar privat for instansen och inte klassen,
kan en instans inte accessa en annan instans vikt.

11 | def kompisVikt = kompis.vikt

| AAAAAAAAAANA

|value vikt cannot be accessed as a member of (Gurka5.this.kompis : Gurka5)

scala> new Gurkal(42).vikt
1 |new Gurkal(42).vikt

|AAAAAAAAAAAAAAAAAAA

|value vikt cannot be accessed as a member of Gurkal from module class

scala> new Gurka2(42).vikt
val res0: Int = 42

scala> new Gurka3(42).vikt
1 |new Gurka3(42).vikt

|AAAAAAAAAAAAAAAAAAA

|value vikt cannot be accessed as a member of Gurka3 from module class

scala> val ingenGurka: Gurka4 = null
val ingenGurka: Gurka4 = null

scala> new Gurka4(42, ingenGurka).kompisVikt
java.lang.NullPointerException: Cannot invoke "rs$line$1$Gurka4.vikt()" bec...
at rs$line$1$Gurkad.kompisVikt(rs$lines$1:8)
. 38 elided

scala> new Gurka4(42, new Gurka4(84, null)).kompisVikt
val res2: Int = 84

scala> new Gurka6(42)
1 |new Gurka6(42)

| AAAAAA

| constructor Gurka6 cannot be accessed as a member of Gurka6 from module...

scala> new Gurka7(-42)
1 |new Gurka7(-42)

| AAAAAA

342 KAPITEL L. LOSNINGAR TILL OVNINGARNA

| constructor Gurka7 cannot be accessed as a member of Gurka7 from module...

scala> Gurka7(-42)
java.lang.IllegalArgumentException: requirement failed: negativ vikt: -42

scala> val g = Gurka7(42)
val g: Gurka7 = Gurka7@51fdlc7c

scala> g.vikt
val res4: Int

scala> g.vikt

scala> g.vikt
val res5: Int

Losn. uppg. 14. Egendefinierad setter kombinerat med privat konstruktor.

a)
Rad 1:

1 java.lang.IllegalArgumentException: requirement failed: negativ vikt: -42

Gurka8.apply kraver att vikt >= 0 annars kastar require ett undantag.
Rad 5:

1 java.lang.IllegalArgumentException: requirement failed: negativ vikt: -1

Settern vikt_= kraver att vikt >= 0 annars kastar require ett undantag.
Rad 7:

1 java.lang.IllegalArgumentException: requirement failed: negativ vikt: -958

Eftersom 42 - 1000 &r mindre 4n noll kastar require ett undantag.

b) Man kan sitta egna mer specifika krav pa vad som far goras med virdena sa man
har storre koll pa att inget ovintat hénder.

Losn. uppg. 15. Objekt med fordnderligt tillstand (eng. mutable state).

a)

class Frog private (initX: Int = 0, initY: Int = 0):
private var _x: Int = initX
private var _y: Int = initY
private var _distanceJumped: Double = 0

def x: Int
def y: Int

_X
-y

def jump(dx: Int, dy: Int): Unit =
_X += dx
_y += dy
_distanceJumped += math.hypot(dx, dy)

L.5. LOSNING CLASSES 343

def randomJump: Unit =
def rnd = util.Random.nextInt(10) + 1
jump(rnd, rnd)

def distanceToStart: Double = math.hypot(x,y)
def distanceJumped: Double = _distanceJumped
def distanceTo(f: Frog): Double = math.hypot(x - f.x, y - f.y)

object Frog:
def spawn(): Frog = Frog()

b) Exempel pa testprogram:

object FrogTest:
def test(): Unit =
val fl = Frog.spawn()
assert(fl.x == 0 & fl.y == 0, "Test of spawn, reqt 1 & 4 failed.")

fl.jump(4, 3)
assert(fl.x == 4 && fl.y == 3, "Test of jump, reqt 1 & 4 failed.")

fl.jump(4, 3)
assert(fl.distanceJumped == 10, "Test of jump, reqt 2 failed.")

fl.jump(-4, -3)
assert(fl.distanceToStart == 5, "Test of jump, reqt 3 failed.")

for x <- 1 to 10000 do
val f2 = Frog.spawn()
2. randomJump
assert(f2.x > 0 & f2.x <= 10 && f2.y > 0 & f2.y <= 10,
"Test of randomJump, reqt 5 failed.")

println("Test Ok!")

¢) En metod som &r en indirekt avldsning av attributviarden kallas getter.
d)

class Frog private (initX: Int = 0, initY: Int = 0):
private var _x: Int = initX
private var _y: Int = initY
private var _distanceJumped: Double = 0

def jump(dx: Int, dy: Int): Unit =
_X += dx
_y += dy
_distanceJumped += math.hypot(dx, dy)

def x: Int = _x
def x_=(newX: Int): Unit = // Setter for x
_distanceJumped += math.abs(x - newX)

344 KAPITEL L. LOSNINGAR TILL OVNINGARNA

_X = newX

def y: Int = _y

def y_=(newY: Int): Unit = // Setter for y
_distanceJumped += math.abs(y - newY)
_y = newY

def randomJump: Unit =
def rnd = util.Random.nextInt(10) + 1
jump(rnd, rnd)

def distanceToStart: Double = math.hypot(x,y)
def distanceJumped: Double = _distanceJumped
def distanceTo(f: Frog): Double = math.hypot(x - f.x, y - f.y)

object Frog:
def spawn(): Frog = Frog()

e)

object FrogSimulation:
def isAnyCollision(frogs: Vector[Frog]): Boolean =
var found = false
frogs.indices.foreach(i => // generate all pairs (i,])
for j <- i + 1 until frogs.size do
if !found then
found = frogs(i).distanceTo(frogs(j)) <= 0.5

)
found

def jumpUntilCrash(n: Int = 100, initDist: Int = 8): (Int, Double) =

val frogs = Vector.fill(n)(Frog.spawn())

(0 until n).foreach(i => frogs(i).x = i * initDist)

var count = 0

while 'isAnyCollision(frogs) do
frogs(util.Random.nextInt(n)).randomJump
count += 1

(count, frogs.map(_.distanceJumped).sum)

def run(nbrOfCrashTests: Int = 10) =
for i <- 1 to nbrOfCrashTests do
val (n, dist) = jumpUntilCrash()
println(s"\nAntalet looprundor innan grodkrock: $n")
println(s"Totalt avstand hoppat av alla grodor: $dist")

Losn. uppg. 16. Objekt med fordnderligt tillstand (eng. mutable state).

class Square private (val initX: Int, val initY: Int, val initSide: Int):
private var nMoves = 0

L.5. LOSNING CLASSES 345

private var sumCost = 0.0

private var _x = initX
private var _y = initY

private var _side = initSide

private def addCost(): Unit =
sumCost += math.hypot(x - initX, y - initY) x side

def x: Int = _x
def y: Int = _y
def side = _side
def scale(factor: Double): Unit = _side = (_side x factor).round.toInt

def move(dx: Int, dy: Int): Unit
_X += dx; _y += dy
nMoves += 1
addCost ()

def moveTo(x: Int, y: Int): Unit
X =X; _y =Yy
nMoves += 1
addCost ()

def cost: Double = sumCost
def pay: Double = {val temp = sumCost; sumCost = 0; temp}

override def toString: String =
s"Square[($x, $y), side: $side, #moves: $nMoves times, cost: $sumCost]"

object Square:
private var created = Vector[Square]()

def apply(x: Int, y: Int, side: Int): Square =
require(side >= 0, s"side must be positive: $side")
val sq = (new Square(x, y, side))
created :+= sq
sq

def apply(): Square = apply(0, 0, 1)
def totalNumberOfMoves: Int = created.map(_.nMoves).sum

def totalCost: Double = created.map(_.cost).sum

346 KAPITEL L. LOSNINGAR TILL OVNINGARNA

L.6 Losning patterns

L.6.1 Grunduppgifter; forberedelse infér laboration

Losn. uppg. 1. Matcha pa konstanta vdarden.

a) Scalas match-uttryck jamfor stegvis viardet med varje case for att sedan returnera
ett varde tillhérande motsvarande case.

b)

scala.MatchError

Exekveringsfel, uppstar av en viss input under kérningen.

Losn. uppg. 2. Gard i case-grenar.

Garden som inforts vid case 'g' slumpar fram ett tal mellan 0 och 1 och om talet
inte &r storre 4n 0.5 sa blir det ingen matchning med case 'g' och programmet testar
vidare tills default-caset.

Gardens krav maste uppfyllas for att det ska matcha som vanligt.

Losn. uppg. 3. Monstermatcha pd attributen i case-klasser.

G100true. Vid byte av plats: Gtrue100.

match testar om kompanjonsobjektet Gurka dr av typen Gurka med tva parameter-
varden. De angivna parametrarna tilldelas namn, vikt far namnet v och arRutten
namnet rutten och skrivs sedan ut. Byts namnen dessa ges skrivs de ut i den omvénda
ordningen.

Losn. uppg. 4. Matcha pd case-objekt och nyttan med sealed.
a)

Cannot extend sealed trait Farg in a different source file

Felmeddelandet fas av att REPL:en behandlar varje inmatning individuellt och tillater
darfor inte att subtypen Spader Arver fran (eng. extends) supertypen Farg eftersom
denna var forseglad (eng. sealed). Mer om detta senare i kursen...

b) -

c¢) Forusatt att import Kortlek._ har skrivits...

def parafarg(f: Farg): Farg = f match
case Spader => Klover
case Hjarter => Ruter
case Ruter => Hjarter
case Klover => Spader

<console>:17: warning: match may not be exhaustive.
It would fail on the following input: Ruter

Varningen kommer redan vid kompilering.

e)

scala.MatchError: Ruter (of class Ruter)

at .parafarg(<console>:17)

L.6. LOSNING PATTERNS 347

Detta ar ett kortidsfel.

f) Om en klass dr sealed innebéar det att om ett element ska matchas och &r en
subtyp av denna klass sa ger Scala varning redan vid kompilering om det finns en risk
for ett MatchError, alltsa om match-uttrycket inte 4r uttommande och det finns fall
som inte téacks av ett case.

En forseglad supertyp innebar att programmeraren redan vid kompileringstid far en
varning om ett fall inte tacks och i sant fall vilket av undertyperna, liksom annan
hjalp av kompilatorn. Detta kraver dock att alla subtyperna delar samma fil som den
forseglade klassen.

Losn. uppg. 5. Monstermatcha enumeration.a)

def parafarg(f: Farg): Farg = f match
case Farg.Spader => Farg.Kldéver
case Farg.Hjarter => Farg.Ruter
case Farg.Ruter => Farg.Hjarter
case Farg.Kléver => Farg.Spader

Likt uppgift 4c sa kan dven hir en import-sats skrivas for att na medlemmarna i Farg
utan punktnotation. Det dr dock inte alltid fordelaktigt att importera medlemmar
till den globala namnrymden, da det kan forekomma namnkrockar. Anta ett exempel
dar vi jobbar pa ett program med grafiskt anvindargrinssnitt dar vi har en fiarg Red
definerad. Anta ocksa att vi nu till vart program vill importera ytterligare en réd farg
for kuloérerna hjarter och ruter, denna ocksd namngiven Red. I detta scenario hade det
uppstatt en namnkrock da Red redan ar definerad s& importeringen hade ej kunnat
ske.

b) Vid moénstermatchning sa fungerar sealed trait ihop med case-objekt i prakti-
ken likadant som att anvidnda sig av enum. Vi sag att i deluppgift 4d sa varnade REPL
redan vid kompilering att denna matchning inte var uttommande (eng. exhaustive).
Detta giller dven vid anvindning av enum.

Losn. uppg. 6. Betydelsen av sma och stora begynnelsebokstdver vid matchning.

a) Bade str och vadsomhelst matchar med inputen, oavsett vad denna ar pa grund
av att de har en liten begynnelsebokstav.

strhar dock en gard att stridngen maste borja med g vilket gor sa endast val g = "gurka"
matchar med denna. val x = "urka" plockas dock upp av vadsomhelst som dr utan
gard.

b)

<console>:16: warning: patterns after a variable pattern cannot match (SLS 8.1

.1)

och

<console>:17: warning: unreachable code due to variable patter 'tomat' on line

16

Trots att en klass tomat existerar sa tolkar Scalas match den som en case-gren som
fangar allt pa grund av en liten begynnelsebokstav. Detta gor sa alla objekt som inte
ar av typen Gurka kommer ge utskriften tomat och att sista caset inte kan nas.

c)

348

KAPITEL L. LOSNINGAR TILL OVNINGARNA

case "tomat® => println("tomat")

Losn. uppg. 7. Matcha pd innehdll i en Vector.

jeh
jed

42

For varje element i xss gors en matching som resulterar i en striang. Vad som hénder i
varje gren forklaras nedan.

1.

Forsta match-grenen aktiveras aldrig eftersom xss ej innehaller nagon tom
vektor.

. Andra grenen passar med Vector("hej") och variablen a binds till "hej".

Tredje grenen matchar Vector ("pd", "dej") dar forsta virdet binds inte till
nagon variabel eftersom understreck finns pad motsvarande plats, medan andra
vardet binds till b.

. Fjarde grenen matchar en sekvens med tre virden dar mittenvardet ar "x".

Den sista grenen aktiveras inte i detta exempel men hade matchat allt som inte
fangas av tidigare grenar.

Losn. uppg. 8. Anvdnda Option och matcha pd virden som kanske saknas.

a)

10.
11.

12.

. var kanske blir en Option som haller Int men ir utan nagot virde, kallas da

None.

. Eftersom var kanske ar utan varde ar storleken av den 0.

var kanske tilldelas vardet 42 som forvaras i en Some som visar att viarde finns.

. Eftersom var kanske nu innehéller ett virde ar storleken 1.

Eftersom var kanske innehaller ett viarde &r den inte tom.

. Eftersom var kanske innehaller ett viarde 4r den definierad.

def 6kaOmFinns matchar en Option[Int] med dess olika fall.

Finns ett varde, alltsa opt: Option[Int] &r en Some, sa returneras en Some
med ursprungliga vardet plus 1.

Finns inget virde, alltsa opt: Option[Int] &r en None, sa returneras en None.

def 6kaOmFinns appliceras pa kanske och returnerar en Some med virdet hos
kanske plus 1, alltsa 43.

def Oka tar emot virdet av en Int och returnerar virdet av denna plus 1.

L.6. LOSNING PATTERNS 349

13.

b)

map applicerar def ¢ka till det enda elementen i kanske, 42. Denna funktion
returnerar en Some med virdet 43 som tilldelas merKanske.

. val meningen blir en Some med vardet 42.

val ejMeningen blir en Option[Int] utan nagot virde, en None.

map(_ + 1) appliceras pa meningen och okar det existerande viardet med 1 till
43.

. map(_ + 1) appliceras pa ejMening men eftersom inget virde existerar fortsét-

ter denna vara None.

. map(_ + 1) appliceras d4nnu en gang pa ejMening men denna gang inkluderas

metoden orElse. Om ett viarde inte existerar hos en Option, alltsa ar av typen
None, sa utfors koden i orElse-metoden som i detta fall skriver ut saknas for
vardet som saknas.

. Samma anrop fran foregdende rad utférs denna gang pa meningen och eftersom

ett varde finns utfors endast forsta biten som okar detta viarde med 1.

Denna metod kan anvéandas i stéllet for match-versionen i féoregaende exempel i och
med dennas simplare form. En Option innehaller ju antingen ett varde eller inte sa
ett langre match-uttryck ar inte nédvandigt.

c)

. En vektor xs skapas med var femte tal fran 42 till 82.
. En tom Int-vektor e skapas.

. headOption tar ut forsta viardet av vektorn xs och returnerar den sparad i en

Option, Some(42).

Forsta viardet i vektorn xs sparas i en Option och hdmtas sedan av get-metoden,
42,

Som 1 féregdende rad men denna gang anvéinds getOrElse som om den Option
som returneras saknar ett virde, alltsa 4r av typen None, returnerar 0 istillet.
Eftersom xs har minst ett virde sa dr den Option som returneras inte None och
ger samma varde som i foregaende, 42.

Som foregaende rad fast istédllet for att returnera 0 om véarde saknas sa returne-
ras en Option[Int] med O som véirde.

headOption forsoker ta ut férsta viardet av vektorn e men eftersom denna saknar
varden returneras en None.

java.util.NoSuchElementException: None.get

Liksom foregaende rad returnerar headOption pa den tomma vektorn e en None.
Nar get-metoden forsoker hamta ett varde fran en None som saknar virde ger
detta upphov till ett kortidsfel.

350

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

d)

KAPITEL L. LOSNINGAR TILL OVNINGARNA

. Liksom i foregdende returneras None av headOption men eftersom getOrElse-
metoden anvinds pa denna None returneras 0 istillet.

Liksom foregaende anvidnds getOrElse-metoden pa den None som returneras.
Denna gang returneras dock en Option[Int] som haller vardet O.

En vektor innehallandes elementen xs-vektorn och 3 e-vektorer skapas.

map anvinder metoden lastOption pa varje delvektor fran vektorn pa forega-
ende rad. Detta sammanstiller de sista elementen fran varje delvektor i en ny
vektor. Eftersom vektor e dr tom returneras None som element fran denna.

Samma sker som i foregaende rad men flatten-metoden appliceras pa slutgilti-
ga vektorn som rensar vektorn pa None och lamnar endast faktiska varden.

lift-metoden himtar det eventuella viardet pa plats 01 xs och returnerar den i
en Option som blir Some (42).

lift-metoden forsoker hdmta elementet pa plats 1000 i xs, eftersom detta inte
existerar returneras None.

Samma sker som i foregdende fast applicerat pa vektorn e. Sedan appliceras
getOrElse(0) som, eftersom lift-metoden returnerar None, i sin tur returnerar
0.

find-metoden anropas pa xs-vektorn. Den letar upp forsta talet 6ver 50 och
returnerar detta virde i en Option[Int], alltsa Some(52).

find-metoden anropas pa xs-vektorn. Den letar upp forsta vardet under 42 men
eftersom inget virde existerar under 42 i xs returneras None istéllet.

find-metoden anropas pa e-vektorn och skriver ut HITTAT! om ett element
under 42 hittas. Eftersom e-vektorn &ar tom returneras None vilket foreach inte
riaknar som element och dirav inte utférs pa.

Anvindning av -1 som returvirde vid fel eller avsaknad pa virde kan ge upphov

till kortidsfel som dr svara att upptacka. null kan i sin tur orsaka kraschar om det
skulle bli fel under kérningen. Option har inte samma problem som dessa, anvinds
ett getOrElse-uttryck eller dylikt sa kraschar inte heller programmet.

Dessutom behéver inte en funktion som returnerar en Option samma dokumentation
av returvirdena. Istéllet for att skriva kommentarer till koden pa vilka varden som

kan

returneras och vad dessa betyder sa syns det direkt i koden.

Slutgiltligen &ar Option mer typsdkert dn null. Nir du returnerar en Option sa
specificeras typen av det virde som den kommer innehalla, om den innehaller nagot,
vilket underlattar att forsta och begriansar vad den kan returnera.

Losn. uppg. 9. Kasta undantag.

a)
1
2
3

. Ett Exception kastas med felmeddelandet PANG!.
. Flera olika typer av Exception visas.

. En typ av Exception, IllegalArgumentException, kastas med felmeddelandet
fel fel fel.

L.6. LOSNING PATTERNS 351

4. Ett undantag med felmeddelandet stormvind! kastas och fangas av catch-
uttrycket. Ett match-uttryck undersoker undantaget och skriver ut meddelandet,
samt returnerar -1.

b) Exempelvis:

OutOfMemoryError, om programmet far slut pd minne.
IndexOut0fBoundsException, om en vektorposition som &r stérre &n vad som finns
hos vektorn forsoker nas.

NullPointerException, om en metod eller dylikt forséker anvindas hos ett objekt
som inte finns och dirav ar en nullreferens.

¢) om bade try-grenen och catch-grenen har samma typ, héar Int, sa hirleder kom-
pilatorn samma typ for hela uttrycket. Skulle catch-grenen returnera ett varde av
en helt annan typ istéllet, t.ex. String, sa blir den mest precisa typen som kompila-
torn kan hérleda for hela uttrycket Matchable, som &ar en direkt subtyp till den mest
generella typen Any.

Losn. uppg. 10. Fanga undantag med scala.util.Try.

a)
1. def pang skapas som kastar ett Exception med felmeddelandet PANG!.
2. Scalas verktyg Try, Success och Failure importeras.
3. def pang anropas i Try som fangar undantaget och kapslar in den i en Failure.

4. Metoden recover matchar undantaget i Failure fran féoregaende rad med ett
case och gor om foredetta Failure till Success vid matchning, liknande catch.

5. Strangen tyst kors i foregaende test men eftersom inget undantag kastas blir
den inkapslad i en Success och recover behover inte géra nagot. Den tar endast
hand om undantag.

6. def kanskePang skapas som har lika stor chans att returnera stringen tyst
sasom anropa def pang.

7. def kanskeOk skapas som testar def kanskePang med Try.

8. En vektor xs fylls med resultaten, Success och Failure, fran 100 kérningar av
kanskeOk.

9. Elementet pa plats 13 i vektor xs matchas med nagot av 2 case. Om det 4r en
Success skrivs ;) ut, om en Failure skrivs :(plus felmeddelandet ut.

10. -
11. -

12. Metoden isSuccess testar om elementet pa plats 13 i xs 4r en Success och
returnerar true om sa ar fallet.

13. Metoden isFailure testar om elementet pa plats 13 i xs &r en Failure och
returnerar true om sa ar fallet.

14. Metoden count rdknar med hjilp av isFailure hur manga av elementen i xs
som &r Failure och returnerar detta tal.

352

15.

16.
17.
18.

19.

20.

21.

22.

23.

24.

25.

26.

b)

KAPITEL L. LOSNINGAR TILL OVNINGARNA

Metoden find letar upp med hjélp av isFailure ett element i xs som &r Failure
och returnerar denna i en Option.

badOpt tilldelas den forsta Failure som hittas i xs.
goodOpt tilldelas den forsta Success som hittas i xs.

Resultatet badOpt skrivs ut, Option[scala.util.Try[String]l] =
Some(Failure(java.lang.Exception: PANG!))

Metoden get hamtar fran badOpt den Failure som férvaras i en Option.

Metoden get anropas dnnu en gang pa resultatet fran foregdende rad, alltsa en
Failure, som himtar undantaget fran denna och som da i sin tur kastas.

Metoden getOrElse anropas pa den Failure som finns i badOpt. Eftersom detta
ar en Exception utfors orElse-biten istillet for att undantaget forsoker hamtas.
Da returneras striangen bomben desarmerad!.

Metoden getOrElse anropas pa den Success som finns i goodOpt. Eftersom
detta &4r en Success med en normal strang sparad i sig returneras denna striang,
tyst.

Metoden fran féregaende anvinds denna gang pa alla element i xs dér resultatet
skrivs ut for varje.

Metoden toOption appliceras pa alla Success och Failure i xs. De med ett
exception, alltsa Failure, blir en None medan de med virden i Success ger en
Some med striangen tyst i sig.

Metoden flatten appliceras pa vektorn fylld med Option fran foregaende rad
for att ta bort alla None-element.

Metoden size anvinds pa slutgiltiga listan fran féregadende rad for att rdkna
ut hur manga Some som resultatet innehaller. Den har alltsa berdknat antalet
element i xs som var av typen Success med hjalp av Option-typen.

pang har returtypen Nothing, en specialtyp inom Scala som inte &ar kopplad till

Any, och som inte gar att returnera.

c)

Typen Nothing dr en subtyp av varenda typ i Scalas hierarki. Detta innebar

att den dven dr en subtyp av String vilket implicerar att String inkluderar bade
strangar och Nothing och darav blir returtypen.

L.6.2 Fordjupningsuppgifter; utmaningar

Losn. uppg. 11. Anvdinda matchning eller dynamisk bindning?

a)

package vegopoly

trait Gronsak:
def vikt: Int
def arRutten: Boolean
def arAtbar: Boolean

L.6. LOSNING PATTERNS

case class Gurka(vikt: Int, arRutten: Boolean) extends Gronsak:
val arAtbar: Boolean = (!&rRutten && vikt > 100)

case class Tomat(vikt: Int, arRutten: Boolean) extends Gronsak:
val arAtbar: Boolean = (!&rRutten && vikt > 50)

object Main:
def slumpvikt: Int = (math.random()+*500 + 100).toInt

def slumprutten: Boolean = math.random() > 0.8

def slumpgurka: Gurka = Gurka(slumpvikt, slumprutten)

def slumptomat: Tomat = Tomat(slumpvikt, slumprutten)

def slumpgrénsak: Grdonsak =
if math.random() > 0.2 then slumpgurka else slumptomat

def main(args: Array[String]): Unit =
val skord = Vector.fill(args(0).toInt) (slumpgrdnsak)
val &tvéarda = skérd.filter(_.arAtbar)
println("Antal skdérdade gronsaker: " + skord.size)
println("Antal atvarda grdonsaker: " + atvarda.size)

b) Foljande case class laggs till:

case class Broccoli(vikt: Int, arRutten: Boolean) extends Gronsak:

val arAtbar: Boolean = (!&rRutten && vikt > 80)

Darefter laggs foljande till i object Main innan def slumpgrdnsak:

def slumpbroccoli: Broccoli = Broccoli(slumpvikt, slumprutten)

Slutligen dndras def slumpgrénsak till féljande:

def slumpgrénsak: Gronsak = // valj t.ex. denna foérdelning:
val rnd = math.random()
if rnd > 0.5 then slumpgurka // 50% sannolikhet fér gurka
else if rnd > 0.2 then slumptomat // 30% sannolikhet for tomat
else slumpbroccoli // 20% sannolikhet for broccoli

353

¢) Fordelarna med match-versionen, och ménstermatchning i sig, dr att det ar valdigt
latt att gora dndringar pa hur matchningen sker. Detta innebér att det skulle vara
valdigt 14tt att Andra definitionen for dtbarheten. Skulle dock dessa inte 4ndras ofta
utan snarare gronsaksutbudet sa kan det polyformistiska alternativet vara att foredra.
Detta eftersom det skulle implementeras och dndras ldttare 4n monstermatchningen

vid byte av gronsaker.

354 KAPITEL L. LOSNINGAR TILL OVNINGARNA

Losn. uppg. 12. Metoden equals.

a)

1. En klass Gurka skapas med parametrarna vikt av typen Int och drAtbar av
typen Boolean.

2. g1 tilldelas en instans av Gurka-klassen med vikt = 42 och drAtbar = true.
3. g2 tilldelas samma Gurka-objekt som g1.

4. g3 tilldelas en ny instans av Gurka-klassen med motsvarande parametrar som
gl.

5. ==(equals)-metoden jamfor gl med g2 och returnerar true.
6. ==(equals)-metoden jamfor g1 med g3 och returnerar false.
7. def equals(x\$1l: Any): Boolean

Som kan ses ovan dr elementet som jamfors i equals av typen Any. Eftersom program-
met inte kanner till klassen sa anvinds Any.equals vid jamforelsen. Till skillnad fran
de primitiva datatyperna som vid jamforelse med equals jamfor innehallslikhet, sa
jamfors referenslikheten hos klasser om inget annat dr specificerat. g1 och g2 refererar
till samma objekt medan g3 pekar pa ett eget sddant vilket innebar att g1 och g3 inte
har referenslikhet.

b)

Gurka

vikt aritvard

Gurka

vikt ritvard

¢ -

d) Ide forsta 3 raderna sker samma som i deluppgift a. Nar nu dessa jamforelser gors
mellan Gurka-objekten sa overskuggas Any.equals av den equals som &r specificerad
for just Gurka. Eftersom bada objekten gl jamfors med ocksa dr av typen Gurka sa
matchar den med case that: Gurka. Denna i sin tur jamfor vikterna hos de bada
gurkorna och returnerar en Boolean huruvida de ar lika eller inte, vilket de i bada
fallen ar.

e) Ideluppgift a gav gl == g3 false trots innehallslikhet. Efter skuggningen ger
dock detta uttryck true vilket pavisar jaimforelse av innehéllslikhet.

L.6. LOSNING PATTERNS 355

Losn.

uppg. 13. Polynom.

a) TODOM!
b) TODON!

Losn.

uppg. 14. Option som en samling.

Exempel pa metoder som finns bade for Vector och Option: foreach, filter, fold

ete.

Metoden contains returnerar en Boolean som visar om den har ett virde eller ej.

Losn.

Losn.

Losn.

Losn.

Losn.

Losn.

Losn.

Losn.

uppg. 15. Fanga undantag med catch i Java och Scala.-

uppg. 16. Polynom, fortsdttning: reducering.

uppg. 17. Typsiker innehadllstest med metoden ===.

uppg. 18. Overskugga equals med innehdllslikhet dven for icke-finala klasser.

uppg. 19. Overskugga equals vid arv.
uppg. 20. Speciella matchningar:-

uppg. 21. Extraktorer.-

uppg. 22. Polynom, fortsdttning: polynomdivision.-

356

KAPITEL L. LOSNINGAR TILL OVNINGARNA

L.7 Losning sequences

L.7.1 Grunduppgifter; férberedelse infér laboration

Losn. uppg. 1. Para ihop begrepp med beskrivning.

element

samling
samlingsbibliotek
sekvens(samling)
sekvensalgoritm
ordning
sortering
sokning
linjarsokning
registrering
tidskomplexitet

minneskomplexitet

© 00 3 O O B W N -

I A A A A A

NEIDHUOQR P Y EQ@

—_
N =

objekt i en datastruktur

datastruktur med element av samma typ

manga fiardiga samlingar med olika egenskaper

noll el. flera element av samma typ i viss ordning
l6sning pa problem som drar nytta av sekvenssamling
definierar hur element av en viss typ ska ordnas
algoritm som ordnar element i en viss ordning
algoritm som letar upp element enligt sokkriterium
sokalgoritm som letar i sekvens tills element hittas
algoritm som riknar element med vissa egenskaper

hur exekveringstiden vaxer med problemstorleken

hur minnesatgangen vaxer med problemstorleken

Losn. uppg. 2. Olika sekvenssamlingar.

Vector

List

Array
ArrayBuffer
ListBuffer

§ 888

=2 > 0w

oforéanderlig, ger snabbt godtyckligt &indrad samling
oforanderlig, ger snabbt ny samling dndrad i bérjan
primitiv, forandringsbar, snabb indexering, fix storlek
forandringsbar, snabb indexering, kan &ndra storlek

forandringsbar, snabb att dndra i borjan

Losn. uppg. 3. Anvinda sekvenssamlingar.

a)

L.7. LOSNING SEQUENCES

X +: XS 1 ~
XS +: X 2 ~o
XS i+ X 3 ~
XS ++ XS 4 ~
Xxs.indices 5 ~
xs apply O 6 ~
xs (3) 7 ~
xs.length 8 ~
xs.take(4) 9 ~>
xs.drop(2) 10 ~~
XS.updated(0, 2) | 11 ~>
xs.tail.head 12 ~>
xs.head.tail 13 ~
Xs.isEmpty 14 ~>
XS .nonEmpty 15 ~>
b)

fel

357
G | Vector(o, 1, 2, 3)
L | error: value +: is not a member of Int
J | Vector(1l, 2, 3, 0)
M | Vector(1, 2, 3, 1, 2, 3)
E | (0 until 3)
C |1
I | java.lang.IndexOutOfBoundsException
O3
F | Vector(1, 2, 3)
K | Vector(3)
B | Vector(2, 2, 3)
N |2
D | error: value tail is not a member of Int
H | false
A | true
typ forklaring

value +: is not
a member of Int

kompileringsfel Operatorer som slutar med kolon
ar hogerassociativa. Metodanropet
XS +: X motsvarar med punktnota-
tion x.+: (xs) och det finns ingen me-
tod med namnet +: pa heltal.

IndexQutOfBoundsException

kortidsfel Det finns bara 3 element och index
riaknas fran 0 i sekvenssamlingar.

value tail is not
a member of Int

kompileringsfel Metoden head ger forsta elementet
och heltal saknar sekvenssamlings-
metoden tail.

Losn. uppg. 4. Kopiering av sekvenser.

a)

xs (0) rs$line5$Mutant@66d766b9 nya instanser far
nya hexkoder

ys(0).int 0 eftersom ys innehaller samma instans som xs

zs(0).int 5 eftersom ! (xs(0) eq zs(0))

xs(0) eq ys(0) true eftersom samma instans

XS

(0) eq zs(0)

false eftersom olika instanser

(ys.toBuffer :+

new Mutant).apply(0).int

0 eftersom den ej djupkopierade kopian av typen
ArrayBuffer refererar samma instans pa forsta
platsen som bade ys och xs och x(0) .int blev noll
i en tilldelning pa rad 5 i REPL-kérningen

O 00 N O Ul A W N

N N NN BB B2 B2 B B 2 2 B 3 2
W N B © © 0 N O Ul A WN H ©

358 KAPITEL L. LOSNINGAR TILL OVNINGARNA

Observera alltsa att kopiering med toArray, toVector, toBuffer, etc. inte dr djup,
d.v.s. det ar bara instansreferenserna som kopieras och inte sjédlva instanserna.

b)

def deepCopy(xs: Array[Mutant]): Array[Mutant] =
val result = Array.ofDim[Mutant](xs.length) //fylld med null-referenser
var i = 0
while i < xs.length do
result(i) = new Mutant(xs(i).int) //kopia med samma innehdll pa samma plats
i+=1
result

Det gar ocksa bra att skapa resultatarrayen med new Array[Mutant](xs.length).
Du kan ocksa anvinda size i stillet for length.

c)

scala> class Mutant(var int: Int = 0)
// defined class Mutant

scala> def deepCopy(xs: Array[Mutant]): Array[Mutant] =
[val result = Array.ofDim[Mutant](xs.length)
[var i = 0
| while i < xs.length do
| result(i) = new Mutant(xs(i).int)
[i+=1
[result

scala> val xs = Array.fill(3) (new Mutant)

xs: Array[Mutant] = Array(rs$line$2$Mutant@46al23e4, rs$line2Mutant@44bc2449
rs$line2$Mutant@3c28e5b6)

scala> val ys = deepCopy(xs)
ys: Array[Mutant] = Array(rs$line$2$Mutant@l4b8a751, rs$line2$Mutant@7345f97d,
rs$line$2$Mutant@s554566a8)

scala> xs(0).int

scala> ys(0).int
val res0: Int = 0

d) Nej, eftersom elementen inte kan forindras kan man utan problem dela referen-
ser mellan samlingar. Det finns inte nagon mojlighet att det kan ske férdndringar
som paverkar flera samlingar samtidigt. Dock gér man vanligen (ofta tidsédande)
djupkopieringar av samlingar med forandringsbara element for att kunna vara séker
pa att den ursprungliga samlingen inte foréandras.

Losn. uppg. 5. Uppdatering av sekvenser.

a)

© 00 N O U A W N -

e el =
A W N R O

L.7. LOSNING SEQUENCES

359

{ buf(0) = -1; buf(0) } 1 ~ D -1

{ xs(0) = -1; xs(0) } 2 ~~> A | error: value update is not a member
buf.update(1l, 5) 3 ~> F | (): Unit

Xs.updated(0, 5) 4 ~> B | Vector(5, 2, 3, 4)

{ buf += 5; buf } 5 ~~» C | ArrayBuffer(-1, 5, 3, 4, 5)

{ xs += 5; xs } 6 ~> G | error: value += is not a member
xs.patch(1l,Vector(-1,5),3) |7 ~» E | Vector(1l, -1, 5)

XS 8 ~» H | Vector(l, 2, 3, 4)

b)

def insert(xs: Array[Int], elem: Int, pos: Int): Array[Int] =
xs.patch(from = pos, other = Array(elem), replaced = 0)

¢) Pseudokoden nedan ar skriven sa att den kompilerar fast den ar ofardig.

def insert(xs: Array[Int], elem: Int, pos: Int): Array[Int] =
val result = ??? /x ny array med plats for ett element mer an i xs x/
var i = 0
while(???){/* kopiera elementen fore plats pos och dka i */}
if i < result.length then /x 1l&gg elem i result pd plats i */
while(???){/* kopiera over resten %/}
result

d)

def insert(xs: Array[Int], elem: Int, pos: Int): Array[Int] =
val result = new Array[Int](xs.length + 1)
var i = 0
while i < pos && i < xs.length do { result(i) = xs(i); i += 1}
if i < result.length then { result(i) = elem; i += 1 }
while i < result.length do { result(i) = xs(i - 1); i += 1}
result

scala> insert(Array(1l, 2), 0, pos =

val res2: Array[Int] =

scala> insert(Array(1,
val res3: Array[Int] =

scala> insert(Array(1,
val res4: Array[Int] =

scala> insert(Array(1,
val res5: Array[Int] =

scala> insert(Array(1,
val res7: Array[Int] =

Array(0, 1, 2)

2), 0, pos = 0)
Array(0, 1, 2)

2), 0, pos = 1)
)

Array(1l, 0, 2

2), 0, pos = 2)
Array(1, 2, 0)

2), 0, pos = 42)
Array(1, 2, 0)

Losn. uppg. 6. Jimfora strangar i Scala.

o Ul W N

360 KAPITEL L. LOSNINGAR TILL OVNINGARNA

b) sI kommer forst.

Losn. uppg. 7. Linjdrsokning enligt olika sokkriterier.

a)

xs.index0f(0) 1 ~> F |5
Xs.index0f(6) 2 ~ B | -1
xs.indexWhere(_ < 2) 3 ~ H |4
xs.indexWhere(_ != 5) 4 ~ 1|1

xs.find(_ == 1) 5 ~> D | Some(1)
xs.find(_ == 6) 6 ~~> J | None
Xs.contains(0) 7 ~> C | true
xs.filter(_ == 1) 8 ~~> A | Vector(1, 1)
xs.filterNot(_ > 1) 9 ~~ E | Vector(1, 0, 1)
xs.zipWithIndex.filter(_._1 == 1).map(_._2) | 10 ~~ G | Vector(4, 6)

b) Med en boolesk variabel found:

def indexOf(xs: Vector[String], p: String => Boolean): Int =
var found = false
var i = 0
while i < xs.length && !'found do
found = p(xs(1i))
i+=1
if found then i - 1 else -1

Eller utan found:

def indexOf(xs: Vector[String], p: String => Boolean): Int =
var i = 0
while i < xs.length && 'p(xs(i)) do i += 1
if i == xs.length then -1 else i

Eller sa kanske man vill borja bakifran; losningen nedan &4r nog enklare att fatta
(?) och definitivt mer koncis, men uppfyller inte kravet att returnera index for forsta
forekomsten som det star i uppgiften. Men om sammanhanget tillater att vi returnerar
nagot index for vilket predikatet giller, eller om man faktiskt har kravet att leta
bakifran, sa funkar detta:

def indexOf(xs: Vector[String], p: String => Boolean): Int =
var i = xs.length - 1
while i >= 0 && !p(xs(i)) do i -=1

u A W N

L.7. LOSNING SEQUENCES 361

Eller sa kan man gora pa flera andra satt. Nar du ska implementera algoritmer, bade
pa programmeringstentan och i yrkeslivet som systemutvecklare, finns det ofta manga
olika sétt att 16sa uppgiften pa som har olika egenskaper, fordelar och nackdelar. Det
viktiga ar att 16sningen fungerar sa gott det gar enligt kraven, att koden ar begriplig
for méanniskor och att implementationen inte ar sa ineffektiv att anviandarna trottnar
1 sin vantan pa resultatet...

Losn. uppg. 8. Labbforberedelse: Implementera heltalsregistrering i Array.

a)

def registreraTarningskast(xs: Seq[Int]): Vector[Int] =
val result = Array.fill(6)(0)
xs.foreach{ x =>
require(x >= 1 && x <= 6, "tarningskast ska vara mellan 1 & 6")
result(x - 1) += 1
}

result.toVector

b)

scala> registreraTarningskast(kasta(1000))
val res0: Vector[Int] = Vector(171, 163, 166, 152, 184, 164)

scala> registreraTarningskast(kasta(1000))
val resl: Vector[Int] = Vector(163, 161, 158, 174, 161, 183)

Losn. uppg. 9. Inbyggda metoder for sortering.

'a' < 'A! 1 ~> E | false
"AAGG" < "AROG" 2 ~> H | true
xs.sorted.head 3 ~ C| -1
xs.sorted.reverse.head 4 ~~ G |3
ys.sorted.head 5 ~> 1| "ak"
zs.index0f('a"') 6 ~~ B|1
ps.sorted.head.férnamn.take(2) 7 ~> D | error:
ps.sortBy(_.fornamn).apply(1l).fornamn.take(2) | 8 ~ A | "ka"
xs.sortWith((x1,x2) => x1 > x2).index0f(3) 9 ~~ F|o0

Det blir fel i uttrycket ovan som forsoker sortera en sekvens med instanser av Person
direkt med metoden sorted:

scala> ps.sorted

No implicit Ordering defined for Person.

Det blir fel eftersom kompilatorn inte hittar ndgon ordningsdefinition for dina egna
klasser. Senare i kursen ska vi se hur vi kan skapa egna ordningar om man vill fa
sorted att fungera pa sekvenser med instanser av egna klasser, men ofta ricker det
fint med sortBy och sortWith.

© 00 N O U A W N -

N N NN NNRB B 2 2 2B B3 2 2 -2
U B W N R WOWOOLNOOUMWNR

W 00 N O Ul A W N =

e
= ©

o U B W N

362 KAPITEL L. LOSNINGAR TILL OVNINGARNA

Losn. uppg. 10. Inbyggd metod for blandning.

a) Random.shuffle returnerar en ny blandad sekvenssamling av samma typ. Ord-
ningen i den ursprungliga samlingen paverkas inte.

b) Exempel pa anvindning av random.shuffle:

scala> import scala.util.Random

scala> val xs = Vector("Sten", "Sax", "Pase")
val xs: Vector[String] = Vector(Sten, Sax, Pase)

scala> (1 to 10).foreach(_ => println(Random.shuffle(xs).mkString(" ")))
Sax Pdse Sten
Sten Pase Sax
Sten Sax Pase
Sten Sax Pase
Sten Pase Sax
Sten Pase Sax
Sax Sten Pase
Sten P3ase Sax
Sax Pase Sten
Sax Pase Sten

scala> (1 to 5).map(- => Random.shuffle(1l to 6))

val resl: IndexedSeq[IndexedSeq[Int]] =
Vector(Vector(5, 2, 1, 4, 3, 6), Vector(6, 5, 4, 2, 1, 3),
Vector(3, 1, 4, 6, 5, 2), Vector(3, 2, 6, 5, 1, 4),
Vector(5, 3, 4, 6, 1, 2))

scala> (1 to 1000) .map(_ => Random.shuffle(l to 6).head).count(_ == 6)
val res2: Int = 168

Losn. uppg. 11. Repeterade parametrar.
a)

scala> def stringSizes(xs: Stringx): Vector[Int] = xs.map(_.size).toVector
def stringSizes(xs: Stringx): Vector[Int]

scala> stringSizes("hej")
val res0: Vector[Int] = Vector(3)

scala> stringSizes("hej", "pa", "dej", "")
val resl: Vector[Int] = Vector(3, 2, 3, 0)

scala> stringSizes()
val res2: Vector[Int] = Vector()

Anrop med tom argumentlista ger en tom heltalssekvens.
b)

scala> val xs = Vector("hej","pa","dej", "")
val xs: Vector[String] = Vector(hej, pa, dej, "")

scala> stringSizes(xs: _x)
val res0: Vector[Int] = Vector(3, 2, 3, 0)

L.7. LOSNING SEQUENCES 363

scala> stringSizes(Vector(): _x)

val resl: Vector[Int] = Vector()

Ja, det funkar fint med tom sekvens.

364

L.7.2 Extrauppgifter; trdna mer

KAPITEL L. LOSNINGAR TILL OVNINGARNA

Losn. uppg. 12. Registrering av booleska virden. Singla slant.

a)

def registerCoinFlips(xs: Seq[Boolean]):

val result = Array.fill(2)(0)

(Int, Int) =

xs.foreach(x => if (x) result(0) += 1 else result(l) += 1)

(result(0), result(l))

b)

Losn. uppg. 13. Kopiering och tilldgg pd slutet.

def copyAppend(xs: Array[Int], x:
val ys =
var i = 0
while i <

ys(1i)

i+=1
ys(xs.length) = x
ys

xs.length do
Xxs (1)

Int):
new Array[Int](xs.length + 1)

Array[Int] =

De tva buggarna i algoritmen finns (1) i villkoret som ska vara strikt mindre &n och
(2) inne i loopen dar upprikningen av loppvariabeln saknas.

Losn. uppg. 14. Kopiera och reversera sekvens.

a)

def seqReverseCopy(xs: Array[Int]):

val n = xs.length
val ys = new Array[Int](n)
var i = 0
while i < n do
ys(n - i - 1) = xs(1i)
i+4+=1
ys

b)

def seqReverseCopy(xs: Array[Int]):

val n = xs.length

val ys = new Array[Int](n)

for i <- (n - 1) to 0 by -1 do
ys(n - i - 1) = xs(1i)

ys

Array[Int] =

Array[Int] =

L.7. LOSNING SEQUENCES 365

Losn. uppg. 15. Kopiera alla utom ett.

Indata :En sekvens xs av typen Array[Int] och pos
Utdata:En ny sekvens av typen Array[Int] som ir en kopia av xs fast med
elementet pa plats pos borttaget
n — antalet element xs
ys — enny Array[Int] med plats fér n — 1 element
fori —0to pos—1do
‘ ys(i) — xs(i)
end
ys(pos) — x
fori — pos+1ton—-1do
| ysGi—1) —xs(i)
end
ys

© W O R W N =

[y
=}

def removeCopy(xs: Array[Int], pos: Int): Array[Int] =
val n = xs.size
val ys = Array.fill(n - 1)(0)
for i <- 0 until pos do
ys(i) = xs(i)
for i <- (pos + 1) until n do
ys(i - 1) = xs(1i)
ys

Losn. uppg. 16. Borttagning pd plats i array.

Indata :En sekvens xs av typen Array[Int], en position pos och ett
utfyllnadsvirde pad

Utdata:En uppdaterad sekvens av xs dar elementet pa plats pos tagits bort
och efterfoljande element flyttas ett steg mot ldgre index med ett sista
elementet som tilldelats vardet av pad

1 n — antalet element xs

2 fori —pos+1ton—-1do
3 ‘ xs(i —1) — xs(1)

4 end

5 xs(n—1) — pad

def remove(xs: Array[Int], pos: Int, pad: Int = 0): Unit =
val n = xs.size
for i <- (pos + 1) until n do
xs(i - 1) = xs(1i)
xs(n - 1) = pad

Losn. uppg. 17. Kopiering och insdttning.

a)

def insertCopy(xs: Array[Int], x: Int, pos: Int): Array[Int] =
val n = xs.size
val ys = Array.ofDim[Int](n + 1)
for i <- 0 until pos do

366 KAPITEL L. LOSNINGAR TILL OVNINGARNA

ys(i) = xs(i)

ys(pos) = Xx

b)

for i <- pos until n do
ys(i + 1) = xs(i)
ys

pos maste vara 0.

il java.lang.ArrayIndexOutOfBoundsException: -1

‘
~

d)

Elementet x laggs till pa slutet av arrayen, alltsd kommer den returnerande

arrayen vara storre dn den som skickades in.

il java.lang.ArrayIndexOutOfBoundsException: 5

‘
~

Man far ArrayIndexOutO0fBoundsException da indexeringen dr utanfor storleken hos
arrayen.

Losn. uppg. 18. Insdttning pad plats i array.

S G R W N -

Indata :En sekvens xs av typen Array[Int] och heltalen x och pos
Utdata:xs uppdaterat pa plats, dar elementet x har satts in pa platsen pos och
efterfoljande element flyttas ett steg dér sista elementet férsvinner
n — antalet element i xs
ys — en klon av xs
xs(pos) — x
fori — pos+1ton-1do
‘ x8(i) — ys(i—1)
end

de

f insertDropLast(xs: Array[Int], x: Int, pos: Int): Unit =
val n = xs.size
val ys = xs.clone
xs(pos) = x
for i <- pos + 1 until n do
xs(i) = ys(i - 1)

Losn. uppg. 19. Fler inbyggda metoder for linjarsokning.

a)

¢ lastIndexO0f ar bra om man vill leta bakifran i stéllet for framifran; utan denna
hade man annars da behovt anvianda xs. reverse.index0f(e)

* index0fSlice(ys) letar efter index dér en hel sekvens ys borjar, till skillnad
fran index0f (e) som bara letar efter ett enstaka element.

* segmentLength(p, i) ger lidngden pa den ldngsta sammanhéngande sekvens
dar alla element uppfyller predikatet p och s6kningen efter en sddan sekvens
borjar pa plats i

* xs.maxBy(f) kor forst funktionen f pa alla element i xs och letar sedan upp det
storsta viardet; motsvarande minBy (f) ger minimum av f(e) 6ver alla element
e1ixs

L.7. LOSNING SEQUENCES 367

b) -

O 00 N O Ul A W N

e e e e
N o U~ WN RO

368 KAPITEL L. LOSNINGAR TILL OVNINGARNA
L.7.3 Férdjupningsuppgifter; utmaningar

Losn. uppg. 20. Fixa svensk sorteringsordning av AAO-

Losn. uppg. 21. Fibonacci-sekvens med ListBuffer.

a)

def fib(max: Long): List[Long] =
val xs = scala.collection.mutable.ListBuffer.empty[Long]
xs.prependAll(Vector(l, 1))
while xs.head < max do xs.prepend(xs.take(2).sum)
xs.reverse.drop(1l).tolList

scala> fib(Int.MaxValue).size
val res0: Int = 46

c)

def fibBig(max: BigInt): List[BigInt] =
val xs = scala.collection.mutable.ListBuffer.empty[BigInt]
xs.prependAll(Vector(BigInt(1), BigInt(1l)))
while xs.head < max do xs.prepend(xs.take(2).sum)
Xxs.reverse.drop(1l).tolList

scala> fibBig(Long.MaxValue).size
val res0: Int = 92

scala> fibBig(BigInt(Long.MaxValue).pow(64)).size
val resl: Int = 5809

scala> fibBig(BigInt(Long.MaxValue).pow(128)).last
val res2: BigInt = 466572805528355449194553611102863153950720005186045547177521

scala> fibBig(BigInt(Long.MaxValue).pow(128)).last.toString.size
val res3: Int = 2428

scala> fibBig(BigInt(Long.MaxValue).pow(256)).last.toString.size
val res4: Int = 4856

scala> fibBig(BigInt(Long.MaxValue).pow(1024)).last.toString.size
java.lang.OutOfMemoryError: Java heap space

Losn. uppg. 22. Omvdnda sekvens pa plats.

def reverseChars(xs: Array[Char]): Unit =
val n = xs.length
for i <- 0 to (n/2 - 1) do
val temp = xs(i)
xs(i) = xs(n - i - 1)
xs(n - i - 1) = temp

W 00 N O U A W N =

e el =
A W N R OO

O 00 N O Ul A W N =

e el =
2 W N R O

L.7. LOSNING SEQUENCES 369

Losn. uppg. 23. Palindrompredikat.

a) Omviandning med reverse kan kridva genomgéng av hela strangen en gang samt
minnesutrymme for kopian. Innehallstestet kraver ytterligare en genomgang. (Detta
ar i och for sig inget stort problem eftersom virldens langsta palindrom inte &r ldngre
an 19 bokstéaver och ar ett obskyrt finskt ord som inte ofta yttras i dagligt tal. Vilket?)

b)

def isPalindrome(s: String): Boolean =

val n = s.length

var foundDiff = false

var i = 0

while i < n/2 && !foundDiff do
foundDiff = s(i) '= s(n - i - 1)
i+=1

I foundDiff

Losn. uppg. 24. Fler anvdndbara sekvenssamlingsmetoder.

scala> val xs =
xs: Vector[Int]

Vector.tabulate(10) (i => math.pow(2, 1i).toInt)
= Vector(1, 2, 4, 8, 16, 32, 64, 128, 256, 512)

scala> xs.forall(_ < 1024)
val res0: Boolean = true

scala> xs.exists(_ == 3)
val resl: Boolean = false

scala> xs.count(_ > 64)
val res2: Int = 3

scala> xs.zipWithIndex.take(5)
val res3: Vector[(Int, Int)] = Vector((1,0), (2,1), (4,2), (8,3), (16,4))

Losn. uppg. 25. Arrays don’t behave, but ArraySeqs do!

a) xs erbjuder innehallslikhet och har typen Seq[Int] med den underliggande typen
ArraySeq[Int]. Det gar inte att gora tilldelning av element i en ArraySeq eftersom
metoden update saknas, och den ar oférdnderlig. Den uppdateras darfor inte néar den
urspringliga arrayen uppdateras.

scala> val asl = Array(1,2,3)
val asl: Array[Int] = Array(1l, 2, 3)

scala> val as2 = Array(1,2,3)
val as2: Array[Int] = Array(1l, 2, 3)

scala> val (xsl, xs2) = (asl.toSeq, as2.toSeq)
val xsl: Seq[Int] = ArraySeq(l, 2, 3)
val xs2: Seq[Int] ArraySeq(1l, 2, 3)

scala> asl == as2
val res0: Boolean

u A W N =

370 KAPITEL L. LOSNINGAR TILL OVNINGARNA

scala> xsl == xs2
val resl: Boolean = true

scala> asl(0) = 42

scala> xsl
val res2: Seq[Int] = ArraySeq(l, 2, 3)

scala> xsl(0) = 42
value update is not a member of Seq[Int]

b) Vid repeterade parametrar far man en ArraySeq.

scala> def f(xs: Intx) = xs
def f(xs: Intx): Seql[Int]

scala> println(f(1,2,3))
ArraySeq(1l, 2, 3)

¢) Det gar inte att ha en generisk array som funktionsresultat utan att bifoga
kontextgrinsen ClassTag i typparametern for att kompilatorn ska kunna generera
kod for den typkonvertering som kravs under runtime av JVM. Se exempel hér:
http://docs.scala-lang.org/overviews/collections/arrays.html

Losn. uppg. 26. Sekvenssamlingen List &4r nédstan dubbelt sa snabb vid bearbetning
1 borjan men ungefiar 1000 ganger lAingsammare vid bearbetning i slutet av en sekvens
med 100000 element.

Olika korningar gar olika snabbt pa JVM bl.a. p.g.a optimeringar som sker nar
JVM-en ”viarms upp” och den sa kallade Just-In-Time-kompileringen gor sitt miktiga
jobb. Det gar ibland plotsligt visentligt langsammare nér skriapsamlaren tvingas géra
tidsodande storstddning av minnet.

Losn. uppg. 27. —

http://docs.scala-lang.org/overviews/collections/arrays.html

	Framstegsprotokoll
	Förord
	I Om kursen
	Kursens arkitektur
	Veckoöversikt
	Om ditt lärande
	Vad lär du dig?
	Progression
	Hur lär du dig?
	Kursmoment — varför?
	En typisk kursvecka

	Anvisningar
	Samarbetsgrupper
	Samarbetskontrakt
	Grupplaboration

	Föreläsningar
	Övningar
	Resurstider
	Laborationer
	Projektuppgift
	Muntligt prov
	Valfri tentamen

	Hur bidra till kursmaterialet?
	Bidrag är varmt välkomna!
	Instruktioner
	Vad behövs för att kunna bidra?
	Svenska eller engelska?

	Exempel

	II Moduler
	Introduktion
	Teori
	Hur fungerar en dator?
	Vad är programmering?
	Vad är en kompilator?
	Virtuell maskin (VM) == abstrakt hårdvara
	Vad består ett program av?
	Exempel på programmeringsspråk
	Olika programmeringsparadigm
	Hello world
	Utvecklingscykeln
	Utvecklingsverktyg
	Installera verktyg på din egen dator
	Scala Command Line Interface (CLI)
	Tips och trix med scala i terminalen
	Litteraler
	Exempel på inbyggda datatyper i Scala
	Grundtyper i Scala
	Grundtypernas omfång
	Uttryck
	Variabler
	Regler för identifierare
	Att bygga strängar: konkatenering och interpolering
	Heltalsaritmetik
	Flyttalsaritmetik
	Definiera namn på uttryck
	Funktion, argument, parameter
	Färdiga matte-funktioner i paketet scala.math
	Logiska uttryck
	De Morgans lagar
	Alternativ med if-uttryck
	Uttryck eller sats?
	Variabeldeklaration och tilldelningssats
	Tilldelningssatser är inte matematisk likhet
	Förkortade tilldelningssatser
	Exempel på förkortade tilldelningssatser
	Variabler som ändrar värden kan vara knepiga
	Kontrollstrukturer: alternativ och repetition
	Scala-2-syntax för kontrollstrukturer fungerar i Scala 3
	Repetera många satser
	Procedurer
	Problemlösning: nedbrytning i abstraktioner som sen kombineras
	Övning expressions och labb kojo
	Köa med Sigrid
	Sigrid in action

	Övning expressions
	Grunduppgifter; förberedelse inför laboration
	Extrauppgifter; träna mer
	Fördjupningsuppgifter; utmaningar

	Laboration: kojo
	Obligatoriska uppgifter
	Kontrollfrågor
	Frivilliga extrauppgifter

	Program och kontrollstrukturer
	Teori
	Vad är en datastruktur?
	Några samlingar i scala.collection
	Olika strukturer för att hantera data
	Vad är en vektor?
	En konceptuell bild av en vektor
	En samling strängar
	Vad är en kontrollstruktur?
	Loopa genom elementen i en vektor
	Bygg ny samling från befintlig med for-yield-uttryck
	Samlingen [basicstyle=]Range håller reda på intervall
	Loopa med Range
	Loopa med Range skapad med to
	Loopa genom en samling med en while-sats
	Vad är en [basicstyle=]Array?
	Några likheter & skillnader mellan Vector och Array
	Ett minimalt fristående program i Scala
	Typsäkra argument till ett program med @main
	Vad är en algoritm?
	Algoritmexempel: N-FAKULTET
	Algoritmexempel: MIN
	Mall för funktionsdefinitioner
	Bättre många små abstraktioner som gör en sak var
	Vad är ett block?
	Namn i block blir lokala
	Parameter och argument
	Procedurer
	''Ingenting'' är faktiskt någonting i Scala
	Problemlösning: nedbrytning i abstraktioner som sen kombineras
	Exempel på funktionell nedbrytning
	Varför abstraktion?
	Från källkod till maskinkod med JVM
	Paket
	Import
	Jar-filer

	Övning programs
	Grunduppgifter
	Extrauppgifter; träna mer
	Fördjupningsuppgifter; utmaningar

	Funktioner och abstraktion
	Teori
	Vad är abstraktion?
	Exempel på abstraktionsmekanismer inom datavetenskapen
	Funktion: deklaration och anrop
	Deklarera funktioner, överlagring
	Funktioner med defaultargument
	Funktioner med namngivna argument
	Enhetlig access
	Anropsstacken och objektheapen
	Anropsstacken och aktiveringsposter
	Vad är en stack trace?
	Hur läsa en stack trace?
	Lokala funktioner
	Funktioner är äkta värden i Scala
	Funktionsvärden kan vara argument
	Applicera funktioner på element i samlingar med map
	Applicera funktioner på element i samlingar med map
	Äkta funktioner
	Exempel på oäkta funktioner: slumptal
	Slumptalsfrö: få samma slumptal varje gång
	Anonyma funktioner
	Applicera anonyma funktioner på element i samlingar
	Platshållarsyntax för anonyma funktioner
	Exempel på platshållarsyntax med reduceLeft
	Predikat, med och utan namn
	Funktionsvärde vid tom parameterlista: använd ''thunk''
	Hur fungerar egentligen [basicstyle=]upprepa i Kojo?
	Multipla parameterlistor
	Värdeanrop och namnanrop
	Klammerparenteser vid ensam parameter
	Skapa din egen kontrollstruktur
	Kolon vid ensam parameter
	Stegade funktioner, ''Curry-funktioner''
	Funktion med fångad variabelrymd: closure
	Rekursiva funktioner
	Loopa med rekursion
	Rekursiva datastrukturer
	Kompilera om det som ändrats vid varje sparning

	Övning functions
	Grunduppgifter; förberedelse inför laboration
	Extrauppgifter; träna mer
	Fördjupningsuppgifter; utmaningar

	Laboration: irritext
	Krav
	Tips för att komma igång
	Inspiration

	Objekt och inkapsling
	Teori
	Vad rymmer sköldpaddan i Kojo i sitt tillstånd?
	Vad är ett objekt?
	Deklarera, allokera, referera
	Olika sätt att allokera objekt
	Vad är ett singelobjekt?
	Allokering: minne reserveras med plats för data
	Punktnotation, tillståndsförändring med tilldelning
	Punktnotation och operatornotation
	Namnrymd och skuggning
	Inkapsling: att dölja interna delar
	Idiom: Privata variabler med understreck vid ''krock''
	Principen om enhetlig access
	Exempel: singelobjektet med förändringsbart tillstånd
	Exempel: tillstånd, attribut
	Tillståndsändring
	Modul
	Deklarera paket
	Kompilera paket
	Paket i REPL
	Vad är en tupel?
	Tupler som parametrar och returvärde.
	Ett smidigt sätt att skapa 2-tupler med metoden ->
	Typalias för att abstrahera typnamn
	Lata variabler med fördröjd initialisering
	Singelobjekt är lata
	Vad är skillnaden mellan val, var, def, lazy val?
	Fallgrop: initialiseringsordning och defaultvärden
	Programmeringsparadigm
	Funktioner är äkta objekt i Scala
	Fördjupning: Äkta funktionsobjekt är av funktionstyp
	Vad är en klass?
	Vad är en klass?
	Använda klassen [basicstyle=]Color
	Lägg till metoder i efterhand med extension
	Kollektiva extensionsmetoder
	Import av alla namn i en viss modul
	Namnbyte vid import
	Exkludera (gömma) namn vid import
	Lokal import-deklaration
	Export
	Använda dokumentation för färdiga klasser.
	Vad är en jar-fil?
	Öppen källkod på Maven Central
	Vad är classpath?
	Färdiga grafikmetoder i klassen PixelWindow
	Automatiska beroenden med Scala CLI i REPL:
	Köra program + kodbiblitek med Scala CLI
	Kompilera om vid varje ändring

	Övning objects
	Grunduppgifter; förberedelse inför laboration
	Extrauppgifter; träna mer
	Fördjupningsuppgifter; utmaningar

	Laboration: blockmole
	Bakgrund
	Obligatoriska uppgifter
	Kontrollfrågor
	Frivilliga extrauppgifter

	Klasser och datamodellering
	Teori
	En metafor för klass: Stämpel
	Vad är en klass?
	Datamodellering
	Singelobjekt jämfört med klass
	Förändring av objektets tillstånd
	Bättre att initialisera med hjälp av klassparametrar
	Klassdeklarationer och instansiering
	Övning: en klass som representerar en person
	Lösning: klassen Person
	Skapa egen najs toString
	Instansprivata klassparametrar
	Case-klasser är som vanliga klasser med extra godis
	Fördjupning: Styra synlighet med private[X]
	Styra användningen av infixa alfanumeriska operatorer
	Övning: Klassen Complex
	Exempel: Klassen Complex
	Exempel: Principen om enhetlig access
	Instansiering med direkt användning av new
	Indirekt instansiering med fabriksmetoder
	Hur förhindra direkt instansiering?
	Kompanjonsobjekt med indirekt instansiering
	Användning av kompanjonsobjekt med fabriksmetoder
	Alternativa direktinstansieringar med default-argument
	Alternativa sätt att instansiera med fabriksmetod
	Medlemmar som bara behövs i en enda upplaga
	Medlemmar i singelobjekt är statiskt allokerade
	Attribut i kompanjonsobjekt användas för sådant som är gemensamt för alla instanser
	Övning: en läskig mutant
	Case-klasser
	Exempel: oföränderliga case-klassen [basicstyle=]Point
	Vad är en konstruktor?
	Fördjupning: Hjälpkonstruktorer i Scala (ovanliga)
	Fördjupning: Användning av hjälpkonstruktor
	Referens saknas: null
	Exempel: null
	Defaultvärden under pågående konstruktion
	Problem med initialisering av attribut vid konstruktion
	Vilka värden har attribut medan konstruktion pågår?
	Hur undvika initialiseringsproblem vid konstruktion?
	Be kompilatorn att varna vid initialiseringsproblem
	Be kompilatorn ge fler bra varningar
	Referensen this
	Getters och setters
	Java-exempel: Klassen JPerson
	Motsvarande JPerson i Scala
	Förhindra felaktiga attributvärden med setters
	Getters och setters i Scala
	Referenslikhet eller innehållslikhet?
	Exempel: referenslikhet och innehållslikhet
	Referenslikhet och egna klasser
	Case-klasser ger innehållslikhet
	Likhet och case-klasser
	Sammanfattning case-klass-godis
	Implementation saknas: ???
	Exempel: ofärdig kod

	Övning classes
	Grunduppgifter; förberedelse inför laboration
	Extrauppgifter; träna mer
	Fördjupningsuppgifter; utmaningar

	Laboration: blockbattle0

	Mönster och felhantering
	Teori
	Bastypen för alla typer: Any
	Alla typer är subtyper till Any
	Dina egna referenstyper är subtyper till AnyRef
	Vad är matchning?
	Plocka isär ett objekt i sina beståndsdelar med mönster
	Kolla om det passar med nästlade if-uttryck
	Kolla om det passar med match-uttryck
	Syntax för match-uttryck
	Matchning med gard
	Matchning med variabelmönster
	Matchning med eller-mönster
	Matchning med typade mönster
	Fördjupning: Unionstyper och typen Matchable
	Konstruktormönster med case-klasser
	Plocka isär samlingar med djupa mönster
	Matchning på tupler
	Mönstermatchning och uppräkning med case-objekt
	Mönstermatchning och förseglade typer
	Mönstermatcha enumeration
	Stora/små begynnelsebokstäver vid matchning
	Stora/små begynnelsebokstäver vid matchning
	Mönster på andra ställen än i match
	Mönsterdelar och variabelt antal argument
	Partiella funktioner och metoden collect
	Fördjupning: metoden unapply
	Hur hantera saknade värden?
	En gemensam bastyp för ett värde som kanske saknas
	Option för hantering av ev. saknade värden
	Några smidiga metoder på [basicstyle=]Option
	Några samlingsmetoder som ger en [basicstyle=]Option, övning
	Några samlingsmetoder som ger en [basicstyle=]Option, svar
	Vad är ett undantag (eng. exception)?
	Orsaka undantag indirekt med require och assert
	Kasta undantag direkt med primitiva throw
	En gemensam bastyp för något som kan misslyckas
	Hantera undantag som ett värde med Try
	Primitiva try-catch-uttryck
	Undvik undantag om det går
	Fördjupning: Kontrollerade undantag
	Fördjupning: Implementera equals med match
	Fördjupning: equals som fungerar för finala klasser
	Fördjupning: Recept i 8 steg för arvssäker [basicstyle=]equals
	Fördjupning: Säkrare likhetstest i Scala 3

	Övning patterns
	Grunduppgifter; förberedelse inför laboration
	Fördjupningsuppgifter; utmaningar

	Laboration: blockbattle1
	Bakgrund
	Obligatoriska krav
	Valbara krav – välj minst ett
	Förberedelser inför redovisningen
	Tips och förslag

	Sekvenser och enumerationer
	Teori
	Vad är en sekvens?
	Exempel: En sträng är en sekvens av tecken
	Iterera över element i en sekvens
	Lägg till i början och i slutet av en sekvens
	Egenskaper hos några sekvenssamlingar i Scala
	Vilken sekvenssamling ska jag välja?
	Några konstigheter med Array
	Oföränderlig eller förändringsbar?
	Vad är en sekvensalgoritm?
	Använda färdiga sekvenssamlingsmetoder
	Några användbara samlingsmetoder vid implementation av sekvensalgoritmer
	Uppdaterad sekvens med kraftfulla metoden patch
	Använda for-uttryck för filtrering med hjälp av gard
	Använda samlingsmetoden filter för filtrering
	Vanliga sekvensproblem som funktionshuvuden
	Implementation av sekvensproblem med for-uttryck eller färdiga samlingsmetoder
	Implementation av sekvensproblem med map, filter
	Hierarki av samlingstyper i scala.collection v2.13
	Lämna det öppet: använd Seq
	Implementation med generiska funktioner
	Fördjupning: Använda Java-samlingar i Scala med CollectionConverters
	Fördjupning: Skapa generisk Array
	Repeterade parametrar blir sekvens
	Sekvenssamling som argument till repeterade parametrar
	Enumerationer har en ordning
	Enumerationer kan ha parametrar och medlemmar
	Enum kan motsvara fullfjädrade case-klasser
	Enum och mönster-matchning
	Fördelar med enum jämfört med uppräkning med heltal
	Registrering
	Registrering av tärningskast i [basicstyle=]Array
	Registrering av tärningskast i [basicstyle=]Array
	Skapa lösningar på sekvensproblem från grunden
	Skapa ny sekvenssamling eller ändra på plats?
	Algoritm: SEQ-COPY
	Implementation av SEQ-COPY med while
	Typ-alias för att abstrahera typnamn
	Exempel: SEQ-INSERT/REMOVE-COPY
	Pseudo-kod för SEQ-INSERT-COPY
	Insättning/borttagning i kopia av primitiv Array
	Exempel: PolygonWindow
	Implementera Polygon
	Exempel: PolygonArray, ändring på plats
	Exempel: PolygonVector, variabel referens till oföränderlig datastruktur
	Exempel: Polygon som oföränderlig case class
	Att sortera och jämföra strängar lexikografiskt
	Jämföra strängar: likhet
	Algoritmexempel: stränglikhet, pseudokod
	Algoritmexempel: stränglikhet, implementation
	Jämföra strängar: ''mindre än''
	Jämföra strängar: ''mindre än''
	Jämföra strängar: ''mindre än''
	Sökning
	Linjärsökning: hitta index för elementet x
	Sortering
	Algoritmisk komplexitet
	Det finns många olika sorteringsalgoritmer
	Bogo sort
	Sortera till ny vektor med insättningssortering: pseudo-kod
	Sortera till ny vektor med insättningssortering: implementation
	Sortera till ny samling med godtyckligt ordningspredikat
	Insättningssortering på plats – pseudo-kod
	Insättningssortering på plats – implementation

	Övning sequences
	Grunduppgifter; förberedelse inför laboration
	Extrauppgifter; träna mer
	Fördjupningsuppgifter; utmaningar

	Laboration: shuffle
	Bakgrund
	Given kod
	Obligatoriska uppgifter
	Frivilliga extrauppgifter
	Bilder med exempel på olika pokerhänder

	III Lösningar
	Lösningar till övningarna
	Lösning expressions
	Grunduppgifter; förberedelse inför laboration
	Extrauppgifter; träna mer
	Fördjupningsuppgifter; utmaningar

	Lösning programs
	Grunduppgifter
	Extrauppgifter; träna mer
	Fördjupningsuppgifter; utmaningar

	Lösning functions
	Extrauppgifter; träna mer
	Fördjupningsuppgifter; utmaningar

	Lösning objects
	Grunduppgifter; förberedelse inför laboration
	Extrauppgifter; träna mer
	Fördjupningsuppgifter; utmaningar

	Lösning classes
	Grunduppgifter; förberedelse inför laboration
	Extrauppgifter; träna mer
	Fördjupningsuppgifter; utmaningar

	Lösning patterns
	Grunduppgifter; förberedelse inför laboration
	Fördjupningsuppgifter; utmaningar

	Lösning sequences
	Grunduppgifter; förberedelse inför laboration
	Extrauppgifter; träna mer
	Fördjupningsuppgifter; utmaningar

