
Preamble

This is a draft of the ongoing work to define the theory of ensemble spaces, a minimal physically
motivated mathematical structure that all physical theories must satisfy. The effort is run like
an open source project and this is a draft created on February 19, 2026. The latest can always
be generated from GitHub through this link.

This functions as a preprint, though it is not published on the arXiv for two main reasons.
First, the work is highly interdisciplinary so there is no appropriate category for the arXiv:
previous works of ours where miscategorized in fields that were irrelevant with no possibility of
appeal. Second, the work keeps going through rounds of reviews from people with substantially
different backgrounds. Updating the arXiv copy every week would not make sense.
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Chapter 1

Ensemble spaces

In this chapter we aim to develop a general theory of states and processes that is applicable to
any physical system. The core concept is that of an ensemble as we have found that ensembles
in both classical and quantum mechanics have a very similar structure that can be abstracted
and generalized. The goal is to find necessary requirements for ensembles that can serve as
basic axioms and then further suitable assumptions to recover the different theories (e.g.
classical, quantum or thermodynamics).

The basic premise is that physical theories are primarily about ensembles. At a practical
level, most of the time we can only prepare and measure statistical properties as we do not
have perfect control over any system (i.e. all measurements are really statistical). The cases
where properties can be prepared with one hundred percent reliability can still be understood
as ensembles of identical preparations. At a conceptual level, the goal of physics is to write laws
that can be repeatedly tested: every time that one prepares a system according to a particular
procedure and lets it evolve in particular conditions, he will obtain a particular result. That is,
the idea of repeatability of experimental results implicitly assumes that the objects of scientific
inquiry are not single instances, but the infinite collections of all reproducible instances.
This means that any physical theory, at the very least, will have to provide a mathematical
representation for its ensembles.

By ensemble we mean what is usually meant in statistical mechanics: we have a preparation
device that follows some known recipe; its output is varied but it is consistently varied (i.e.
its statistical properties are well defined); the collection of all possible outputs taken as one
object is an ensemble. In classical physics, ensembles are probability distributions over the full
description of the system, over classical phase space. In quantum mechanics, ensembles are
represented by density matrices and density operators. In the standard approach statistical
ensembles are defined on top of the space of “true” physical states (e.g. microstates, pure
states, ...). We will proceed in the opposite way: we will start from the ensembles and recover
the states as the “most pure” ensembles. There are two main advantages: the first is that we
can create a theory that is agnostic about what the fundamental states are, and is therefore
general. The second is that this approach is more in line with experimental practice: the
experimental data is about statistical ensembles only and the pure states are idealizations
that are useful as a mental model or for calculation.

At this point, we have identified three main requirements for ensembles. First, they must
be experimentally well defined. This means that there need to be enough experimentally ver-
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6 CHAPTER 1. ENSEMBLE SPACES

ifiable statements to fully characterize them. This will impose a topology on the ensemble
space. Second, we can always perform statistical mixtures: given two ensembles, we can cre-
ate a third one by selecting the first or the second according to a certain probability. This will
impose a convex structure on the ensemble space. Third, ensembles will need a well-defined
entropy which quantifies the variability of the elements within the ensemble. Since the vari-
ability cannot decrease when performing a statistical mixture and can only increase up to the
variability introduced by the selection, the entropy will have to satisfy certain bounds. From
these axioms, many general results can be proven. An ensemble space will be a convex subset
of a vector space that will extend over a bounded interval in each direction. The concavity of
the entropy will impose a metric over the space, turning it into a geometric space. Each en-
semble can be characterized by a subadditive measure, which becomes a probability measure
in the classical case. This makes the space of physical theories a lot more constrained than
one may imagine at first.

Many problems are still open, as they touch unsettled mathematical questions, particularly
in the infinite dimensional case. Therefore this chapter will include conjectures that may or
may not be true, which the reader is encouraged to try proving (or disproving).

Note: all logs are assumed to be in base 2.

1.1 Review of standard cases

We will start this chapter by reviewing three cases: discrete classical ensembles, continuous
classical ensembles and quantum ensembles. These will be useful both to form an intuition
for ensembles and to serve as targets that the whole theory needs to reproduce. We will also
go though a series of problematic details and exceptions that we will need to address in the
development of the general theory.

Discrete classical ensemble spaces

Definition 1.1. A discrete classical ensemble space is the space of probability distribu-
tions over a countable sample space equipped with the Shannon entropy. That is, a discrete
classical ensemble space E is the space of probability distributions over a discrete set X of
countably many elements. Each element can thus be identified by a sequence pi such that

∑i pi = 1, where pi is the probability associated to each element xi ∈ X. The entropy is given
by S(e) = −∑i pi log pi.

Finite case

The space of classical distributions over a discrete space corresponds to a simplex. In the
finite case, the pure states X = {xi}

n
i=1 ⊂ E are finitely many and each ensemble e = ∑i pixi is

uniquely identified by a decomposition of pure states. Effectively, each ensemble is a proba-
bility distribution over the pure states. Mathematically, each point of the space is a convex
combination of the vertices. The simplex has a center point, which corresponds to the maxi-
mally mixed state, a uniform distribution over all pure states.

The entropy is given by the Shannon entropy −∑i pi log pi. This means that the entropy
of each pure state is zero and the entropy of the maximally mixed state is logn where n is
the number of pure states. The entropy increases as we go from pure states to the maximally
mixed state. The level sets (i.e. the fibers) of the entropy form a series of concentric “shells”
that foliates the space.

https://en.wikipedia.org/wiki/Simplex
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Note that imposing zero entropy on all pure states is a restrictive condition that does
not apply in general. To see this, consider the case where the state is defined by the number
of molecules for two substances. This space is the product of two independent variables na
and nb. If we have a uniform distribution over Na cases of na and Nb cases of nb, the total
number of cases is NaNb. Therefore the entropy of the joint state is the sum of the entropy
of the marginals. However, if we pair na with the total number of molecules n(a+b) we have a
problem. The issue is that the variable n(a+b) corresponds to a variable number of joint cases.
Therefore the case where the ensemble space is a simplex but the entropy is not the Shannon
entropy (i.e. it is the Shannon entropy plus the contributions of entropy from each vertex) is
a physically meaningful case that should be possible in the general theory.

Countable case

The countable case is, in some respects, not well defined.

The obvious extension is to include all sequences {pi} ∈ [0,1] whose sum converges to one
(i.e. the space of all probability measures over a countable discrete space). Since we cannot
create a uniform distribution over infinitely many cases, there is no center point, there is no
barycenter. Effectively, there is a “hole” in the middle.1

However, the space of all probability measures is too large. Note that the entropy is not
finite for all ∑i pi = 1 (i.e. infinite convex combinations).2 Given that we want the entropy to
exist and be finite for all ensembles, this generalization does not seem physically warranted.3

Also note that expectation values are not guaranteed to be finite either, and requiring a
particular observable to be finite further restricts the space. This restriction may be desirable
for another reason: a discrete ensemble space has no notion of the ordering of the pure states.
Physically, this would mean that the states with 1, 100, or 1 trillion particles are “equally
distant” (i.e. all infinite permutations are allowed). Requiring the expectation of the number
of particles to be finite (e.g. ∑iN(i)pi < ∞) should effectively encode the infinite ordering
in the rate of convergence of the probability distributions (i.e. not all infinite permutations
would be allowed).

Another problem is identifying the correct topology for the space. The entropy defines a
notion of orthogonality, as we will see later, based on the disjoint support of distributions.
This suggests that we need a space with an inner product, therefore we should require the
probability distribution to be square integrable. However, the inner product could be defined
on the square root of the probability distribution, more in line with the quantum case, which
would be well defined as probability is never negative. It is not yet clear which is the correct
case.

No uncountable case

The uncountably infinite case is not physically relevant, as the space cannot be given a second
countable discrete topology. Also note that any set of real numbers whose sum is finite can
have only countably many non-zero elements. To understand why, note that there can only

1It may be useful to characterize this “hole” and the limit points. There should be at least one limit
point for each sequence {pi} whose sum converges to a finite p < 1. Intuitively, we can keep that part of the
distribution constant while we spread the rest uniformly to all other cases. Each should reach a different limit
point.

2For details, see J. Stat. Mech. (2013) P04010.
3This generalization is called a superconvex space in some literature.

https://arxiv.org/pdf/1212.5630.pdf
https://ncatlab.org/nlab/show/superconvex+space
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be finitely many terms above any particular positive value if their sum is to remain finite.
Effectively, the uncountable case would be stitching together infinitely many countable cases.

Continuous classical ensemble spaces

Definition 1.2. A continuous classical ensemble space is the space of probability dis-
tributions over classical phase space equipped with the Shannon/Gibbs entropy. That is, it
is the space of probability measures E over a symplectic manifold X that is absolutely con-
tinuous with respect to the Liouville measure µ. The entropy is given by the Shannon/Gibbs
entropy calculated using the probability density (i.e. the Radon-Nikodym derivative between
the probability measure p and the Liouville measure µ). That is, S(ρ) = −∫X ρ log ρdµ where

ρ = dp
dµ .

In the continuous case, the space of ensembles can be understood as the space of non-
negative integrable functions over a symplectic manifold (e.g. over phase space) that integrate
to one. That is, if X is a symplectic manifold, then E = {ρ ∈ L1(X) ∣ρ(x) ≥ 0, ∫X ρ(x)dµ = 1}
where µ(U) = ∫U ω

n is the Liouville measure. This is a convex set, whose extreme points would
be, in the limit, the Dirac measures (i.e. the probability measure all concentrated at a single
phase space point). As we cannot reliably prepare a system at an infinitely precise position
and momentum, these distributions are not physical. Also, they would correspond to minus
infinite entropy. The Dirac measure, and in general all distributions over a set of measure zero,
are excluded because they are not absolutely continuous. The absence of the extreme points
is important as, when developing standard constructions in the ensemble space, one cannot
rely on the existence of extreme points. In general, this points to a difference between the
spectra (i.e. the possible values of a random variable) and pure states (i.e. extreme points),
which will be even more pronounced in the quantum case.

The symplectic nature of the manifold is required to assign a frame-invariant density to
states and a frame-invariant notion of independence between DOFs, as we saw in the classical
mechanics section of reverse physics. The entropy is given by −∫ ρ log ρdµ where µ is the
Liouville measure and ρ is the probability density over canonical coordinates. If a different
measure is used, or if the coordinates are not canonical, the formula gives the wrong result.4

Similarly to the countable discrete case, the entropy can be infinite and expectation values
can be infinite. The added complication is the frame invariance: it would not make sense to
have finite expectation for position in one frame but infinite in another. Requiring all functions
of position and momentum to have finite expectation restricts the distributions to those
with finite support. Requiring all polynomial functions of position and momentum to have
finite expectation restricts the distributions to those that decay faster than any polynomial.
Note that the expectation of all polynomials of position and momentum are not enough to
reconstruct the distribution. Furthermore, derivatives of the distribution over position and
momentum are needed to determine how the distribution evolves over time given a time
evolution map. This may suggest that the proper space of probability measures does not

4It may be interesting to study the shell of zero entropy states. For example, it should not be path connected.
All uniform distributions with support of the same finite size (in terms of the Liouville measure) will have the
same entropy. The region, however, need not be contiguous. Since we cannot continuously transform a single
region into two disjoint regions, there will be different distributions at zero entropy that cannot be transformed
continuously.
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include all the absolutely continuous ones, but only those for which the probability density is
a Schwartz function. These details are still to be understood.

The above consideration would seem to rule out probability measures with a discontinuous
probability density. This is somewhat of an unclear point. Originally, we thought the prob-
ability density should be continuous as only continuous functions can physically represent
experimental relationships. However, the relationship given by the measure is not between
points and probability but rather between sets and probability. The probability density is,
in a sense, not the prime physical object. The measure is. The probability density, in fact,
is not uniquely defined as countably many discontinuities can be added and the measure is
not changed. This seems to suggest that what happens at a single point, or over a set of
measure zero, is not critical. However, it is unclear how to recover continuity of the space
without continuity of the distributions. It could be that it is the space of deterministic and
reversible transformations that defines continuity. One added benefit of allowing discontinu-
ous probability densities is that the uniform distribution gives the maximum entropy within
the set of probability distribution with support over a finite measure set. This makes entropy
maximization considerations a lot easier.

Unlike the discrete classical case, subspaces and dimensionality of subspaces cannot be
defined without the entropy. The issue is that we need a measure on the set of pure states,
and the convex structure cannot provide it. The entropy does, however, as the supremum of
the entropy for all distributions with support U is logµ(U). As we will see, the entropy can
be used to both identify subspaces and recover the Liouville measure.

Quantum ensemble spaces

Definition 1.3. A quantum ensemble space is the space given by the density matri-
ces/operators of a Hilbert space equipped with the von Neumann entropy. That is, given a
separable Hilbert space H for a quantum system, the ensemble space E is the space of positive
semi-definite self-adjoint operators with trace one M(H). The space of pure states X is given
by the projective space P (H). The entropy of an ensemble ρ ∈ E is given by the von Neumann
entropy S(ρ) = − tr(ρ log ρ).

Finite dimensional case

The simplest non-trivial case is the qubit, for which the Bloch ball is the space of ensembles E =
M(H). The interior of the Bloch ball corresponds to mixtures while the surface corresponds
to the pure states X = P (H) = {∣ψ⟩⟨ψ∣}ψ∈H. In quantum ensemble spaces there is no unique
decomposition in terms of pure states. Note that the space is exactly characterized by knowing
which different mixtures provide the same ensemble.

Multiple decompositions make the ensemble space behave in a way that is a hybrid between
the classical discrete and continuous. Pure states are properly a part of the ensemble space, as
in the discrete case, and we can describe each mixture in terms of finitely many pure states.
However, the pure states form a continuum, therefore we can also define probability densities
over the space, convex integrals. For example, for a single qubit, the maximally mixed state
(the center of the ball) can be equally described as the equal mixture of any two opposite states
(e.g. spin up and spin down, or spin left and spin right). However, it can also be described as
the equal mixture of the whole sphere.

Note that complex projective spaces are symplectic, which is what allows one to define
frame invariant densities. The goal is to have one argument applied to the generic definition
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as to why the space of pure states must be symplectic. Also note that the two dimensional
sphere is the only symplectic sphere. By homogeneity, we should be able to argue that the space
is symmetric around the maximally mixed state, and is therefore a sphere. The symplectic
requirement would select dimension two. Note that real and quaternionic spaces would be
excluded by this argument.

The von Neumann entropy for the maximally mixed state is logn where n is the dimension-
ality of the Hilbert space. Again we see that the maximum entropy gives us a measure of the
size of the space. Note that, to calculate the von Neumann entropy, we are diagonalizing the
density matrix ρ. This means finding a set of orthogonal pure states xi such that ρi = ∑i pixi
is a convex combination. Note that the convex hull of a set of n orthogonal pure states is an
n-dimensional simplex whose center is the maximally mixed state. Therefore, we are looking
for a simplex that contains ρ and the maximally mixed state. In the two dimensional case, ρ is
an interior point of the Bloch ball. Take the line that connects ρ to the center. The two points
of the sphere are the extreme points for the decomposition. The distance from the points will
be proportional to the probability. Because of this property, the von Neumann entropy is the
smallest Shannon entropy among all possible decompositions.

Countably infinite dimensional case

The countably infinite dimensional case presents similar problems as the classical case, and
adds others. As in the classical infinite cases, the maximally mixed state (i.e. uniform dis-
tribution) is not in the convex space and the entropy is not finite for all infinite convex
combinations. As in the classical continuous case, there is the issue of finite expectation of
position/momentum in all frames. The problem is compounded by the fact that one cannot re-
quire finite expectation for all functions of position and momentum: finite support in position
automatically implies infinite support on momentum, since the distribution in momentum is
the Fourier transform of that in position.

The Hilbert space for a discrete variable with infinite range (e.g. number of particles) and
a continuous variable (e.g. position/momentum) is the same. The first is defined as the space
of square-summable complex sequences l2 while the second is the space of square integrable
complex functions L2. Given that L2 allows a countable basis, the two are isomorphic. This
also means that all spaces with finitely many degrees of freedom are also isomorphic. This
makes the problem of infinite expectations even more problematic.

Note that Schwartz spaces have finite expectation for all polynomial functions of position
and momentum, given that the momentum operator is the derivative of position. Given that
infinite permutations can change the rate of convergence, the Schwartz space has an idea of
what is further away from the origin, unlike Hilbert spaces. We will likely want to use Schwartz
spaces instead of Hilbert spaces to make the physics and mathematics more consistent.

1.2 Axiom of ensemble and topology

Statistical ensembles will be the cornerstone of our general theory for states and processes.
In this section we will see how any physical theory must, at least, define a space of ensembles
which define the output of all possible processes considered by the theory. Since a physical
theory must allow for experimental verifiability, the ensemble space must be endowed with a
T0 second countable topology.
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We saw how the principle of scientific objectivity required science to be universal, non-
contradictory and evidence based. If our goal is to find laws that govern the evolution of
physical systems, however, this is not sufficient. Scientific laws will be statements of the type
“every time we prepare this type of system according to this procedure and let it evolve under
these conditions, we will find the system in this configuration after some time.” “Every time”
implies the principle of scientific reproducibility.

Principle of scientific reproducibility. Scientific laws describe relationships that can
always be experimentally reproduced.

Consider the hypothesis that all life on earth descends from a single common ancestor.
This is a scientific hypothesis that may be experimentally falsified, but it is about a single
event. As such, it is not a scientific law. The theory of evolution through natural selection,
instead, describes what always happens to a population given a set of circumstances, and is
therefore a law. As such, it does not describe a particular set of living organisms or traits, it
applies to all of them but, as a consequence, to none in particular.

The same applies to the laws of physics. Classical Hamiltonian mechanics or quantum
mechanics will apply to certain classes of physical systems, describing the common behavior
within each class over all possible instantiations, but none in particular. That is, the law is
not describing a particular behavior of a particular system, but the common behavior of the
aggregate of all similarly prepared systems at all possible times.

The subject of a physical law, then, is not a single system in a single state, but an ensemble:
all possible preparations of equivalent systems prepared according to the same procedure. A
general theory of states and processes, then, will be a theory about ensembles as this is the
least restrictive requirement needed. Any physical theory will at least provide us with a set of
ensembles, and the physical laws must be able to describe the evolution of those ensembles.

Given that we are still talking about scientific investigation, ensembles must be experimen-
tally well defined and the principle of scientific objectivity applies. This means that ensembles
are the possibilities of an experimental domain, which means points of a T0 second countable
topological space where the topology corresponds to the natural one defined by the verifiable
statements.

The verifiable statements for the ensemble space are statements about the ensembles
themselves, either in terms of statistical quantities (e.g. “the average energy of the particle
is 3 ± 0.5 eV ”) or in terms of preparation settings (e.g. “the beam goes through a polarizer
oriented vertically within 1 degree”). Probability ranges are also typical verifiable statements
on ensembles (e.g. “the coin toss will result in heads between 49 and 51 percent of the cases”).
Note that the verifiable statements at the level of the ensemble are different from the verifiable
statements at the level of each instance. Saying that a coin is fair, for example, is a statement
on the ensemble while saying that the outcome at a particular time was heads is a statement
on the instance. The two are unrelated: whether the coin is fair is an independent statement
with respect to a particular instance. Therefore the topology of the ensemble space and the
topology of the random variables are distinct conceptual and mathematical objects (e.g. the
topology of the Bloch ball is the standard topology of R3 but the topology on the values of
spin along a given direction is the discrete topology), and it will be much later that the two
will be reconciled.5

5In fact, many details are still open.
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It should also be clear that ensembles are theoretical objects, idealizations: an infinite
collection of instances cannot be realized. What is realized in a laboratory will be a finite
version, with all limitations in terms of precision that go with it. One may ask: how can
something so idealized represent physical objects? But this is exactly what we do in all other
areas of physics: we talk about spheres, perfect fluids, isolated systems or immovable objects.
All of these are idealized objects, and we model the world with such abstractions. Ensembles
are useful idealizations precisely because they ignore details that are not relevant for the
problem at hand. If we want to write physical laws, in fact, we can only write them on those
features that are common to all instances. The ensemble represents exactly those and only
those features.

Setting ensembles as a primary notion also solves another conceptual problem. The ensem-
ble is not constructed as a limit of infinite instances, which would pose a number of problems.
The ensemble describes the preparation procedure, and therefore the collection of instances
is potential and comes before the instances. For example, a fair coin can be understood as
the collection of instructions for producing and throwing a fair coin. The fact that a fair coin
will produce, in a large trial, about half heads and half tails is a consequence of the type of
preparation. This gives automatically an interpretation of probability that is more along the
lines of propensity, which is more appropriate to express objective causal relations.

Axiom 1.4 (Axiom of ensemble). The state of a system is given by an ensemble, which
represents the collection of all possible outputs of a preparation procedure for a physical
system. The set of all possible ensembles for a physical system is its ensemble space.
Formally, an ensemble space is a T0 second countable topological space where each element
is called an ensemble.

Justification. In experimental settings, preparation procedures never prepare a system
exactly in the same configuration. Experimental results, then, are always in terms of sta-
tistical preparations and statistical measurements. A physical theory must be able to talk
about the possible statistical descriptions within the theory. States, then, can be under-
stood as ensembles, idealized statistical descriptions, as those are what is connected to
experimental practice.

Equivalently, reproducibility is a basic requirement of a physical theory. A physical
law, then, must be understood as describing a relationship that always exists whenever the
same set of circumstances is replicated. Given that we need to always be able to replicate
those circumstances “one more time”, the relationship is about countably infinite prepa-
rations and results: ensembles. Therefore, to the extent that physics is about reproducible
experimental results, the basic theoretical description of a system is in terms of ensembles.
This justifies the use of ensembles as the fundamental object to describe the state of a
system.a

Ensembles are experimentally defined objects, and therefore they are possibilities of
an experimental domain. This means that an ensemble space is a T0 second countable
topological space where each element is an ensemble and the topology is induced by the
verifiable statements.

aNote that reproducibility also already implies that all properties that characterize an ensemble must
be relative to the procedure. If the properties depended, for example, on absolute space or absolute time,
then different practitioners would not be able to prepare the same ensemble.
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We should now verify that our three standard cases satisfy the axiom of ensemble.

Proposition 1.5. Classical discrete, classical continuous and quantum ensemble spaces
satisfy the axiom of ensemble.

Proof. For the classical discrete case, including all infinite convex combinations, we have
the subset of `1 of all non-negative sequences that sum to one. Similarly, for the classical
continuous case we have the subset of L1 that corresponds to non-negative distributions
that integrate to one. Both of these spaces, with the subspace topology, are separable, admit
a countable orthonormal basis and can be given a topology that is T0 and second countable.
Note that, in case the correct formulation is in terms of square integrable functions, instead
of simply integrable functions, the space is still T0 and second countable.

For the quantum case, the Hilbert space with its standard topology is also separable,
will admit a countable orthonormal basis and can be given a topology that is T0 and second
countable. A density operator will be fully defined by its result on the basis, which means
the space of ensembles is also a vector space with a countable basis and can be given a
topology that is T0 and second countable.

1.3 Axiom of mixture and convex structure

In this section we are going to see how the ability to perform statistical mixtures leads to a
convex structure for ensemble spaces. Only mixtures of finitely many elements are guaranteed
to exist, and the topology will tell us which infinite mixtures are possible. The convex structure
also gives us a basic notion to compare ensembles: one ensemble can be a component of another
if the second can be seen as a mixture of the first with something else. Two ensembles are
separate if they have no common component.

As we saw before, an ensemble is the collection of all outputs of a preparation procedure.
The idea is that we can always combine preparation procedures selecting the output among
them with a given probability distribution. This statistical mixture is another preparation
procedure which will correspond to an ensemble. The ensemble space of any physical theory,
then, must allow statistical mixtures, which leads to a convex structure.

Definition 1.6. Given a real number p ∈ [0,1], its complement is defined as p̄ = 1 − p.

Axiom 1.7 (Axiom of mixture). The statistical mixture of two ensembles is an ensemble.
Formally, an ensemble space E is equipped with an operation + ∶ [0,1] × E × E → E called
mixing, noted with the infix notation pa + p̄b, with the following properties:

• Continuity: the map +(p, a,b) → pa + p̄b is continuous (with respect to the product
topology of [0,1] × E × E)

• Identity: 1a + 0b = a
• Idempotence: pa + p̄a = a for all p ∈ [0,1]
• Commutativity: pa + p̄b = p̄b + pa for all p ∈ [0,1]

• Associativity: p1e1 + p̄1 (
p2
p̄1
e2 +

p3
p̄1
e3) = p̄3 (

p1
p̄3
e1 +

p2
p̄3
e2) + p3e3 where p1, p3 ∈ [0,1)

and p1 + p3 ≤ 1 and p2 = 1 − p1 − p3
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Justification. This axiom captures the ability to create a mixture merely by selecting
between the output of different processes. Let e1 and e2 be two ensembles that represent
the output of two different processes P1 and P2. Let a selector Sp be a process that outputs
two symbols, the first with probability p and the second with probability p̄. Then we can
create another process P that, depending on the selector, outputs either the output of
P1 or P2. All possible preparations of such a procedure will form an ensemble. Therefore
we are justified in equipping an ensemble space with a mixing operation that takes a real
number from zero to one, and two ensembles.

Given that mixing represents an experimental relationship, and all experimental rela-
tionships must be continuous in the natural topology, mixing must be a continuous func-
tion. In general, the mixing coefficient p corresponds to a value from a continuously ordered
quantity between zero and one, as defined in the previous chapter, and therefore the natural
topology is the one of the reals.a This justifies continuity.

If p = 1, the output of P will always be the output of P1. This justifies the identity
property. If P1 and P2 are the same process, then the output of P will always be the
output of P1. This justifies the idempotence property. The order in which the processes are
given does not matter as long as the same probability is matched to the same process. The
process P is identical under permutation of P1 and P2. This justifies commutativity. If we
are mixing three processes P1, P2 and P3, as long as the final probabilities are the same,
it does not matter if we mix P1 and P2 first or P2 and P3. This justifies associativity.

Corollary 1.8. An ensemble space is a convex space.

Proof. The properties of the axiom of mixture match the basic definition of convex
spaces. For example, see https://ncatlab.org/nlab/show/convex+space or arXiv:0903.5522.
The notation and terminology will be slightly different to better map to physics ideas.

aIt may be argued that rational numbers could be prepared exactly, as one may design a procedure
that, for example, alternates the selection deterministically. Therefore one could have a countable subset
of topologically isolated ensembles. It is not clear whether this would create problems or not. Since the
topology of the reals would still be required as a subspace topology anyway, we leave investigating this case
to future work.

As we progress through the details of the theory, we will see that all linear structures in
physics are, in one way or another, manifestations of this basic structure. For example, the
linearity of the Hilbert space in quantum mechanics is connected to the linearity of density
operators and expectations.

Before proceeding, we should now check that the axiom of mixture is satisfied by the
standard cases.

Proposition 1.9. Discrete classical ensemble spaces, continuous classical ensemble spaces
and quantum ensemble spaces satisfy the axiom of mixture.

Proof. The space E of probability measures, discrete or continuous, is a convex subset
of the topological vector space of signed finite measures. It is therefore closed under convex
combinations: if a,b ∈ E are probability measures, then pa + p̄b is a probability measure.
The properties of mixing are inherited from the properties of linear combinations, which
include continuity. Therefore the discrete and continuous classical ensemble spaces satisfy

https://ncatlab.org/nlab/show/convex+space
https://arxiv.org/abs/0903.5522
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the axiom of mixture.
Similarly, the space of positive semi-definite self-adjoint operators with trace one is a

convex subset of the topological vector space of self-adjoint operators. Therefore it is closed
under convex combinations, which are continuous in the given topology, and it will satisfy
the axiom of mixture.

Finite and infinite mixtures

The axiom of mixture only guarantees the existence of a mixture between two ensembles. We
can mix elements recursively and extend the operation to finitely many ensembles. Commuta-
tivity and associativity make these mixtures independent of the mixing order, such that they
depend only on the ensembles chosen and the mixing coefficients associated to each ensemble.

Definition 1.10 (Finite mixture). Let {ei}
n
i=1 ⊆ E be a finite subset of ensembles and

{pi} ∈ [0,1] be a finite set of coefficients such that ∑ni=1 pi = 1, then the finite mixture,
noted a = ∑ni=1 piei, is defined to be

p1e1 + (1 − p1) (
p2

1−p1
e2 +

1−p1−p2
1−p1

( p3
1−p1−p2

e3 +
1−∑3

i=1 pi
1−p1−p2

(. . .

+
1−∑n−2

i=1 pi
1−∑n−3

i=1 pi
( pn−1

1−∑n−2
i=1 pi

en−1 +
pn

1−∑n−2
i=1 pi

en)))) .
(1.11)

Consistency check. For the definition to work, we need to make sure that the final
ensemble does not depend on the order of mixing. We first check with three elements. Let
p1, p2, p3 ∈ [0,1] with p1 +p2 +p3 = 1. By commutativity, we can switch the second with the
third element:

p1e1 + p2e2 + p3e3 = p1e1 + p̄1 (
p2

p̄1
e2 +

p3

p̄1
e3) = p1e1 + p̄1 (

p3

p̄1
e3 +

p2

p̄1
e2)

= p1e1 + p3e3 + p2e2.

(1.12)

Then, by commutativity and associativity, we can switch the first with the third ele-
ment:

p1e1 + p2e2 + p3e3 = p1e1 + p̄1 (
p2

p̄1
e2 +

p3

p̄1
e3) = p1e1 + p̄1 (

1 − p1 − p3

p̄1
e2 +

p3

p̄1
e3)

= p̄3 (
p1

p̄3
e1 +

1 − p1 − p3

p̄3
e2) + p3e3 = p3e3 + p̄3 (

p1

p̄3
e1 +

p2

p̄3
e2)

= p3e3 + p2e2 + p1e1.

(1.13)

Since switching the first with the second is equivalent to switching the second with the
third and the third with the first, we can reach all permutations.

Note that the definition is recursive, therefore we can use proof by induction. The base
case is a sequence of two elements. By commutativity, the order does not matter. Given
a sequence of n elements, the inductive hypothesis is that the order does not matter for
the last n − 1 elements. Therefore, it suffices to show that we can switch the first and the
second element. Note that we can sum the last n − 2 elements, thus converting this to a
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problem of three elements. We proved before that we can switch the first with the second
element, and we can now re-expand the third element into the full sequence. Therefore,
the order of mixing does not matter for any finite mixture.

Remark. Note that we can collect and expand convex combinations into other convex
combinations. Because coefficients always sum to one, when breaking the expression in two,
we can always calculate the new coefficients from one part. For example, paa + pbb + pcc +
pdd = p(pap a +

pb
p b) + p̄(

pc
p̄ c +

pd
p̄ d) where p = pa + pb is defined only on the left part. Since

1 = p + p̄ = pa + pb + pc + pd, we automatically have that p̄ = pc + pd.

While mixtures of finitely many elements are always guaranteed to exist, the extension to
mixture of infinite elements is not. First of all, an infinite mixture of ensembles with finite
entropy does not necessarily have finite entropy.6 Secondly, it may lead to infinite expecta-
tion values which make ensembles not physically meaningful. For example, suppose we put i
particles in a box according to the distribution 6

π2i2
given that ∑∞

i=1
6

π2i2
= 1. The expectation

∑∞
i=1

6
π2i2

i diverges. Given that every finite preparation will have a finite expectation value,
the actual implementation of that ensemble will necessarily give us a stream of preparations
whose number of particles must keep increasing. No finite statistics is representative of the
ensemble and, worst of all, the finite statistics will necessarily have averages of arbitrarily
large differences. We therefore cannot simply look at the coefficients to understand whether
the infinite mixture gives us a valid ensemble or not.

Whether an infinite mixture ∑∞
i=1 piei converges or not in the ensemble space is therefore

determined by the topology (i.e. experimental verifiability). The axiom guarantees only finite
mixtures and we let the closure of the topology handle the limits.

Definition 1.14 (Infinite mixture). Let {ei}
∞
i=1 ⊆ E be a sequence of ensembles and {pi} ∈

[0,1] be a sequence of coefficients such that ∑∞
i=1 pi = 1. Then the ensemble a is an infinite

mixture of those ensembles if it is a topological limit of the sequence of finite mixtures

∑ni=1
pi
pn
ei, where pn = ∑

n
i=1 pi. If the infinite mixture is unique, we write a = ∑∞

i=1 piei.
Remark. We will see later that the entropy constrains the topology to be Hausdorff,

therefore all infinite mixtures, if they exist, are unique.

It is unclear whether commutativity and associativity extend, or should extend, to infinite
mixtures. For series, unconditional convergence defines convergence that does not depend on
infinite reordering, but it is unclear even whether this is a desirable property. Additionally,
we would expect that if an infinite mixture is possible, any submixture should converge as
well. That is, if ∑∞

i=1 piei converges, then ∑i∈I
pi
pI
ei converges for all I ⊆ N where pI = ∑i∈I pi.

We do know that the convex structure is not enough to guarantee the above property,
as shown by the following counterexample provided on stack exchange. Consider R. It is a
metrizable second-countable topological vector space, which means it is a convex space with
a topology such that the mixing operation is continuous. It satisfies the axiom of ensemble
and the axiom of mixture. Let pi =

6
π2i2

, which means ∑i pi = 1 and ei = (−1)ii. We have

∞

∑
i=1

piei =
6

π2

∞

∑
i=1

(−1)i

i
= −

6

π2
ln 2

6For details, see J. Stat. Mech. (2013) P04010.

https://en.wikipedia.org/wiki/Unconditional_convergence
https://math.stackexchange.com/questions/5085283/does-a-convex-subcombination-of-a-convergent-convex-combination-converge
https://arxiv.org/pdf/1212.5630.pdf
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which means it converges. However, let I = {2,4,6, . . .}. We have

pI =
∞

∑
k=1

p2k =
∞

∑
k=1

6

π24k2
=

1

4

∑
i∈I

pi
pI

ei = 4∑
i∈I

piei = 4
∞

∑
k=1

6

π2(4k2)
2k =

12

π2

∞

∑
k=1

1

k
→∞.

Therefore the convex combination of all even elements of the series diverges.
Note that the above counterexample works because the series is effectively the sum of

two divergent series. The axiom of entropy will force the ensemble space to have a bounded
intersection with every affine line. Therefore the above problem would not exist, because one
cannot produce a divergent series from a bounded interval of the real line. It is not clear,
though, whether this is enough to show that submixtures of convergent infinite mixtures
converge. We leave this as conjecture 1.113.

TODO: add conjecture for definition of convex integrals

Common components and separateness

The convex structure allows us to characterize ensembles based on whether they can be mixed
into one another. For example, we can ask whether an ensemble is or is not the mixture of
some other ensembles; or whether two ensembles can be expressed as a mixture of a common
component.

Definition 1.15. Let E be an ensemble space. Let a = ∑i piei where a, ei ∈ E and pi ∈ (0,1]
such that ∑i pi = 1. We say that a is a mixture of {ei}, each ei is a component of a and
each pi is a mixture coefficient.

a

1
2a +

1
2b

3
4a +

1
4b

b

c

d

e

Remark. In terms of the convex space, all the mixtures of two ensembles correspond to
the segment between them; all the mixtures of three ensembles correspond to the triangle
formed by the three elements and so on. An ensemble c is a component of a different
ensemble d if the segment connecting c and d can be extended past d. If two elements
are not a component of each other, then they are the extreme points of the line that goes
through the two. That is, the segment cannot be extended.

a
2
3a +

1
3b

1
3a +

2
3b

b
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Remark. Note that two ensembles can be components of each other. Consider 2
3a +

1
3b

and 1
3a+

2
3b. We can write 2

3a+
1
3b =

1
2
(1

3a +
2
3b)+

1
2a and 1

3a+
2
3b =

1
2
(2

3a +
1
3b)+

1
2b (they are

both midpoints along each other). Therefore a component is not necessarily “smaller” or
“better defined” than the mixture. Mathematically, “being a component of” is not a partial
order. It is reflexive and transitive, but it is not antisymmetric. In practical terms, we need
something else to tell us whether we are, for example, taking a limit with components that
become “smaller and smaller.”

We can also characterize some ensembles based on what other ensembles they can admit
as components. An extreme point is an ensemble that has only itself as a component. For
example, a pure state will be an extreme point as it cannot be expressed as a mixture of any
other states. Conversely, an internal point is an ensemble that admits any other ensemble as a
component. For example, in a finite discrete classical space, the uniform distribution over all
cases can be seen as the mixture of any other distribution with something else. A boundary
point is an ensemble that is not an internal point. The figure helps visualize the properties.

Definition 1.16. Let E be an ensemble space. An extreme point e ∈ E is an ensemble that
has no component distinct from itself. That is, there is no a ∈ E ∖ {e} such that e = pa + p̄b
for some p ∈ (0,1] and b ∈ E. An internal point e ∈ E is an ensemble for which every
ensemble is a component. That is, for every a ∈ E there is always b ∈ E and p ∈ (0,1] such
that e = pa + p̄b. A boundary point is any ensemble that is not an internal point.

Remark. The notion of internal point parallels the similar notion in topological vector
spaces.

a

b
c

a

c

Figure 1.1: In both spaces, a is an extreme point while c is an internal point; b is a boundary
point, but is not an extreme point (it is the mixture of the vertices on the same side). On
the circle, all boundary points are extreme points.

Proposition 1.17. The set of all internal points IE is a convex set.

Proof. Let e1, e2 ∈ IE be two internal points of E . Since e1 and e2 are internal points,
given any a ∈ E we can find b1,b2 ∈ E such that

e1 = p1a + p̄1b1

e2 = p2a + p̄2b2
(1.18)

https://en.wikipedia.org/wiki/Algebraic_interior
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for some p1, p2 ∈ (0,1]. Now let p ∈ [0,1] and e = pe1 + p̄e2. We have:

e = pe1 + p̄e2 = p(p1a + p̄1b1) + p̄(p2a + p̄2b2)

= (pp1 + p̄p2) a + (pp̄1b1 + p̄p̄2b2)

= λa + λ̄(
pp̄1

λ̄
b1 +

p̄p̄2

λ̄
b2) = λa + λ̄b

(1.19)

where λ = pp1 + p̄p2 and b = pp̄1
λ̄
b1 +

p̄p̄2
λ̄
b2. Therefore, given any a ∈ E , we can find a b ∈ E

such that e = λa + λ̄b for some λ ∈ (0,1]. This means the convex combination of internal
points is an internal point, and Iε is a convex set.

It is an open question whether this result generalizes to infinite mixtures. That is, whether
the infinite mixture of internal points is still an internal point. To generalize the previous
proof to the infinite case, one would need to show that the infinite mixture of bi converges. If
conjecture 1.113 is true, that is if submixtures of convergent infinite mixtures converge, then
the infinite mixture of bi would converge as it is a submixture of e. We leave this as conjecture
1.114.

For topological vector spaces, the algebraic interior and the topological interior are related.
For example, if A is a convex subset of a TVS with non-empty topological interior, then the
algebraic and topological interior coincide. It is an open question how many of these results
hold for topological convex spaces as well. As an example, we would like to prove the following.

TODO: reorganize

Conjecture 1.20. Let E be an ensemble space. The set of boundary points BE is not neces-
sarily a closed set and therefore IE is not necessarily an open set.

Proof. Let E = {pi ∈ `
1 ∣ ∑pi = 1, pi ∈ [0,1]} be the set of probability distributions over

countably infinitely many elements with the topology of `1. Let e ∈ IE be an interior point of
E . Since e is in the interior, it corresponds to a probability distribution pi such that pi ∈ (0,1)
for all i.

Let Br(e) ⊆ `
1 be an open ball of radius r centered around e. Since ∑pi = 1, there must be a

j such that pj <
r
2 . Suppose, without loss of generality, that j ≠ 1. Now consider the probability

distribution given by λi = (p1+pj , p2, . . . , pj−1,0, pj+1, . . . ). Since λj = 0, then λi is a boundary
point of E . The distance between the two distribution will be ∑∣pi −λi∣ = ∣pj ∣ + ∣ −pj ∣ = 2pj < r,
which means λi ∈ Br(e). Therefore, the open ball around any internal point will contain a
boundary point. Therefore the interior of IE is the empty set, and IE is not an open set.

One may be able to show that the limit of a sequence of boundary points cannot be an
interior point in the topological sense.

We now define the notions of separateness: two ensembles are separate, noted a ã b if they
do not have a common component. That is, they are not a mixture of a common ensemble.
In classical ensemble spaces, this is equivalent to probability measures with disjoint support,
which is the extension of the concept. Separateness is a useful concept to characterize the
relationship between ensembles as it has some useful properties. Most of all, it is an irreflexive
symmetric relation: nothing is separate from itself and if a ã b, then b ã a.7

7Note that orthogonality in inner product vector spaces is also an irreflexive symmetric relationship.
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Definition 1.21. Let E be an ensemble space and a,b ∈ E. We say that they have a
common component if we can find c ∈ E, the common component, such that a = p1c+ p̄1e1

and b = p2c + p̄2e2 for some e1, e2 ∈ E and p1, p2 ∈ (0,1]. Otherwise, we say they have no
common component, or are separate, noted a ã b. Two ensembles have a common
component in A ⊆ E if the common component can be found in A, and are separate in A
if there is none. Two sets of ensembles A,B ⊆ E are separate if all the elements of one are
separate from all the elements of the other. That is, A ã B if a ã b for all a ∈ A and b ∈ B.

a

b

c
e1

e2

Remark. If two ensembles a and b have a common component c, then the ensemble
space contains a triangle where c is a vertex and a and b are points on the sides that
connect to c.

Corollary 1.22. The previous definitions obey the following:

1. every ensemble is a component of itself
2. if a is a component of b, then a and b have a common component and therefore they

are not separate
3. separateness is an irreflexive symmetric relation
4. an ensemble is an extreme point if and only if it is separate from all other ensembles
5. an ensemble is an internal point if and only if it is not separate from any ensemble
6. if two ensembles are separate, then they are boundary points

Proof. 1. Since by idempotence e = pe + p̄e for any p, then every ensemble is a mixture
of itself, and therefore it is a component of itself.

2. By idempotence, we can write a = p1a+p̄1a for some p1 ∈ (0,1]. Since a is a component
of b, we can write b = p2a + p̄2e2 for some p2 ∈ (0,1] and e2 ∈ E . Therefore a and b have a
as a common component.

3. Since every ensemble is a component of itself, every ensemble has a common com-
ponent with itself and therefore is not separate from itself. This proves that separateness
is irreflexive. The definition of common component is symmetric and therefore so is sepa-
rateness.

4. An extreme point has only itself as a component, therefore it can have a common
component only with itself.

5. Every ensemble is a component of an internal point, therefore every ensemble is not
separate from an internal point

6. Since an internal point cannot be separate from any ensemble, then two ensembles
that are separate are not internal points, and therefore are boundary points.
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Proposition 1.23. Let E be a discrete or continuous classical ensemble space and let
a,b ∈ E be two probability measures over the corresponding sample space X. Then a ã b if
and only if they have disjoint support.

Proof. Note that the support of a convex combination of probability measures is the
union of the support of the measures. Since we are restricting ourselves to probability
measures that are absolutely continuous with respect to a measure µ, if a probability
measure a has support U , any probability measure b with support on a compact subset
V ⊆ U such that µ(V ) ≠ 0 is a component of a.

Let a,b ∈ E be two probability measures over the sample space X that are absolutely
continuous with respect to the corresponding µ. Suppose a and b have overlapping support.
The we can find a compact subset U such that µ(U) ≠ 0 and is a subset of the intersection
of their supports. Therefore, we can find a probability measure that is a component of
both. Conversely, suppose they have disjoint support. Then they cannot have a common
component, as the support of the common component would have to be a non-empty subset
of both supports.

A key property of separateness is its relationship with mixtures. If an ensemble is separate
from a mixture of two elements, it is separate from both elements and all their mixtures.

Proposition 1.24 (Separateness extends to all mixtures). Let e, e1, e2 ∈ E. If e has no
common component with a mixture of e1 and e2 then it has no common component with
any mixture of e1 and e2 and with either e1 or e2. That is, if e ã pe1+ p̄e2 for some p ∈ (0,1)
then e ã pe1 + p̄e2 for all p ∈ [0,1].

e

e1 e2
a b

c

d

f

g

Proof. Let e ã a = pe1 + p̄e2 for some p ∈ (0,1). Let b = αe1 + ᾱe2 with 0 ≤ α < p. As
shown in the figure, suppose b is not separate from e. Then we can find c ∈ E such that
b = βc + β̄d and e = γc + γ̄f for some d, f ∈ E and β, γ ∈ (0,1).

Setting ε = p−α
ᾱ and λ = ε̄β we have:

a = pe1 + p̄e2 = (p −
p̄

ᾱ
α) e1 +

p̄

ᾱ
αe1 +

p̄

ᾱ
ᾱe2

= (
pᾱ − p̄α

ᾱ
) e1 +

p̄

ᾱ
(αe1 + ᾱe2) = (

p − pα − α + pα

ᾱ
) e1 +

1 − p + α − α

ᾱ
(αe1 + ᾱe2)

=
p − α

ᾱ
e1 + (1 −

p − α

ᾱ
) (αe1 + ᾱe2) = εe1 + ε̄(αe1 + ᾱe2) = εe1 + ε̄b

= εe1 + ε̄(βc + β̄d) = ε̄βc + εe1 + ε̄β̄d = λc + λ̄g
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where g = 1
λ̄
(εe1 + ε̄β̄d). This means a and e have a common component, which is a con-

tradiction. Therefore e ã αe1 + ᾱe2 for all α ∈ [0, p].
We can repeat the argument switching e1 with e2 and find e ã αe1 + ᾱe2 for all α ∈

[0,1].

While separateness extends to mixtures, the converse property (i.e. mixtures preserve
separateness) is not necessarily true. While it is true for classical spaces, it is not true for
quantum spaces. This converse property is, in effect, a telltale of classicality.

Definition 1.25. Let E be an ensemble space. We say that mixtures preserve sepa-
rateness in E if e ã a and e ã b implies e ã pa + p̄b for all p ∈ [0,1] and e, a,b ∈ E.

Proposition 1.26. Mixtures preserve separateness in discrete/continuous classical ensem-
ble spaces.

Proof. Let E be a discrete or continuous classical ensemble space. Let e, a,b ∈ E such
that e ã a and e ã b. Then the support of e is disjoint from the support of both a and
b. Since the support of a mixture of a and b is the union of the supports, e has disjoint
support from every mixture of a and b. This means that mixtures preserve separateness in
discrete/continuous classical ensemble spaces.

Proposition 1.27. Mixtures do not preserve separateness in quantum ensemble spaces

a

b

e
o

Proof. Let E be a quantum ensemble space. As shown in the figure, let a,b ∈ E be
two orthogonal pure states and let e ∈ E be another pure state that is the nontrivial
superposition of the two. These three states will be extreme points of a Bloch ball. Since
they are all pure states, they are all extreme points and therefore are pairwise separate.
Consider o = 1

2a +
1
2b. This will be the center of the Bloch ball and will not be separate

from e. Therefore mixtures do not preserve separateness in E .

Decomposability

Since mixture preserving separateness is a telltale of classicality, it is insightful to find an
alternative characterization. One of the differences between classical and quantum ensemble
spaces is that quantum ensembles allow multiple decomposition in terms of pure states. We
see here that, in fact, the lack of multiple decomposition is equivalent to mixture preserving
separateness.

Note that, since a continuous classical ensemble space has no extreme points, we have to
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find a definition of multiple decomposability that makes no reference to the extreme points.
Like for the definition of the entropy, we need to find a definition on mixtures of two elements
that, when applied recursively, gives us the desired effect. The idea here is that we will always
have multiple decompositions in terms of other ensembles, but in classical spaces we cannot
have multiple decompositions where one element of the first decomposition has no common
components with all elements of the second. So, if we start breaking an ensemble into separate
components, while we may take different paths, we will reach the same final decomposition
in terms of extreme points, if they exist.8

Definition 1.28. An ensemble is decomposable if it can be expressed as a mixture of two
distinct ensembles. An ensemble is separately decomposable if it can be expressed as a
mixture of two separate ensembles. An ensemble is multidecomposable if it can be ex-
pressed as two decompositions where a component of one is separate from both components
of the other. That is, e = pa1 + p̄a2 = λb1 + λ̄b2 and either a1 ã bj or a2 ã bj. An en-
semble is monodecomposable if it is not multidecomposable. An ensemble is separately
monodecomposable if it is both separately decomposable and monodecomposable.

e1

e2 e3

e1

e2 e3

e4

Figure 1.2: Examples for mono- and multidecomposability.

Remark. As shown in Fig. 1.2, take a classical discrete space for three points which is
a triangle (simplex). The only three elements that are not decomposable are the extreme
points. Mixtures of two points are decomposable and are also separately decomposable in
only one way. Mixtures of three points are also separately decomposable, but in multiple
ways: as a mixture of e1 and a mixture of e2 and e3, or as a mixture of e2 and a mixture of
e1 and e3. Note, however, that they are not separately multidecomposable as the different
components are not separate.

Take a Bloch ball for quantum mechanics. All the elements of the surface are not
decomposable and they are all pairwise separate. The middle point can be seen as the equal
mixture of any pair of opposite points. Therefore the middle point, as well as any other
point not on the surface, is not only separately decomposable but also multidecomposable.

8There is an open issue as it is not clear whether we want to require actual separate decomposition or
separate decomposition in the limit. In the continuous classical case, for example, it is not clear whether we
should require probability densities to be continuous or not. If continuity is required, a probability density
cannot be split into two probability densities with disjoint support without creating a discontinuity. However,
we may think of a sequence of decomposition into three, one with support A, one with support B and one with
support on both. In the limit, the mixing coefficient for the third becomes smaller and smaller, meaning that
the first two approach a discontinuous distribution.



24 CHAPTER 1. ENSEMBLE SPACES

To see why we require only one component to be separate from the other two, consider
the cut triangle. Here we can have multiple decompositions where not all elements are
separate.

Corollary 1.29. An ensemble e ∈ E is an extreme point if and only if it not decomposable.

Proof. If e ∈ E is decomposable, then it has at least two distinct components, one of
which must not be e. Since an extreme point has only itself as a component, then e is not
an extreme point. Conversely, if e is an extreme point, it cannot be the mixture of two
distinct components as e has only itself as a component.

Definition 1.30. An ensemble space is separately decomposable if every decomposable
ensemble is separately decomposable, multidecomposable if every decomposable ensemble
is multidecomposable, monodecomposable if every decomposable ensemble is monode-
composable and separately monodecomposable if it is both separately decomposable and
monodecomposable.

Proposition 1.31. Discrete/continuous classical and quantum ensemble spaces are sepa-
rately decomposable.

Proof. For a classical ensemble space, only Dirac measures are not decomposable. For
a discrete classical space, every measure that is not the Dirac measure is the mixture of
two measures with disjoint support. For a continuous classical space, there are no extreme
points, and any absolutely continuous measure is the mixture of two absolutely continuous
measures with disjoint support. Since measures with disjoint support are separate, every
decomposable ensemble is separately decomposable.

In quantum mechanics, every density operator is the mixture of its eigenstates. If the
density operator does not correspond to a pure state, it will have at least two eigenstates.
Every mixed state, then, is a mixture of two orthogonal ensembles. Since orthogonal en-
sembles cannot have a common component, every decomposable ensemble is separately
decomposable.

Proposition 1.32. Given an ensemble space E, E is monodecomposable if and only if
mixtures preserve separateness in E.

e

a b
c

d

f

g

Proof. Suppose mixtures do not preserve separateness in E . Then, as shown in the
figure, we can find e, a,b, c ∈ E such that e ã a, e ã b and e ã c = pa + p̄b for some
p ∈ (0,1). Since e ã c, we can find d, f,g such that c = λd + λ̄f and e = µd + µ̄g. Since
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separateness extends to all mixtures (1.24) and a ã e = µd + µ̄g, then a ã d. Similarly,
b ã d, which means that c is separately multidecomposable. Therefore, if mixtures do not
preserve separateness in E , not all decomposable ensembles are monodecomposable which
means E is not monodecomposable.

Now suppose mixtures do preserve separateness, and let e = pa1 + p̄a2 = λb1 + λ̄b2 be a
decomposable ensemble. Since a1 is a component of e, then e ã a1. Since e is a mixture of b1

and b2 and mixtures preserve separateness, then either a1 ã b1 or a1 ã b2. Similarly, a2 ã b1

or a2 ã b2. Therefore e is not multidecomposable. Since this applies to all decomposable
ensembles e, E is monodecomposable.

These definitions may be enough to prove that every finite-dimensional separately mon-
odecomposable convex space is a simplex. For the infinite case, it would be nice to compare
this characterization to a Choquet simplex.

Conjecture 1.33. A finite-dimensional (i.e. there is a set of finitely many elements whose
hull has non-empty interior) separately monodecomposable convex space is a simplex.

Convex subsets and convex hull

In many cases, we will need to discuss the sets that contain all their possible mixtures. One
typically distinguishes two cases. A set is convex if it allows all possible finite mixtures. This
may be too restrictive as it may not include all possible infinite mixtures. A set is closed and
convex if it includes all finite mixtures and their topological limits. Given that infinite mixtures
are the topological limit of finite mixtures, a closed convex set contains all infinite mixtures.
However, not all topological limits can be expressed as infinite mixture. For example, on the
real line 1 can be seen as a limit of points within the open interval (0,1), but not as infinite
convex combination. Therefore we add the notion of σ-convex set, a set that is closed under
infinite mixtures.9

Definition 1.34. Let E be an ensemble space. We say A ⊆ E is convex if it closed under
finite mixtures (i.e. a,b ∈ A implies pa + p̄b ∈ A with p ∈ [0,1]), σ-convex if it is closed
under infinite mixtures (i.e. ai ∈ A implies ∑i piai ∈ A for all possible infinite mixtures) and
closed and convex if it is both convex and topologically closed.

Corollary 1.35. A closed and convex set is σ-convex. A σ-convex set is convex.

Given a set of ensembles A, we can ask for all ensembles that can be constructed from A.
The hull of A is the set of all finite mixtures of A, the σ-hull of A is the set of all infinite
mixtures of A and the closed hull of A is the set of all the topological limits of finite mixtures
of A. Notably, the closed hull of A is equivalent to the topological closure of the hull of A.

Definition 1.36. Let A ⊆ E be a subset of an ensemble space. The convex hull of A, noted
hull(A) is the set of all finite mixtures of elements contained in A (i.e. it is the smallest
convex set that contains A). The σ-hull of A, noted shull(A) is the set of all infinite
mixtures of elements contained in A (i.e. it is the smallest σ-convex set that contains A).

9The mathematical properties of σ-convex sets are yet to be explored.
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The closed hull of A, noted chull(A) is the smallest closed convex set that contains A.
Remark. Note that, given a set A, not all elements of chull(A) can be understood as

infinite mixtures. That is, we can have shull(A) ⊂ chull(A). For example, let E be the line
segment [0,1] and consider the set A = { 1

2i
}
∞

i=0
. Every point in (0,1] can be expressed as a

finite mixture of two elements of A, for example, 1 and any number smaller than the target
number. However, zero cannot be expressed as a convex combination of positive numbers,
and therefore it is not an infinite mixture of A. However, zero is the limit of the sequence,
and therefore it will be in the topological closure of A. This shows that the difference
between σ-hull and convex hull exists already in finite dimensions. The convex hull and
the σ-hull, instead, are the same in finite dimensions because Carathodory’s theorem allows
us to rewrite any infinite convex combination into a finite one.

For an example in which all hulls are different, consider the space of probability dis-
tributions E over countably many elements X = {xi}

∞
i=1. Let aip = pxi + p̄xi+1 and let

A = {aip ∣ i ≥ 1, p ∈ (0,1)} ⊂ E be the set of all non-trivial mixtures of pairs of consecutive
elements. A probability distribution with support over the full X cannot be expressed as
a finite convex combination of elements of A, and will therefore not be in the convex hull.
However, it can be expressed as an infinite convex combination, and therefore it will be
in the σ-hull. An element xi ∈ X, is not in the σ-hull, but it will be in the closed hull, as
xi = limp→1 pxi + p̄xi+1 = limp→1 aip ∈ chull(A).

Corollary 1.37. Given A ⊆ E, hull(A) ⊆ shull(A) ⊆ chull(A).

Proof. All finite mixtures are also infinite mixtures with pi = 0 for all i > n for some n.
Therefore hull(A) ⊆ shull(A). All infinite mixtures are topological limits of finite mixtures.
Therefore shull(A) ⊆ chull(A).

Proposition 1.38. All three hull operators are closures. That is, hull satisfies the following
three properties:

1. extensive: A ⊆ hull(A)

2. increasing: A ⊆ B Ô⇒ hull(A) ⊆ hull(B)

3. idempotent: hull(hull(A)) = hull(A)

and similarly do shull and chull.

Proof. 1. Every element of A is trivially a mixture of elements of A. Therefore A ⊆

hull(A). Since hull(A) ⊆ shull(A) ⊆ chull(A), A ⊆ shull(A) and A ⊆ chull(A) as well.
2. Let e ∈ hull(A). Then it is a finite mixture of some elements of A. Since A ⊆ B, then

e is also the finite mixture of some elements of B and therefore e ∈ hull(B). The same
logic applies to the σ-hull and closed hull replacing finite mixture with the appropriate
operation.

3. Since hull(hull(A)) is the smallest convex subset that contains hull(A), and since
hull(A) is a convex subset, then hull(hull(A)) must be hull(A) since no smaller set can
contain all elements of hull(A). The same logic applies to the σ-hull and closed hull.

Corollary 1.39. A subset A ⊆ E is respectively convex/σ-convex/closed convex if and only
if it is its own convex hull/σ-hull/closed hull.

https://en.wikipedia.org/wiki/Carath%C3%A9odory%27s_theorem_%28convex_hull%29
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Proof. Let A ⊆ E be a convex subset. By 1.38 we have A ⊆ hull(A). By definition of
convex set, we have hull(A) ⊆ A. Therefore A = hull(A). Conversely, let A ⊆ E be a set
of ensembles not necessarily convex and let A = hull(A). By definition, hull(A) is closed
under finite mixture and is therefore a convex subset. The same logic applies to σ-convex
and closed convex sets with the respective hulls.

Definition 1.40. We note coE the set of all convex subsets of E, scoE the set of all σ-convex
subsets of E and ccoE the set of all closed convex subsets of E.

Proposition 1.41. The sets coE , scoE and ccoE , as posets ordered by inclusion, are topped

⋂-structures and therefore complete lattices.

Proof. Theorem 7.3 in Davey and Priestley’s “Introduction to Lattice and Order” states
that, given a closure operator, the set of all closures, ordered by inclusion, is a topped ⋂-
structure and, therefore, a complete lattice. Since coE , scoE and ccoE are closures, the
theorem applies.

Proposition 1.42. The functions hull, shull and chull are continuous from above. That
is, given a decreasing sequence Ai ⊆ E, hull( lim

i→∞
Ai) = lim

i→∞
hull(Ai). Similarly for shull and

chull.

Proof. The above proposition is a consequence of the fact that the hulls are closure
operations and they generate an intersection structure. This means that the intersection
of hulls is the hull of the intersections.

Let Ai ⊆ E be a decreasing sequence. That is, Ai+1 ⊆ Ai. Then A = lim
i→∞

Ai = ⋂Ai. Since

hull is order preserving, hull(Ai) is a decreasing sequence and lim
i→∞

hull(Ai) = ⋂hull(Ai).

Moreover, hull(A) ⊆ hull(Ai) for all i and therefore hull(A) ⊆ ⋂hull(Ai). Now let e ∈

hull(A). Then e is a convex combination of elements of A. Since every element of A is also an
element of any Ai, then e is also a convex combination of elements of Ai for any i. Therefore
e ∈ hull(Ai) for all i which means e ∈ ⋂hull(Ai) and therefore hull(A) ⊇ ⋂hull(Ai). Thus
we have that hull( lim

i→∞
Ai) = lim

i→∞
hull(Ai).

Since we have only used closure properties of hull, the same reasoning applies to shull
and chull since they are closures.

Proposition 1.43. The hull is continuous from below. That is, let Ai ⊆ E be an increasing
sequence. Then hull( lim

i→∞
Ai) = lim

i→∞
hull(Ai).

Proof. Let Ai ⊆ E be an increasing sequence. That is, Ai+1 ⊇ Ai. Then A = lim
i→∞

Ai = ⋃Ai.

Since hull is an increasing function, hull(A) ⊇ hull(Ai) for all i and therefore hull(A) ⊇

⋃hull(Ai). Now let e ∈ hull(A). Then e is a convex combination of finitely many elements
aj of A. Since A is the union of all Ai, each aj will be in some Ai. Since the sequence of Ai
is increasing, and there are only finitely many aj , we will find an i such that aj ∈ Ai for all
j. This means that e is a convex combination of elements of Ai and therefore e ∈ hull(Ai) ⊆
hull(A). Therefore hull(A) = ⋃hull(Ai) which means hull( lim

i→∞
Ai) = lim

i→∞
hull(Ai).
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Remark. Note that shull and chull are not, in general, continuous from below. This is
because, in general, the union of closures is not the closure of the union. This is true, in
particular, with topological closures, which is part of the definition of chull.

For example, consider the sequence Ai = [0,1 − 1
i
) ⊆ R. These are convex sets therefore

their closed hull is simply their topological closure. That is, chull(Ai) = [0,1 − 1
i
]. We have

lim
i→∞

Ai = ⋃Ai = [0,1) and lim
i→∞

chull(Ai) = ⋃ chull(Ai) = [0,1) which is not a closed set and

therefore different from chull(A) = [0,1]. The closed hull of the limit is not the limit of the
convex hull, even in a finite-dimensional space.

For the σ-hull, we need an infinite-dimensional example. Conceptually, we are using
the fact that a uniform distribution over the whole [0,1] is the infinite convex combination
of uniform distributions over countably many sets that cover the whole [0,1]. Let E be
the space of probability measures defined over [0,1] ⊆ R. Let {ai}

∞
i=1 be the sequence of

uniform distributions over [ 1
i+1 ,

1
i
]. Let e be the uniform distribution over [0,1]. We have

e = ∑ 1
i(i+1)ai where ∑ 1

i(i+1) = 1. Therefore e is the countable convex combination of ai. Let

Aj = {ai ∣ i ≤ j}. Note that ai ã aj for all i ≠ j. Therefore, {ai} are exactly all extreme points
of shull(⋃Aj). This means that e ∉ shull(Aj) for all j while e ∈ shull(⋃Aj). Therefore the
σ-hull of the limit is not the limit of the σ-hulls.

Proposition 1.44. The topological closure of the hull is a convex set and, therefore, the
closed hull.

Proof. Let A be a convex set and Ā its topological closure. Let ai,bi ∈ A be two sequences
that converge to a,b ∈ E respectively. We have a,b ∈ Ā since they are topological limits.
Consider ei = pai + p̄bi. Since mixing is continuous, we have:

e = pa + p̄b = p lim
i→∞

ai + p̄ lim
i→∞

bi = lim
i→∞

(pai + p̄bi) = lim
i→∞

ei. (1.45)

But ei are finite mixtures of elements of A, and therefore ei ∈ A is a sequence of elements
of A. The sequence converges, e is the limit of a sequence of elements of A and therefore
e ∈ Ā. That is, the topological closure of a convex set is also a convex set. But this means
that Ā is a closed convex set. Since any closed convex set that contains A will also need to
contain Ā, Ā is the closed hull of A.

Let A ⊂ E be a subset not necessarily convex. Then hull(A) will be convex. Therefore
its topological closure will be the closed hull of A.

There may be a relationship between the algebraic notion of σ-convexity and the topo-
logical notion of interior. For example, let U be a convex open set. While it clearly cannot
be closed convex, is it σ-convex? The idea is that convexity can only return points that are
“inside” the set, and σ-convexity is required to fill in all the limits. If that is true, it would
be natural to look at some sort of converse. Clearly, not all σ-convex sets are open, since all
closed convex sets are also σ-convex. The question becomes whether, for σ-convex sets, the
notion of algebraic boundary and topological boundary coincides. These questions raise the
following conjectures.

Conjecture 1.46. Let U ⊆ E be a convex open set. Then U is σ-convex.

Definition 1.47. Given a set A ⊂ E, a ∈ A is an internal point of A if for any e ∈ E we can
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find b ∈ A such that a = pe + p̄b for some p ∈ (0,1].

Conjecture 1.48. Let A ⊆ E and let a ∈ chull(A) be an internal point of chull(A). Then
a ∈ shull(A).

Conjecture 1.49. Let A ⊆ E be a σ-convex set. Then a ∈ A is an internal point of A if and
only if it is an interior point of A.

Remark. Note that if A is not convex, this is clearly not true. For example, let A ⊆ R2

be an annulus (i.e. the region of two concentric circles). The points on the inner circle are
internal points of A according to the definition, but they are not interior points. An internal
point of A for a σ-convex set is guaranteed to be surrounded by an open interval along any
direction. The question, as usual, is if this is enough to fit an open set.

Convex supremum

Later in the chapter, we will need to create the non-additive generalization for probability
measures and state counting measures. It turns out that both constructions can be understood
as instances of a more general construction that starts with a function f(e) of elements of the
ensemble space and generates a function csf(A) of sets of ensembles by asking what is the
highest value of f that is reachable by a mixture of elements of A. We are going to show that
this construction alone presents many nice mathematical properties.

Definition 1.50. Given a function f ∶ E → R, a convex supremum of f is a set function
csf ∶ 2

E → [−∞,+∞] such that csf(A) = sup(f(hull(A)) ∪ {f∅}), with f∅ ≤ inf(f(E)), that
returns the highest value of f reachable by convex combinations of A.

Proposition 1.51. For any f , the convex supremum csf has the following properties

1. range of f : csf(A) ∈ [f∅, sup(f(E))]
2. increasing: A ⊆ B Ô⇒ csf(A) ≤ csf(B)

3. continuous from below: for any increasing sequence Ai ⊆ E, csf( lim
i→∞

Ai) = lim
i→∞

csf(Ai).

Proof. 1. If A is empty, csf(A) = f∅. If A is non-empty, csf(A) is the supremum of
the subset of values returned by f(hull(A)), which means f∅ ≤ inf(f(E)) ≤ csf(A) ≤

sup(f(E)). Therefore csf(A) ∈ [f∅, sup(f(E))] for all A.
2. If A = B = ∅, then csf(A) = csf(B). If B ≠ ∅, csf(A) = f∅ ≤ inf(E) ≤ csf(B). In the

last case, since the hull is an increasing function, the image of a set through a map is an
increasing function and the supremum is an increasing function, the convex supremum is
an increasing function.

3. Let Ai ⊆ E be an increasing sequence and A = ⋃Ai. Since csf is increasing, csf(Ai)
is also an increasing sequence. Since hull is continuous from below, we have:

csf(A) = sup(f(hull(A)) ∪ {f∅}) = sup(f(⋃hull(Ai)) ∪ {f∅})

= sup(⋃ f(hull(Ai)) ∪ {f∅}) = sup(⋃(sup(f(hull(Ai)) ∪ {f∅})))

= sup(⋃ csf(Ai)).

(1.52)
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But since csf(Ai) is increasing, the supremum is exactly the limit. Therefore the convex
supremum is continuous from below.

Remark. Note that the convex supremum is not continuous from above. Let E be a
disc embedded in R2. Let f ∶ E → R be a non-trivial linear function. Then f will have a
maximum and a minimum on two opposite points a and b on the circle that encloses the
disc. Take a line that divides the disc in two halves, leaving the minimum and the maximum
on different halves. Then over that line f will take the minimum value m > f(b) on one of
the extreme points of the line. Consider a countable collection {ei} of points over that line
and let Aj = {ei ∣ i ≥ j}. This is a decreasing sequence of infinite sets, where we are taking
one point out at a time. We have f(ei) ≥ m for all i and therefore csf(Aj) ≥ m for all j,
which means lim

j→∞
csf(Aj) ≥m. However, ⋂Aj = ∅ and csf(∅) = f∅ ≤ inf(f(E)) = f(b) <m.

This means that, in general, csf( lim
j→∞

Aj) ≠ lim
j→∞

csf(Aj) for a decreasing sequence.

Proposition 1.53. Let A ⊆ E and f ∶ E → R be a continuous function, then csf(A) =

csf(shull(A)) = csf(chull(A)).

Proof. The proposition is true if A = ∅, since ∅ = hull(∅) = shull(∅) = chull(∅).
Now let A ≠ ∅. Note that chull(A) is a convex set, meaning hull(chull(A)) = chull(A).

This means that we are looking for the difference between the supremum of f over the
hull and the closed hull. Suppose e ∈ chull(A) but e ∉ hull(A). Still, e will be the limit of a
sequence of ei ∈ hull(A). Since f is continuous, then f(e) is the limit of the sequence f(ei),
for which f(ei) ≤ sup(f(hull(A))) for all i. Therefore, f(e) ≤ sup(f(hull(A))) = csf(A).
Since f(e) ≤ csf(A) for all e ∈ chull(A), then sup(f(chull(A))) = csf(chull(A)) ≤ csf(A).
Since csf is increasing and hull(A) ⊆ chull(A), csf(A) ≤ csf(chull(A)). Therefore csf(A) =

csf(chull(A)).
Note that A ⊆ shull(A) ⊆ chull(A) and csf is an increasing function. Therefore csf(A) ≤

csf(shull(A)) ≤ csf(chull(A)) = csf(A) which means csf(A) = csf(shull(A)).

Note that a measure is a monotonic set function continuous from below that is also non-
negative and additive. It is easy to show that the convex supremum is non-negative if and
only if f is non-negative. Additivity, instead, is more complicated as it needs to be recovered
on the lattice of subspaces.

Corollary 1.54. A convex supremum of f is non-negative if and only if f is non-negative
and f∅ ≥ 0.

Proof. Since the range of csf is [f∅, sup(f(E))], csf is non-negative if and only if f∅ ≥ 0.
Since f∅ ≤ inf(f(E)), f∅ ≥ 0 only if f is non-negative.

1.4 Axiom of entropy

In this section we will see how characterizing the variability of the elements within an ensemble
leads to the standard notion of entropy. The entropy will have to satisfy few basic properties
justified by the notion of variability which will be enough to recover the usual Shannon
formula. It will also provide us with another basic notion to compare ensembles: two ensembles
are mutually exclusive, or orthogonal, if they have no elements in common, which means the
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entropy will maximally increase during mixing. The interaction between orthogonality and
separateness is enough to understand the differences between classical and quantum systems.

We saw that our basic notion of state is that of an ensemble. Since an ensemble represents
all possible preparations of equivalent systems prepared according to the same procedure, we
want to characterize how much those instances are different from each other. To be truly gen-
eral, we want to be able to make this characterization without assuming what the individual
instances are. First of all, the variability should be an experimentally well-defined quantity,
and it should therefore be a continuous function in the natural topology. It should also be
compatible with statistical mixing. Intuitively, the variability cannot decrease during mixing
which makes the entropy a strictly concave function. Variability will have a maximal increase
when mixing ensembles that are mutually exclusive: no instance of one can be confused with
an instance of the other. In that case, the increase of the variability is fully characterized
by the mixing coefficients. We say that two mutually exclusive ensembles are orthogonal, as
this property will correspond mathematically to orthogonality in the space of distributions.
Lastly, if one ensemble has no instances in common with other two, then it has no instance
in common with any mixture of the two.

Thinking of ensembles and the variability of their instances, then, makes it clear what
entropy is and why it has these properties. We are not concerned, at this point, what the
source of the variability is. We just know that it is something that we need to characterize.

Axiom 1.55 (Axiom of entropy). Every ensemble is associated with an entropy which
quantifies the variability of the instances within an ensemble. Formally, an ensemble space
E is equipped with a function S ∶ E → R, defined up to a positive multiplicative constant
representing the unit numerical value. The entropy has the following properties:

• Continuitya

• Strict concavity: S(pa + p̄b) ≥ pS(a) + p̄S(b) with the equality holding if and only
if a = b

• Upper variability bound: there exists a universal function I(p, p̄) (i.e. the same
for all ensemble spaces) such that S(pa+ p̄b) ≤ I(p, p̄) + pS(a) + p̄S(b); if the equality
holds, a and b are mutually exclusive or orthogonal, noted a ⊥ b

• Mixtures preserve orthogonality:b a ⊥ b and a ⊥ c if and only if a ⊥ pb + p̄c for
any p ∈ (0,1)

Justification. The entropy quantifies the variability of the instances within an ensemble.
Since the ensemble represents a collection of preparations of equivalent systems, and since
each instance will in general be potentially different, it is legitimate to ask how much
variability there is among the different instances. We are assuming that the entropy is a
quantity (i.e. a linearly ordered property), meaning that it is always meaningful to tell
whether one ensemble has more variability than another. If this is the case, the later
requirements of continuity and strict concavity will force the entropy to be a real-valued
quantity. This is because the variability will change under statistical mixtures, and since
statistical mixtures are performed with real-valued coefficients, the variability will have to
be a real-valued quantity. While we strongly suspect that it is not conceptually possible
to have a characterization of variability that is not linearly ordered, as this would entail
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ranges of the same variable that can be potentially mapped to each other without a clear
mapping of their variability, we do not yet have a tight argument. Therefore we are not
able to fully justify entropy’s linear ordering at this time, and the linear ordering of the
entropy should be considered an assumption. Provided that assumption, we are justified
to assume the existence of a real-valued function that returns the entropy, a measure of
variability of the ensemble.

Since the entropy is a real-valued quantity, it will have a corresponding unit. This unit
is independent from all other units, and therefore the overall structure of the ensemble
space must be independent of this choice. Mathematically, the physical dimension of the
unit is not captured, just its numeric value. A change of unit may change the numeric
value by a multiplicative constant. Since variability is an ordered quantity, we want the
change of units to respect the ordering and therefore it should be a positive multiplicative
constant. This justifies that the entropy function is defined up to a positive multiplicative
constant.

Note that the additivity of the entropy over independent systems fixes the zero. If
SAB = SA +SB, in fact, one can’t rescale all three terms by an additive factor and preserve
the relationship.

The variability, in the end, will have physical consequences, and it will therefore be
measurable, thus experimentally verifiable: it will have to be a topologically continuous
function. Moreover, small changes in the ensemble should produce small changes in the
variability, which justifies analytical continuity. We are therefore justified to assume conti-
nuity of the entropy.

Suppose we have two ensembles and we perform a statistical mixture. There are going
to be three sources of variability: the two ensembles and the random choice between them.
The total contribution from the original ensembles will be the average variability of the
original ensembles. This is increased by the variability introduced by the random choice,
which is always a positive contribution. Therefore the final variability cannot be less than
the average of the original ensembles. That is, S(pa+ p̄b) ≥ pS(a)+ p̄S(b). If we are mixing
an ensemble with itself, this is equivalent to just choosing from the original ensemble,
therefore the variability will not increase. Conversely, if the variability stays the same, it
means that the random choice does not increase the variability, and therefore we must be
choosing between equivalent ensembles. Therefore we are justified to assume that entropy
is strictly concave.

On the other hand, the variability cannot increase arbitrarily during mixture. The
maximum variability will be given when the two ensembles are mutually exclusive, when
an instance of the first ensemble cannot be produced by the second ensemble. That is, a
single instance is enough to determine whether we have the first ensemble or the second. In
this case, the variability is increased by the variability of the random choice, which must
depend only on the mixture coefficient, and not the nature of the ensembles themselves.
That is, S(pa+p̄b) ≤ I(p, p̄)+pS(a)+p̄S(b) is the upper variability bound, which is saturated
if and only if a and b are mutually exclusive. The actual function I is left unspecified and,
as we show in proposition 1.59, it will correspond to the Shannon entropy as it is the
only indicator of variability that will satisfy the axiom of entropy. This justifies the upper
variability bound.

Now suppose ensembles a and b are mutually exclusive and so are a and c. That is,
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an instance of a cannot ever be produced by either b or c. Then an instance of a cannot
be produced by a mixture of b and c, since ultimately a mixture of b and c will return
an instance of one of the two. Therefore a and any mixture of b and c are mutually
exclusive. The argument works in reverse as well: if an instance of a cannot be produced by
a mixture of b and c, then it cannot be produced by either. This justifies mixtures preserve
orthogonality.

aCurrently, we are imposing that the entropy is continuous. There may be a chance that this requirement
is redundant, as strict concavity and the upper variability bound may already impose this. We have found
proofs that show that real-valued convex/concave functions of real values are continuous. These proofs fail
at the extreme points, but the upper variability bound may fix this. Another open question is whether
differentiability is also an independent requirement.

bIt is unclear whether “mixtures preserve orthogonality” is an independent axiom. Intuitively, the
following argument tells us that it is. Take the 2-dimensional simplex (i.e. a triangle) that represents
a classical discrete probability space over three elements. Take the standard entropy, which will satisfy
“mixtures preserve orthogonality”. This is because the middle point has entropy log 3. We can imagine
redefining the entropy so that it is a little bit lower in the center but it is unchanged on the sides. However,
one needs to provide an actual example and show that it satisfies all axioms. It may also be that only
one direction of the implication is an independent axiom. That is, that orthogonality with the components
implies orthogonality with the mixtures. This is what does not hold for separateness.

As with the other axioms, we should now verify that the axiom of entropy is satisfied by
the standard cases.

Proposition 1.56. Discrete classical ensemble spaces, continuous classical ensemble spaces
and quantum ensemble spaces satisfy the axiom of entropy.

Proof. Let’s first look at the classical continuous case. Every ensemble is represented
by a distribution ρ(x) with ∫X ρ(x)dµ = 1. The entropy is given by S(ρ) = −∫X ρ log ρdµ.
This is a continuous function of ρ.

− log ρ

1−ρ
ln 2

ρ

Recall that throughout this chapter, all logarithms are base two. To show strict con-
cavity, note that, as shown in the figure, − log ρ ≥ 1−ρ

ln 2 with the equality holding if and only
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if ρ = 1. We have

S(pρ1 + p̄ρ2) = −∫
X

(pρ1 + p̄ρ2) log (pρ1 + p̄ρ2)dµ

= −∫
X
pρ1 log (pρ1 + p̄ρ2)dµ − ∫

X
p̄ρ2 log (pρ1 + p̄ρ2)dµ

= −∫
X
pρ1 log

pρ1 + p̄ρ2

ρ1
dµ − ∫

X
pρ1 log ρ1dµ

− ∫
X
p̄ρ2 log

pρ1 + p̄ρ2

ρ2
dµ − ∫

X
p̄ρ2 log ρ2dµ

≥ ∫
X
pρ1

1

ln 2
(1 −

pρ1 + p̄ρ2

ρ1
)dµ − p∫

X
ρ1 log ρ1dµ

+ ∫
X
p̄ρ2

1

ln 2
(1 −

pρ1 + p̄ρ2

ρ2
)dµ − p̄∫

X
ρ2 log ρ2dµ

=
p

ln 2
[∫

X
ρ1dµ − ∫

X
(pρ1 + p̄ρ2)dµ] + pS(ρ1)

+
p̄

ln 2
[∫

X
ρ2dµ − ∫

X
(pρ1 + p̄ρ2)dµ] + p̄S(ρ2)

=
p

ln 2
[1 − 1] + pS(ρ1) +

p̄

ln 2
[1 − 1] + p̄S(ρ2)

= pS(ρ1) + p̄S(ρ2)

(1.57)

The equality holds if and only if pρ1+p̄ρ2
ρ1

= 1 which is exactly when ρ1 = ρ2.

− log ρ

ρ

ρ̂ ρ̂ + k

− log(ρ̂)

− log(ρ̂+k)

For the upper bound, as shown in the figure, note that the logarithm is a strictly
increasing function, and therefore − log(ρ̂ + k) ≤ − log(ρ̂) for any k ≥ 0, with equality
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holding if and only if k = 0. We have

S(pρ1 + p̄ρ2) = −∫
X

(pρ1 + p̄ρ2) log (pρ1 + p̄ρ2)dµ

= −∫
X
pρ1 log (pρ1 + p̄ρ2)dµ − ∫

X
p̄ρ2 log (pρ1 + p̄ρ2)dµ

≤ −∫
X
pρ1 log pρ1dµ − ∫

X
p̄ρ2 log p̄ρ2dµ

= −∫
X
pρ1 log pdµ − ∫

X
pρ1 log ρ1dµ − ∫

X
p̄ρ2 log p̄dµ − ∫

X
p̄ρ2 log ρ2dµ

= −p log p∫
X
ρ1dµ − p∫

X
ρ1 log ρ1dµ − p̄ log p̄∫

X
ρ2dµ − p̄∫

X
ρ2 log ρ2dµ

= −p log p − p̄ log p̄ + pS(ρ1) + p̄S(ρ2)

(1.58)

The equality holds if and only if ρ2 = 0 wherever ρ1 ≠ 0 and ρ1 = 0 wherever ρ2 ≠ 0. That
is, the equality holds if and only if the two distributions have disjoint support. Therefore
orthogonal distributions are exactly distributions with disjoint support.

Suppose ρ4 has disjoint support from ρ1 = pρ2 + p̄ρ3, then it has disjoint support from
ρ2 and ρ3 because the support of ρ1 is the union of the supports of ρ2 and ρ3. Conversely,
if ρ4 has disjoint support from both ρ2 and ρ3, then ρ4 has disjoint support from ρ1 as
well. Therefore mixtures preserve orthogonality.

All these arguments are valid for discrete classical ensemble spaces, changing integrals
to sums.

For the quantum case, we haven’t found a short proof that does not require defining the
KL divergence and the entropy for a joint distribution. The result, however, is generally
known and can be found, for example, in Nielsen and Chuang.

Uniqueness of entropy of mixing coefficients

The axiom of entropy imposes only the existence of a universal function I(p, p̄) without
specifying its functional form. We are now going to show that the functional form is actually
already fixed by the axiom: the Shannon entropy −p log p − p̄ log p̄ is in fact the only function
that is satisfies the axiom. The result is achieved by calculating the entropy of the same final
ensemble as decomposed into a mixture in different ways. Since the final entropy should not
care about how the mixture is performed, I(p, p̄) must satisfy some properties that lead to
the final results.

We note that the Shannon entropy in our framework does not represent an absolute
entropy, but the maximal entropy increase during mixing. This is why we are able to keep the
framework general. In fact, note that the proof does not technically know whether we are in
a classical or quantum ensemble space, or even in an ensemble space of a new possible theory.

Theorem 1.59 (Uniqueness of entropy). If there exists an ensemble space with an infinite
set of orthogonal ensembles, then the entropy of the coefficients I(p, p̄) is the Shannon en-
tropy. That is, I(p, p̄) = −κ (p log p + p̄ log p̄) where κ > 0 is the arbitrary multiplicative con-
stant for the entropy. For a mixture of arbitrarily many elements, I({pi}) = −κ∑i pi log pi.

https://www.cambridge.org/highereducation/books/quantum-computation-and-quantum-information/01E10196D0A682A6AEFFEA52D53BE9AE
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Proof. Since the upper entropy bound has to be the same for all spaces, let us as-
sume that E is such that it contains countably many orthogonal ensembles {el}

∞
l=1. Since

mixtures preserve orthogonality, for any convex combinations ∑i piai of finitely many
{ai}

n
i=1 ⊂ {el}

∞
l=1, we have S(∑i piai) = In(p1, p2, . . . , pn) + ∑i piS(ai) where In ∶ [0,1]

n → R
is a function of the coefficients only. Note that, given commutativity, the order of the pi
does not matter and, since the coefficients can be zero, we must have In(p1, p2, . . . , pn) =
In+1(p1, p2, . . . , pn,0). Therefore we can think of I as a function of the coefficients and
write I({pi}

n
i=1). Note that since we can write I({pi}

n
i=1) = S(∑i piai) − ∑i piS(ai), and

both entropy and mixing are continuous, then I is continuous.
We now show that I ({ 1

n
}
n

i=1
) = κ logn with κ > 0. That is, the maximum increase of

entropy for a uniform distribution is proportional to the logarithm of the number of cases.
Pick two positive integers n,m ∈ Z+. Pick nm elements ajk ∈ {el}

∞
l=1 where 1 ≤ j ≤ n and

1 ≤ k ≤m. We have:

S
⎛

⎝

n

∑
j=1

m

∑
k=1

1

n

1

m
ajk

⎞

⎠
= I ({

1

n

1

m
}
nm

i=1
) +

n

∑
j=1

m

∑
k=1

1

n

1

m
S (ajk)

= S
⎛

⎝

n

∑
j=1

1

n

m

∑
k=1

1

m
ajk

⎞

⎠
= I ({

1

n
}
n

i=1
) +

n

∑
j=1

1

n
S (

m

∑
k=1

1

m
ajk)

= I ({
1

n
}
n

i=1
) +

n

∑
j=1

1

n
(I ({

1

m
}
m

i=1
) +

m

∑
k=1

1

m
S (ajk))

= I ({
1

n
}
n

i=1
) + I ({

1

m
}
m

i=1
) +

n

∑
j=1

m

∑
k=1

1

n

1

m
S (ajk) .

(1.60)

Therefore

I ({
1

nm
}
nm

i=1
) = I ({

1

n
}
n

i=1
) + I ({

1

m
}
m

i=1
) . (1.61)

Note that f(n) = I ({ 1
n
}
n

i=1
) is a function of n only, such that f(nm) = f(n) + f(m). Since

I is continuous, by Cauchy’s functional equation we have f(n) = κ logn. Since the entropy
is strictly concave, κ must be positive. Therefore

I ({
1

n
}
n

i=1
) = κ logn (1.62)

for some κ > 0.
We now show that if the coefficients pi are rationals, In ({pi}

n
i=1) = −κ∑

n
i=1 pi log pi. Let

{pi}
n
i=1 be rational coefficients for a convex combination. We can write them as pi =

mi

m
where {mi},m ∈ Z+ and m is the least common denominator. Since pi are the coefficients
of a convex combination, we must have ∑ni=1mi =m. Since mi is a positive integer, we can
write mi = ∑

mi
j=1 1. We now take m orthogonal ensembles aij where 1 ≤ i ≤ n and 1 ≤ j ≤mi.

https://en.wikipedia.org/wiki/Cauchy%27s_functional_equation
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We have

S
⎛

⎝

n

∑
i=1

mi

∑
j=1

1

m
aij

⎞

⎠
= I ({

1

m
}
m

i=1
) +

n

∑
i=1

mi

∑
j=1

1

m
S (aij)

= κ logm +
n

∑
i=1

mi

∑
j=1

1

m
S (aij)

(1.63)
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⎛
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Therefore

κ logm = I ({pi}
n
i=1) +

n

∑
i=1

piκ logmi

I ({pi}
n
i=1) = κ logm −

n

∑
i=1

piκ logmi =
n

∑
i=1

piκ logm −
n

∑
i=1

piκ logmi

= −
n

∑
i=1

piκ log
mi

m
= −κ

n

∑
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pi log pi.

(1.65)

Lastly, let {pi}
n
i=1 be coefficients for a convex combination, not necessarily rational.

Since I is continuous and pi can be approximated with rational values to an arbitrary
level of precision, we will have I ({pi}

n
i=1) = −κ∑

n
i=1 pi log pi. In the case of n = 2, we have

I(p1, p2) = −κp1 log p1 − κp2 log p2.

Corollary 1.66. The unit for the entropy is determined (up to the physical dimension) by
the maximum of the entropy of the coefficients I (1

2 ,
1
2
). If the entropy is measured in bits,

then I (1
2 ,

1
2
) = 1.

Proof. A rescaling of the entropy will also rescale the entropy of the coefficients. There-
fore setting the value of the maximum of I will set the arbitrary multiplicative factor. If
I (1

2 ,
1
2
) = 1, then κ is equal to one and the logarithm is base two, which corresponds to

the entropy measured in bits. Note that this does not fix the physical dimensions of the
entropy, only the numerical value.

Separateness and orthogonality

Recall that orthogonality is formally defined in terms of the entropy: two ensembles are
orthogonal if the entropy is maximally increased during mixture. The name was chosen because
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it will recover the usual notion of orthogonality for the space of distributions in both classical
and quantum mechanics. Like the standard notion of orthogonality, in fact, it is irreflexive (no
ensemble is orthogonal to itself) and symmetric (if a is orthogonal to b, then b is orthogonal
to a). Moreover, an ensemble is not orthogonal to its own components.

Recovering the math, however, would be meaningless if we didn’t also provide a stronger
conceptual model. As we said, two ensembles are orthogonal if they are mutually exclusive:
they have no instance in common. This means that if Amanda selects between two preparation
procedures that correspond to orthogonal ensembles, Boris may only need one instance to
determine which preparation was selected. A full bit of information can be transferred. This
is why optimal measurements are defined across mutually exclusive, i.e. orthogonal, outcomes.

Moreover, recall that two ensembles are separate if they do not have a common component,
they are not different mixtures of the same ensemble. Clearly, if two ensembles do not have
instances in common, they cannot be the mixture of the same ensemble. In fact, from the
axioms we posed, we are able to recover that orthogonality implies separateness. One may
be tempted to conclude the converse: if two ensembles are not orthogonal, they have some
instances in common and therefore we can group those common instances into a sub-ensemble
of both. However, and this is the crucial problem, there is nothing that guarantees us that
we can find a preparation procedure that spans only the overlap. In classical mechanics, the
assumption is that we can always do it. In quantum mechanics, this does not always work
and, with these concepts, it is easy to see why.

Quantum states have a lower bound on the entropy. If two pure states have an overlap, the
ensemble that would corresponding to that overlap would have variability lower than a pure
state: it would correspond to an entropy lower than that of a pure state. That is, we cannot
produce the overlap with a reliable preparation procedure. The ensembles have instances in
common but do not have an ensemble in common. This means that we have ensembles that
are not mutually exclusive (i.e. not orthogonal) but do not have a common component (i.e.
are separate). Understanding the difference between classical and quantum mechanics lies in
understanding this case.

Proposition 1.67. Orthogonality satisfies the following properties:

1. irreflexivity: a Ù a
2. symmetry: a ⊥ b if and only if b ⊥ a
3. components are not orthogonal: if b is a component of a then a Ù b
4. orthogonality implies separateness: if a ⊥ b then a ã b.

Proof. For 1, let a ∈ E . We have S(pa + p̄a) = S(a) < I(p, p̄) + pS(a) + p̄S(a). Therefore
a is not orthogonal to itself as it does not saturate the upper bound.

For 2, note that the upper entropy bound is symmetric in a and b.
For 3, let a = pb + p̄c. Since mixtures preserve orthogonality, b ⊥ a if and only if b ⊥ b

and b ⊥ c. But b is not orthogonal to itself, therefore a and b are not orthogonal.
For 4, we demonstrate the contrapositive: that ensembles that are not separate are not

orthogonal. Let a,b ∈ E have a common component. That is, a = pc + p̄d and b = λc + λ̄e.
Since mixtures preserve orthogonality, a ⊥ b if and only if a ⊥ c and a ⊥ e. But c is a
component of a, therefore they are not orthogonal. Therefore two ensembles that have a
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common component are not orthogonal. This means that if two ensembles are orthogonal
they cannot have a common component and are therefore separate.

As we did for separateness, we extend the notion of orthogonality to sets of ensembles.

Definition 1.68. Two sets of ensembles are orthogonal if all the elements of one are
orthogonal to all the elements of the other. That is, A ⊥ B with A,B ⊆ E if a ⊥ b for all
a ∈ A and b ∈ B.

Proposition 1.69. Let A,B ⊆ E be two sets of ensembles such that A ⊥ B. Then the
following are true:

1. the two sets are separate: A ã B
2. their hulls are orthogonal: hull(A) ⊥ hull(B), shull(A) ⊥ shull(B) and

chull(A) ⊥ chull(B)

Proof. For 1, by definition a ⊥ b for all a ∈ A and b ∈ B. Since orthogonality implies
separateness, we also have a ã b.

For 2, we will concentrate on the closed hull, since if two sets are orthogonal so are their
subsets. Since mixtures preserve orthogonality, every finite mixture of A is orthogonal to
every finite mixture of B. To show that this extends to the topological closure, let ai ∈ A
and bj ∈ B be two sequences of finite mixtures that converge in A and B respectively.
Consider f(p, ai,bj) = S(pai + p̄bj) − pS(ai) − p̄S(bj). Since all mixtures are orthogonal,
f(p, ai,bj) = I(p, p̄). Note that f is a continuous function, therefore the limits will also
converge to I(p, p̄). This means that every element in the closed hull of A is orthogonal to
every element in the closed hull of B.

We may want to extend the notion of separate decomposability to orthogonal decompos-
abilty, though it is not clear whether this will be useful or not.

Definition 1.70. An ensemble is orthogonally decomposable if it can be expressed as a
mixture of two orthogonal ensembles. An ensemble is orthogonally monodecomposable
if it is both orthogonally decomposable and monodecomposable.

Corollary 1.71. An ensemble that is orthogonally decomposable is also separately decom-
posable.

Proof. Since orthogonality implies separateness by 1.67, an orthogonal decomposition
is also a separate decomposition.

1.5 Affine combinations and vector space embedding

In this section we will see how the bounds of entropy constrain ensemble spaces to embed into
vector spaces. Moreover, the ensemble space must be bounded along any direction. In other
words, the existence of an entropy rules out physically pathological cases that a convex space
may otherwise allow.
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Affine combinations

The axiom of mixture just tells us that given two ensembles and a mixing coefficient, we
can identify the mixture of the two ensembles. It does not guarantee the reverse. That is,
given a final mixed ensemble, the mixing ratio and one component, it is not necessarily true
that the second component is uniquely determined. Mathematically, the uniqueness of this
type of decomposition is called the cancellative property of a convex space. This property is
important as it can be shown that it is necessary and sufficient for the convex space to embed
into a vector space (see arXiv:1105.1270).

In an ensemble space, the continuity and the strict concavity of the entropy forces the
space to be cancellative. If pa + p̄e = pb + p̄e for some p ∈ (0,1), from the convex structure we
can show that p(λa+λ̄b)+ p̄e = pa+ p̄e = pb+ p̄e for all p ∈ (0,1) and λ ∈ [0,1]. That is, if mixing
e with either a or b for some mixing coefficient p yields the same result, then all non-trivial
mixtures of e with any mixture of a and b will yield the same result. But this means that the
entropy cannot change as we change a to b during mixture, which can only happen if they
are the same ensemble.

Definition 1.72. A convex space X is cancellative if pa+ p̄e = pb+ p̄e for some p ∈ (0,1)
implies a = b.

Theorem 1.73 (Ensemble spaces are cancellative). Let E be an ensemble space. Let a,b, e ∈
E such that pa + p̄e = pb + p̄e for some p ∈ (0,1). Then a = b.

Proof. Let a,b, e ∈ E such that p0a + p̄0e = p0b + p̄0e for some p0 ∈ (0,1).
First, we show that pa + p̄e = pb + p̄e for all p ∈ (0, p0]. In that case, since 0 < p

p0
≤ 1, we

have

pa + p̄e =
p

p0
(p0a + p̄0e) + (

p

p0
)e =

p

p0
(p0b + p̄0e) + (

p

p0
)e = pb + p̄e. (1.74)

Now we show that pa+ p̄e = pb+ p̄e for all p ∈ (0,1). Since we want to be able to expand
multiple times, we want to be able to find a p ∈ (0,1) such that

pa + pa + (1 − 2p)e = pa + p̄(p0a + p̄0e) = pa + p̄p0a + p̄p̄0e. (1.75)

The coefficient of the middle term on both sides of the equality, then, has to match. That
is, we want p = p̄p0, which means

p = (1 − p)p0 = p0 − pp0

p0 = p + pp0 = (1 + p0)p

p =
p0

1 + p0

(1.76)

https://arxiv.org/abs/1105.1270
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Note that since p0 > 0 we have p > 0, and since the numerator is always less than the
denominator p < 1. We have

2pa + 2pe = pa + pa + (1 − 2p)e = pa + p̄(p0a + p̄0e) = pa + p̄(p0b + p̄0e)

= pa + pb + (1 − 2p)e = pb + pa + (1 − 2p)e = pb + p̄(p0a + p̄0e)

= pb + p̄(p0b + p̄0e) = pb + pb + (1 − 2p)e

= 2pb + 2pe

(1.77)

The relationship, then, is valid for p1 = 2p. Note that p1 > p0. In fact

p1 =
2p0

1 + p0
> p0

2p0 > (1 + p0)p0 = p0 + p
2
0

p0 > p
2
0

(1.78)

which is true since p0 ∈ (0,1). Since now the relationship holds for p1 =
2p0

1+p0
> p0, we can

repeat the process again and find that it holds for p2 =
2p1

1+p1
> p1 and so on. We thus have a

sequence of elements between 0 and 1 and we need to determine the limit of this sequence.
The only two fixed points of the expression f(x) = 2x

1+x are 0 and 1, with 0 being a repelling
fixed point and 1 an attracting fixed point. Since we start with an element that is strictly
between those values, the sequence will converge to 1. Therefore, since we can always find
a greater mixing coefficient for which the relationship holds, combined with the previous
result, pa + p̄e = pb + p̄e for all p ∈ (0,1).

Now we show that if pa+ p̄e = pb+ p̄e for all p ∈ (0,1), then we also have p(λa+ λ̄b)+ p̄e =
pa + p̄e = pb + p̄e for all λ ∈ [0,1]. We have

p(λa + λ̄b) + p̄e = λ(pa + p̄e) + λ̄(pb + p̄e) = λ(pa + p̄e) + λ̄(pa + p̄e)

= pa + p̄e = pb + p̄e
(1.79)

Lastly, we show that S(λa + λ̄b) = S(a) = S(b) for all λ ∈ [0,1]. Using the entropy
bounds, with λ ∈ [0,1], we have

lim
p→1

S(p(λa + λ̄b) + p̄e) ≤ lim
p→1

[I(p, p̄) + pS(λa + λ̄b) + p̄S(e)] = S(λa + λ̄b)

lim
p→1

S(p(λa + λ̄b) + p̄e) ≥ lim
p→1

[pS(λa + λ̄b) + p̄S(e)] = S(λa + λ̄b)
(1.80)

and therefore

lim
p→1

S(p(λa + λ̄b) + p̄e) = S(λa + λ̄b). (1.81)

Using the above property, we also have

S(λa + λ̄b) = lim
p→1

S(p(λa + λ̄b) + p̄e) = lim
p→1

S(pa + p̄e) = S(a)

= lim
p→1

S(pb + p̄e) = S(b)
(1.82)
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Since S(λa+ λ̄b) = λS(λa+ λ̄b)+ λ̄S(λa+ λ̄b) = λS(a)+ λ̄S(b), a = b by strict concavity.

The fact that the convex space is cancellative essentially allows us to “invert” a con-
vex combination, allowing affine combinations. An affine combination is a linear combination
where the coefficients sum to one, like in a convex combination, but coefficients can be neg-
ative, unlike in a convex combination. Conceptually we can “take part of an ensemble out”
from another ensemble. The ability in quantum mechanics to use negative pseudo-probability,
for example in Wigner functions, stems from the fact that the space of ensembles allows affine
combinations because it is cancellative.

An affine combination can be translated into the equality between two convex combinations
by moving all the negative coefficients on the other side of the equality. This reduces to finding
the component a mixture, which, if it exists, is unique by the cancellative property.

It is important to note that while we can write affine combinations, not all affine com-
binations correspond to ensembles. For example, if b is not a component of a, then 3

2a −
1
2b

cannot possibly be an ensemble as we cannot take any “amount of b” from a.

Definition 1.83 (Affine combinations). Let {ei}
n
i=1 ⊆ E be a finite sequence of ensembles

and {ri}
n
i=1 ⊆ R be a finite sequence of coefficients such that ∑ni=1 ri = 1. The affine com-

bination ∑ni=1 riei is the ensemble a ∈ E, if it exists, such that ∑i∈I
ri
r ei =

1
ra + ∑i∉I

−ri
r ei

where I = {i ∈ [1, n] ∣ ri ≥ 0} and r = ∑i∈I ri.
Consistency check. For the definition to work, we need to show that the affine com-

bination can be re-expressed in terms of convex combinations. Note that the coefficients
ri are not necessarily positive, but still sum to 1. With the given definitions, I includes
exactly the indexes that correspond to non-negative coefficients, and r is the sum of all
those non-negative coefficients. This means that ri

r ∈ [0,1] for all i ∈ I and ∑i∈I
ri
r = 1.

Therefore ∑i∈I
ri
r ei is a convex combination and it is always well-defined. Additionally, we

have that ∑i∈I ri = 1−∑i∉I ri, which means −ri
r−1 ∈ [0,1] for all i ∉ I and ∑i∈I

−ri
r−1 = 1. There-

fore ∑i∈I
−ri
r−1ei is a convex combination and it is always well-defined. Note that a is defined

to be such that ∑i∈I
ri
r ei =

1
ra +

r−1
r ∑i∉I

−ri
r−1ei. If it exists, it is unique.

Remark. In the same way that not all infinite convex combinations yield valid ensembles,
not all finite or infinite affine combinations yield valid ensembles.

We still need to understand how to extend affine combination to the infinite case. The
safest way is to require the two infinite mixtures ∑i∈I

ri
r ei and ∑i∉I

−ri
r ei to converge and then

require that the resulting affine problem admit a solution.

Vector space embedding

As we said before, the cancellative property is necessary and sufficient for the embedding
of a convex space into a vector space. While this can be proved with a short mathematical
proof, it would be an abstract construction which would not give us any insight into what
is actually being represented physically. Therefore, after choosing an internal point a ∈ E as
an origin, we will construct a vector space from the ground up, as the space of differences
between ensembles. This will also justify why, locally at every point, this space becomes the
space of variations.
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a

b

c

d

e

f

a = 1
2b +

1
2c ⇐⇒ 1(c − a) = −1(b − a)

d = 1
3a +

2
3b ⇐⇒ 1(d − a) = 2

3(b − a)

f = 1
2b +

1
2e ⇐⇒ 1(f − a) = 1

2(b − a) + 1
2(e − a)

Figure 1.3: Once a reference point is picked (i.e. a in the figure), the differences with respect
to that point behave like elements of a vector space. The relationship between ensembles in
terms of mixtures become vector space relationships between differences. Note that the sum
is effectively a “half parallelogram law,” so that the result always is a member of the convex
space.

Figure 1.3 shows the motivation of the construction. We take an internal point a ∈ E to
be a reference, the origin. For any other ensemble b, we imagine the change from a to b as
the arrow that connects the first to the second. This is the ensemble difference (b − a). The
negative of that difference would find an ensemble c in the opposite direction. Note that a
now sits exactly in between b and c, and therefore a = 1

2b+
1
2c if and only if (b− a) = −(c− a).

That is, relationships between vectors are re-expressed as convex combinations of ensembles.
Similarly, we can now stretch or shrink differences by a factor. For example, multiplying the

difference by a third will give us the ensemble that is at a third between a and b. Similarly, we
can add differences. For example, 1

2(b−a)+
1
2(c−a) will give us the difference ((1

2b +
1
2c) − a),

the difference between a and the midpoint between b and c. Note that if we double that
difference, we obtain the parallelogram law for vector addition.

Clearly, if we stretch a difference too much, we will go out of the ensemble space. Yet,
since we can always shrink and then stretch, all operations defined on differences within
the ensemble space can be formally defined on differences that go outside the ensemble space.
Given that a is an internal point, then differences exist in every direction. This is, in a nutshell,
the vector space we are constructing. This clarifies that, in the end, we are always going to
be interested in sets of vectors that can be shrunk within the ensemble space.10

While the motivation is straightforward, the construction is complicated by the fact that
there are multiple ways of expressing the same difference. In the third example in figure 1.3,
(b−a) and 3(c−a) correspond to the same vector. Therefore, we need to specify this equivalence
class and prove that the set of equivalence classes forms a vector space. The way that the
equivalence relationship is specified is so that the proofs remain short and manageable, and
it is therefore mainly a technical issue.11

Definition 1.84 (Ensemble differences). Given an ensemble space, a difference between
two ensembles represents the change required to transform one ensemble into another.
Formally, an ensemble difference, noted r(b − a), is a triple formed by a real number

10It is unclear whether this insight may help us understand what the topology of the embedding vector
space is.

11Originally, the equivalence relationship was specified by three separate cases. While more directly justifi-
able, that gave 6 different possible combinations to check in every proof.
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r ∈ R and an ordered pair of ensembles a,b ∈ E.

Definition 1.85. The scalar multiplication of a difference r(b − a) by a real number
s ∈ R, noted s(r(b − a)), is the difference (sr)(b − a)

Definition 1.86. Two ensemble differences are equivalent, noted r(b − a) ∼ s(c − a), if
there exists k ∈ R such that

1

r + s + k
(rb + sa + ka) =

1

r + s + k
(sc + ra + ka).

Remark. Note that this is an equation between affine combinations since the coefficients
can be negative. The equality can be satisfied only if both affine combinations exist.

Corollary 1.87. If the above condition is satisfied for some k, then it is satisfied for all
k ≠ −(r + s) for which the affine combination exists.

Proof. Suppose 1
r+s+k(rb + sa + ka) =

1
r+s+k(sc + ra + ka) for some k. Let k′ ∈ R be such

that 1
r+s+k′ (rb+sa+k

′a) is a valid affine combination, which requires r+s+k′ ≠ 0. Then we

have 1
r+s+k′ (rb+sa+k

′a) = 1
r+s+k′ (rb+sa+ka)+

k′−k
r+s+k′ a =

r+s+k
r+s+k′

1
r+s+k(rb+sa+ka)+

k′−k
r+s+k′ a =

r+s+k
r+s+k′

1
r+s+k(sc + ra + ka) +

k′−k
r+s+k′ a =

1
r+s+k′ (sc + ra + k

′a).

Proposition 1.88. Difference equivalence is reflexive, symmetric and transitive and there-
fore is an equivalence relation.

Proof. For reflexivity, we have 1
r+r+k(rb+ra+ka) =

1
r+r+k(rb+ra+ka), which is satisfied

for any a,b ∈ E and r ∈ R.
For symmetry, note that if r is switched with s and b with c, the left side becomes the

right side and vice-versa.
For transitivity, suppose r(b− a) ∼ s(c− a) and s(c− a) ∼ t(d− a). Then for some k and

l we have 1
r+s+k(rb+ sa+ka) =

1
r+s+k(sc+ ra+ka) and 1

s+t+l(sc+ ta+ la) =
1

s+t+l(td+ sa+ la).
Let l′ = r − t + k and therefore k = t − r + l′. We have 1

r+s+k(sc + ra + ka) =
1

r+s+t−r+l′ (sc +
ra + (t − r + l′)a) = 1

s+t+l′ (sc + ta + l
′a). Therefore l′ is such that 1

s+t+l′ (sc + ta + l
′a) is a

valid affine combination, which means 1
s+t+l′ (sc + ta + l

′a) = 1
s+t+l′ (td + sa + l

′a). Now let
k′ = l′ + s − r which gives l′ = k′ + r − s and k′ = k + s − t. We have 1

r+t+k′ (rb + ta + k
′a) =

1
r+s+k(rb+sa+ka) =

1
r+s+k(sc+ra+ka) =

1
s+t+l′ (td+sa+ l

′a) = 1
r+t+k′ (td+ra+k

′a). Therefore
r(b − a) ∼ t(d − a).

Proposition 1.89. The ensemble difference equivalence relation satisfies the following:

1. if r(b − a) ∼ s(c − a) with r ≠ 0 and s ≠ 0, then a, b and c are on the same line

2. if r ≠ 0, [r(b − a)] = {(r + j) (( r
r+jb +

j
r+j a) − a)} for all j ∈ R such that the affine

combination exists
3. [0(b − a)] = {0 (e − a) ∣ e ∈ E} ∪ {r (a − a) ∣ r ∈ R}

4. given p ∈ (0,1], r(b − a) ∼ r
p((pb + p̄a) − a)

5. r(b − a) ∼ s(c − a) implies (rt)(b − a) ∼ (st)(c − a) and therefore scalar multiplication
maps equivalence classes to equivalence classes
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Proof. For 1, the condition for equivalence imposes that an affine combination of b and
a equals an affine combination of c and a. Equivalently, this says that they are expressible
as affine combinations of each other, that they are on the same line.

For 2, let us first verify that r(b−a) ∼ (r+ j) (( r
r+jb +

j
r+j a) − a). We have 1

r+r+j+k(rb+

(r + j)a + ka) = 1
r+r+j+k ((r + j) ( r

r+jb +
j
r+j a) + ra + ka) =

1
r+r+j+k (rb + ja + ra + ka), which

means the two differences are equivalent. Note that all ensembles that are on the same line
of a and b can, except for a, be expressed as r

r+jb+
j
r+j a. Since, by 1, being on the same line

is a necessary condition for equivalence, the expression spans the entire equivalence class.
For 3, suppose r(c − a) ∼ 0(b − a). Then 1

r+0+k(rc + 0a + ka) = 1
r+0+k(0b + ra + ka). If

r = 0 we have a = a which is satisfied for all c ∈ E . If r ≠ 0 we have 1
r+k(rc+ ka) = a which is

satisfied only if c = a.

For 4, let r
p = r + j. We have j = r

p − r =
r(1−p)
p = (r + j)p̄. Therefore r

r+j = r
p
r = p and

j
r+j = p̄. This matches the coefficients in the equivalence class.

For 5, we have

1

r + s + k
(rb + sa + ka) =

1

r + s + k
(sc + ra + ka)

1

rt + st + kt
(rtb + sta + kta) =

1

rt + st + kt
(stc + rta + kta)

1

rt + st + k′
(rtb + sta + k′a) =

1

rt + st + k′
(stc + rta + k′a)

(1.90)

which means (rt)(b − a) ∼ (st)(c − a).

Definition 1.91. The addition between two equivalence classes of differences is defined
by

[r(b − a)] + [s(c − a)] = [(r + s + k) ((
r

r + s + k
b +

s

r + s + k
c +

k

r + s + k
a) − a)]

where r + s + k ≠ 0.

Consistency check. We need to show that the definition does not depend on the chosen
representatives of the classes on the left hand side. We first check the case when both classes
are of the form [0(b − a)]. Suppose we have two elements of said equivalence class. Either
the coefficient is zero or the two ensembles are the same. In either case, the elements on the
right side of the definition of the addition will be affine combinations of a only. Therefore
the result of the addition of [0(b − a)] with itself gives us [0(b − a)]. Now suppose we sum
an equivalence class [r(b − a)] with [0(c − a)]. Note that either s = 0 or c = a. In either
case, the ensemble in the result is an affine combination of only b and a for every k. The
result, then, spans exactly the equivalence class [r(b−a)]. Lastly, suppose we are summing
two equivalence classes different from [0(b − a)]. The ratio between b and c remains the
same for all k, therefore the ensembles in the result span the line between a and an affine
combination of b and c, which means all elements fall in the same equivalence class.
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Corollary 1.92. Let a ∈ E be an ensemble and let V = {[r(b−a)]} be the set of equivalence
classes of ensemble differences from a. Then the addition of ensemble difference over V is
a commutative monoid. If a is an internal point, the addition is an abelian group.

Proof. The operation is commutative as the definition of addition is symmetric over its
arguments. The operation is associative as further sums of equivalence classes turn into
additions of the real coefficients and extensions of affine combinations both of which are
associative. The zero equivalence class [0(b − a)] is the identity element, as shown in the
previous proof. The addition is a commutative monoid.

Now let a be an internal point and let [r(b − a)] be an equivalence class. Since a is

an internal point, we can find c ∈ E such that a = pb + p̄c. Consider [r p̄p(c − a)]. Note that

r + r p̄p =
r
p(p + p̄) =

r
p . The addition is given by

⎡
⎢
⎢
⎢
⎢
⎣

(r + r
p̄

p
+ k)

⎛

⎝

⎛

⎝

r

r + r p̄p + k
b +

r p̄p

r + r p̄p + k
c +

k

r + r p̄p + k
a
⎞

⎠
− a

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

(
r

p
+ k)

⎛

⎝

⎛

⎝

r
p

r
p + k

(pb + p̄c) +
k

r
p + k

a
⎞

⎠
− a

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎣

(
r

p
+ k)

⎛

⎝

⎛

⎝

r
p

r
p + k

a +
k

r
p + k

a
⎞

⎠
− a

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

= [0(b − a)].

(1.93)

This means that [r p̄p(c − a)] is the inverse of [r(b− a)] and that the addition is an abelian

group.

Theorem 1.94 (Differences form a vector space). Let a ∈ E be an internal point and let
V = {[r(b − a)]} be the set of equivalence classes of ensemble differences from a. Then V
is a vector space under scalar multiplication and addition.

Proof. Scalar multiplication is compatible with the multiplication between scalars since
r(s(t(b − a))) = r((st)(b − a)) = (rst)(b − a) = (rs)(t(b − a)). The identity of the scalars
is the identity of scalar multiplication since 1(r(b − a)) = r(b − a). Scalar multiplication is
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distributive with respect to vector addition:

t ([r(b − a)] + [s(c − a)])

= t [(r + s + k) ((
r

r + s + k
b +

s

r + s + k
c +

k

r + s + k
a) − a)]

= [t(r + s + k) ((
r

r + s + k
b +

s

r + s + k
c +

k

r + s + k
a) − a)]

= [(tr + ts + tk) ((
tr

tr + ts + tk
b +

ts

tr + ts + tk
c +

tk

tr + ts + tk
a) − a)]

= [(tr + ts + k′)((
tr

tr + ts + k′
b +

ts

tr + ts + k′
c +

k′

tr + ts + k′
a) − a)]

[tr(b − a)] + [ts(c − a)] .

(1.95)

Scalar multiplication is distributive with respect to scalar addition

s [r(b − a)] + t [r(b − a)]

[sr(b − a)] + [tr(b − a)]

= [(sr + tr + k) ((
sr

sr + tr + k
b +

tr

sr + tr + k
b +

k

sr + tr + k
a) − a)]

= [(sr + tr + k) ((
sr + tr

sr + tr + k
b +

k

sr + tr + k
a) − a)]

= [((s + t)r)(b − a)]

= (s + t)[r(b − a)].

(1.96)

Therefore V with addition and scalar multiplication satisfies the definition of a vector
space.

Definition 1.97. Given an internal point a, the natural embedding of E into Va is the
map ιa ∶ E ↪ Va, defined as ιa(e) → [1(e − a)], that maps each ensemble to its difference
from a.

Corollary 1.98. The natural embedding of E into Va preserves affine combinations. That
is, ι (∑ni=1 riei) = ∑

n
i=1 riι(ei).

Proof. Let r + s = 1 and b, c ∈ E such that rb + sc ∈ E . We have

r[1(b − a)] + s[1(c − a)] = [r(b − a)] + [s(c − a)]

= [(r + s + k) ((
r

r + s + k
b +

s

r + s + k
c +

k

r + s + k
a) − a)]

= [(1 + k) ((
r

1 + k
b +

s

1 + k
c +

k

1 + k
a) − a)]

= [1((
r

1
b +

s

1
c) − a)]

= [1 ((rb + sc) − a)] .

(1.99)



48 CHAPTER 1. ENSEMBLE SPACES

If we apply the above recursively, we have ∑ni=1 ri[1(ei−a)] = [1 ((∑ni=1 riei) − a)]. Therefore

∑ni=1 riι(ei) = ι (∑
n
i=1 riei).

Proposition 1.100. Let a,b ∈ E be two internal points. Then r(c− b) ↦ r(c− a) − r(b− a)
is an isomorphism between the corresponding vector spaces.

Proof. Note that the natural embeddings of E in Va and Vb are invertible onto their
images, and therefore they give an affine map between Va and Vb. That is, r(c−b) ↦ r(c−a)
is an affine map. Moreover, r(c − b) ↦ r(c − a) + v will be an affine map for any v ∈ Va.
An affine map is linear if and only if it maps the zero vector to the zero vector. Note
that r(b − b) is the zero vector for Vb, which means the above map is affine if and only if
r(b − b) ↦ r(a − a) ∼ r(b − a) − r(b − a) and therefore v = −r(b − a).

We leave open whether the ensemble space embeds continuously in a topological vector
space, and whether the topological vector space would have to be a locally convex. The first
step would be to check whether this is true in the finite-dimensional case.

Self-mixtures

As an example of a convex space that is non-cancellative, does not embed in a vector space, and
therefore is ruled out as an ensemble space, we consider one in which the convex combination
of two different elements returns the first. We show that this can be made to satisfy the axioms
of ensemble and mixture, and therefore it is really the axiom of entropy that rules it out.

Example 1.101 (Self-mixture). Let E = {a,b} be a set endowed with the convex structure
that satisfies identity, idempotence, commutativity and such that pa + p̄b equals a if p = 1
and b otherwise. Identity, idempotence and commutativity are satisfied by construction. For
associativity, note that the final result of multiple mixtures is a if and only if all elements of the
mixtures are a. The order does not matter, and therefore associativity is satisfied. Therefore
such structure satisfies at least the axiom of mixture without the requirement of continuity.

For continuity, we need to look at the inverse image under the mixing operation. Note
that +−1(∅) = ∅ and +−1(E) = [0,1] × E × E . Since ∅ and E must be in any topology of E ,
the continuity condition is satisfied for these sets. Next, we have +−1({a}) = [0,1] × {a} ×
{a} ∪ [1] × {a} × {b} ∪ [0] × {b} × {a}. Note that [0] and [1] are not open sets, therefore
{a} cannot be in the topology of E or mixing would not be continuous. Finally, +−1({b}) =
[0,1] × {b} × {b} ∪ [0,1) × {a} × {b} ∪ (0,1] × {b} × {a} = [0,1) × E × {b} ∪ (0,1] × {b} × E .
Since (0,1] and [0,1) are open subsets of [0,1], {b} can be an open set. Since the topology
must be T0, we must include at least {b} and therefore TE = {∅,{b},{a,b}} is a T0 second
countable topology for which mixing is continuous. This means that the example satisfies both
the axioms of ensemble and of mixture.

It is therefore the entropy that rules out this case. If the entropy of the two ensembles is
different, it would jump from S(a) directly to S(b) for an infinitesimal mixture which violates
the upper bound. If S(a) equals S(b), the entropy of the mixture of a and b is also the same,
so the two ensembles cannot possibly be different by strict concavity.

Intuitively, this tells us that we cannot have a mixture of two different elements that
happens to be equal to one of the original elements.
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Corollary 1.102. Let a,b ∈ E such that pa + p̄b = b for some p ∈ (0,1]. Then a = b.
Proof. We have pa + p̄b = b = pb + p̄b for some p ∈ (0,1]. Therefore a = b.

Boundedness of lines

Another constraint that the entropy imposes is that the ensemble space is bounded along
every direction. That is, if we take two ensembles, these will identify an affine line in the
embedding vector space that will, at some point, exit the ensemble space in both directions.

Ve E

e

ba

Figure 1.4: E is the ensemble space and Ve is the embedding vector space with origin e. Any
affine line, like the dashed one in the picture, will intersect E over a finite range limited by
the two elements a and b of the vector space (but not necessarily of the ensemble space).

The proof proceeds as follows. Suppose we take three points and assign them an entropy
value consistent with the entropic bounds: can we always pick an entropy value that satisfies
the bounds for any subsequent point in a given direction? The answer is negative and figure
1.5 represents the problem pictorially. On the horizontal axis we can imagine all the ensembles
over a line, and on the vertical axis their entropy. We fix the entropy for the origin, the blue
and the red point. What are the values for the next point, the green one, that satisfy the
entropy bounds? Because of strict concavity, the green point must remain below the blue line.
The green line represents the upper bound for the blue point, which means the green point
must be above the purple line. If we go far enough, the blue and purple line meet, leaving no
possible value for the entropy.

2 4 6 8 10 12 14 16 18 20
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x

S

Figure 1.5: Visual representation of the bounds. See proof for details.
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Definition 1.103. A line A ⊆ E is a convex subset such that for any three elements one
can be expressed as a mixture of the other two. That is, for all distinct e1, e2, e3 ∈ A there
exists a permutation σ ∶ {1,2,3} → {1,2,3} and p ∈ (0,1) such that eσ(1) = peσ(2) + p̄eσ(3).

Proposition 1.104. Given two distinct a,b ∈ E, there is only one line that contains them.

Proof. Since an ensemble space embeds into a vector space, given two distinct ensembles
there is only one affine line that connects them. A line is the intersection of the affine line
with the ensemble space.

Theorem 1.105 (Lines are bounded). Let A ⊆ E be a line. Then we can find a bounded
interval V ⊂ R and an invertible function f ∶ A → V such that f(pa + p̄b) = pf(a) + p̄f(b)
for all a,b ∈ A.

Proof. Let A ⊆ E be a line. Pick e0, e1 ∈ A. For any a ∈ A, we can write it as an
affine combination of e0 and e1. That is, a = x̄e0 + xe1 where x ∈ R. Note that a uniquely
determines x. Therefore we can define f(a) ↦ x, and it will be an invertible function.

We can verify that, given a,b ∈ A, we have

f(pa + p̄b) = f(px̄ae0 + pxae1 + p̄x̄be0 + p̄xbe1) = f((px̄a + p̄x̄b)e0 + (pxa + p̄xb)e1)

= pxa + p̄xb = pf(a) + p̄f(b).
(1.106)

We are going to show that the image V = f(A) must be a bounded set, or it would
eventually violate the entropy bounds. Given a value x ∈ V , there will be an entropy value
S(f−1(x)) which we can write as a function of the real value S(x). This function will need
to satisfy continuity, strict concavity and the upper variability bound.

We are going to show that the function S(x) cannot extend to plus infinity. The same
argument can be applied by symmetry for minus infinity. We are going to assume that
S(0) = 0 without loss of generality. If S is not defined at zero, or if the value is different, we
can apply a translation on the argument or on the value, which will not affect the concavity
of the function.

Let 0 < a < b ∈ V be two distinct values, with S(a) and S(b) their respective entropies.
We are going to show that if we pick a c > b sufficiently large, we are not going to find a
value for S(c) that satisfies the bounds. In the picture, we have the three points, a in blue,
b in red, c in green. The horizontal axis represents the value, the position of the ensemble
along the affine line, while the vertical axis represents the entropy. Consider the points a,
b and c. Since the entropy is strictly concave, c must be placed under the blue line which
represents an upper bound on S(c). Now consider 0, a and c. Since a is a mixture of 0 and
c, S(a) will need to satisfy the upper bound given by S(0) and S(c). In the diagram, the
green line represents the upper bound on S(a) for the specific choice of c and S(c). Since
a and S(a) are fixed, this puts a lower bound on S(c), which is represented by the purple
curve. That is, the purple curve represents the minimum value we have to assign to S(c)
such that S(a) still satisfies the upper bound between 0 and c. As the picture shows, the
two bounds meet at some point and cannot both be satisfied.
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From strict concavity, noting that c−b
c−a +

b−a
c−a = 1, we have:

S(b) = S (
c − b

c − a
a +

b − a

c − a
c) >

c − b

c − a
S(a) +

b − a

c − a
S(c)

(b − a)S(c) < (c − a)S(b) − (c − b)S(a) = (c − a)S(b) − (c − a)S(a) + (b − a)S(a)

S(c) <
S(b) − S(a)

(b − a)
(c − a) + S(a)

(1.107)

From the upper bound, noting that c−a
c + a

c = 1 and recalling we assumed S(0) = 0, we
have:

S(a) = S (
c − a

c
0 +

a

c
c) ≤ I (

c − a

c
,
a

c
) +

c − a

c
S(0) +

a

c
S(c)

a

c
S(c) ≥ S(a) − I (

c − a

c
,
a

c
)

S(c) ≥
c

a
[S(a) − I (

c − a

c
,
a

c
)]

(1.108)

Combining the bounds, we have:

S(b) − S(a)

(b − a)
(c − a) + S(a) >

c

a
[S(a) − I (

c − a

c
,
a

c
)]

(c − a)S(b) − (c − a)S(a) + (b − a)S(a) >
c(b − a)

a
S(a) −

c(b − a)

a
I (
c − a

c
,
a

c
)

a(c − a)S(b) − a(c − b)S(a) > c(b − a)S(a) − c(b − a)I (
c − a

c
,
a

c
)

a(c − a)S(b) + (−ac + ab − bc + ac)S(a) > −c(b − a)I (
c − a

c
,
a

c
)

a(c − a)S(b) − b(c − a)S(a) > −c(b − a)I (
c − a

c
,
a

c
)

aS(b) − bS(a) > −
c(b − a)

(c − a)
I (
c − a

c
,
a

c
)

(1.109)

Since b > a, c > a and I(p, p̄) > 0 for all p ∈ (0,1), the right hand side of the inequality is

always negative. As c increases, the right hand side will go to zero, since lim
c→∞

c(b−a)
c−a = b − a

and lim
c→∞

I ( c−ac ,
a
c
) = I(1,0) = 0. The left hand side is a constant. If the constant is positive,

the inequality is always satisfied. If it is negative, it will not be satisfied for all c.
From strict concavity, noting that b−a

b + a
b = 1, we have

S(a) = S (
b − a

b
0 +

a

b
b) >

b − a

b
S(0) +

a

b
S(b) =

a

b
S(b)

bS(a) > aS(b)

0 > aS(b) − bS(a)

(1.110)

This shows that the left hand side of the previous inequality is negative, and therefore the
bounds cannot be satisfied over the whole R.
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This means that V = f(A) must be bounded and therefore every line is a segment as
embedded in the vector space.

Remark. Note that this does not mean that, along each direction, the line is closed in
the vector space. That is, it may not include the extreme points in the convex space. An
open bounded interval, in fact, is still a convex space and we would be able to define an
entropy on it.

The fact that the ensemble space is directionally bounded gives us an intuitive property
that we would, mistakenly, always think to be true. Suppose we have an ensemble e and a
sequence of ensembles ai ∈ L on some line L that contains e. Then pie+ p̄iai → e if pi → 1. This
does not work in a generic convex space if directions are unbounded. For example, suppose
e = R, which is a convex set but not directionally bounded. Let e = 0, ai = i and pi = 1 − 1

i .

Then (1 − 1
i
)0 + 1

i i = 1. Therefore pie + p̄iai ↛ e even though pi → 1. It is, again, the entropy
that guarantees that this intuitive property is satisfied.

Proposition 1.111. Let L ⊆ E be a line. Let e ∈ L and ai ∈ L. Then pie+ p̄iai → e if pi → 1.
Proof. Pick a ∈ L such that a ≠ e. Then every ai can be expressed as an affine combination

ai = rie+ r̄ia. We have pie+ p̄iai = pie+ p̄i (rie + r̄ia) = (pi + p̄iri) e+ p̄ir̄ia. Since the ensemble
space is directionally bounded, the sequence ri is bounded from below and above. This
means that p̄i → 0 implies pi + p̄iri → 1 and p̄ir̄i → 0. Therefore by continuity (pi + p̄iri) e+
p̄ir̄ia→ 1e + 0a = e.

It is an open question whether this property is guaranteed for a generic sequence of en-
sembles ai, not necessarily on a line. At least, it should be extensible to the finite-dimensional
case.

Conjecture 1.112. Let e ∈ E and ai ∈ E. Then pie + p̄iai → e if pi → 1.

As discussed previously, it may be that the boundedness provided by the entropy forces
all submixtures of convergent infinite mixtures to converge.

Conjecture 1.113. Let a = ∑∞
i=1 piei. Then, given I ⊆ N, ∑i∈I

pi
pI
ei converges where pI =

∑i∈I pi.

Conjecture 1.114. The set of all internal points IE is closed under infinite convex combi-
nations.

1.6 Entropic geometry

In this section we will see how the entropy imposes a geometric structure on the ensemble
space. The core idea is that, since the entropy is strictly concave, its Hessian is negative
definite. The negation is therefore a positive definite, real-valued function of two variations
and plays the role of a metric tensor.

Mixing entropy as pseudo-distance

The first observation is that the entropy can be used to define a pseudo-distance. If we mix
two ensembles, in fact, the average entropy cannot decrease and will stay the same if the
two components of the mixture are the same ensemble. The increase, then, is zero if the two
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ensembles are equal, greater than zero if not, with the maximum if they are orthogonal. This
means that the increase of entropy during mixing can be used to characterize how different
two ensembles are.

We define the mixing entropy as the increase in entropy for the equal mixture of two
states. This satisfies all axioms for a distance, except the triangle inequality. The mixing
entropy recovers the Jensen-Shannon divergence in both the classical and quantum case, and
can therefore be seen as its generalization.

Definition 1.115. Given two ensembles a,b ∈ E, the mixing entropy, also called Jensen-
Shannon divergence, is the increase in entropy associated to their equal mixture. That is:

MS(a,b) = S (
1

2
a +

1

2
b) − (

1

2
S(a) +

1

2
S(b)) .

Proposition 1.116. The mixing entropy MS(a,b) satisfies the following:

1. non-negativity: MS(a,b) ≥ 0
2. identity of indiscernibles: MS(a,b) = 0 ⇐⇒ a = b
3. unit boundedness: MS(a,b) ≤ 1
4. maximality of orthogonals: MS(a,b) = 1 ⇐⇒ a ⊥ b
5. symmetry: MS(a,b) =MS(b, a)

Proof. For 1, by strict concavity, S (1
2a +

1
2b) ≥

1
2S(a)+

1
2S(b), which means S (1

2a +
1
2b)−

(1
2S(a) +

1
2S(b)) =MS(a,b) ≥ 0.

For 2, the concavity is strict and therefore the equality holds if and only if a = b.
For 3, by the upper variability bound, S (1

2a +
1
2b) ≤ I(1

2 ,
1
2) +

1
2S(a) +

1
2S(b), which

means S (1
2a +

1
2b) − (1

2S(a) +
1
2S(b)) =MS(a,b) ≤ I(1

2 ,
1
2) = 1.

For 4, the upper variability bound is saturated if and only if a ⊥ b.
For 5, by commutativity of mixing and of addition the definition of the mixing entropy

is symmetric.

Proposition 1.117. In discrete and continuous classical cases, the mixing entropy co-
incides with the Jensen-Shannon divergence. In quantum spaces it coincindes with the
quantum Jensen-Shannon divergence.

Proof. Looking at the definitions of the Jensen-Shannon divergence, in the classical case
we have

JSD(a,b) = S (
1

2
a +

1

2
b) −

1

2
(S(a) + S(b)) =MS(a,b),

and, similarly, in the quantum case we have

QJSD(a,b) = S (
1

2
a +

1

2
b) −

1

2
(S(a) + S(b)) =MS(a,b).

Remark. The mixing entropy fails to be a distance function as it does not satisfy the
triangle inequality. In the classical and quantum case, in fact, the JSD and QJSD are

https://en.wikipedia.org/wiki/Jensen%E2%80%93Shannon_divergence
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the square of a distance function. Given the current axiom, it is unlikely that this result
can be generalized to the mixing entropy itself. The issue is that we do not have enough
information about the relative entropy of 3 points, apart from the orthogonal case. It is
very likely that, on physics grounds, there should be constraints on the mixing entropy
between three points.

Though the mixing entropy is not a distance function, we can still show that, like a
distance, it decreases as one ensemble approaches another. The notion of two ensembles ap-
proaching is given by the convex structure: in a convex space, a mixture of a and b is closer
to a than b is to a.

Proposition 1.118. Let a,b ∈ E. Then MS(a,b) ≥MS(a, pa+p̄b) with the equality holding
if and only if p = 0 or a = b.

Proof. First let us show that 1
2a +

1
2b can be expressed as a mixture of 1

2a +
1
2 (pa + p̄b)

and pa + p̄b.

1

2
a +

1

2
b =

1

2

1 − 2p + p − 2p2 + 2p2

1 − p
a +

1

2
(1 − 2p + 2p)b

= (
1 − 2p

1 − p

1 + p

2
+

2

2

p2

1 − p
) a + (

1 − 2p

1 − p

p̄

2
+

2

2

pp̄

1 − p
)b

=
1 − 2p

1 − p
[

1

2
a +

1

2
(pa + p̄b)] +

p

1 − p
[pa + p̄b]

(1.119)

From strict concavity we have

S (
1

2
a +

1

2
b) ≥

1 − 2p

1 − p
S (

1

2
a +

1

2
(pa + p̄b)) +

p

1 − p
S (pa + p̄b) . (1.120)

Note that the equality holds only if p = 0, in which case the second mixing coefficient is
zero.

Now let us show that pa + p̄b can be expressed as a mixture of 1
2a +

1
2 (pa + p̄b) and b.

pa + p̄b = pa + p̄
p + 1

1 + p
b

=
2p

1 + p

1 + p

2
a + (

2p

1 + p

p̄

2
+

p̄

1 + p
)b

=
2p

1 + p
[

1

2
a +

1

2
(pa + p̄b)] +

1 − p

1 + p
b

(1.121)



1.6. ENTROPIC GEOMETRY 55

From strict concavity we have

S (pa + p̄b) ≥
2p

1 + p
S (

1

2
a +

1

2
(pa + p̄b)) +

1 − p

1 + p
S(b)

−S(b) ≥
1 + p

1 − p

2p

1 + p
S (

1

2
a +

1

2
(pa + p̄b)) −

1 + p

1 − p
S (pa + p̄b)

=
2p

1 − p
S (

1

2
a +

1

2
(pa + p̄b)) −

1 + p

1 − p
S (pa + p̄b) .

(1.122)

Note that the equality holds only if p = 0, in which case the first mixing coefficient is zero.
Putting it all together

MS(a,b) = S (
1

2
a +

1

2
b) −

1

2
S(a) −

1

2
S(b)

≥
1 − 2p

1 − p
S (

1

2
a +

1

2
(pa + p̄b)) +

p

1 − p
S (pa + p̄b) −

1

2
S(a)

+
1

2
[

2p

1 − p
S (

1

2
a +

1

2
(pa + p̄b)) −

1 + p

1 − p
S (pa + p̄b)]

= (
1 − 2p + p

1 − p
)S (

1

2
a +

1

2
(pa + p̄b)) −

1

2
S(a) +

1

2
(

2p − 1 − p

1 − p
)S (pa + p̄b)

= S (
1

2
a +

1

2
(pa + p̄b)) −

1

2
S(a) −

1

2
S (pa + p̄b)

=MS(a, pa + p̄b).

(1.123)

The equality holds only if p = 0.

The fact that the mixing entropy decreases from all directions as we get closer to an
ensemble allows us to create a notion of open ball, which allows to prove the topology is at
least Hausdorff.

Definition 1.124. Given a ∈ E and r ∈ (0,1], an entropic open ball is the set of all ensem-
bles for which the mixing entropy from a is within r. That is, Br(a) = {e ∈ E ∣MS(a, e) < r}.

Corollary 1.125. Every entropic open ball is an open set.

Proof. Since both the entropy and the mixing operation are continuous, the mixing
entropy is also continuous. An entropic open ball is the reverse image of an open set
through a continuous function and it is therefore an open set.

Proposition 1.126. Ensemble spaces are Hausdorff topological spaces.

Proof. We will prove this in two ways. First, since the topology is second countable, the
space is Hausdorff if and only if limits of sequences are unique. Let ai be a sequence such
that ai → a and ai → b. We have MS(ai, ai) = 0→ 0. Since MS is continuous, we also have
MS(ai, ai) →MS(a,b) which means MS(a,b) = 0 and therefore a = b.

As another way to show it, a space is Hausdorff if and only if any singleton {e} is
the intersection of all closed neighborhoods of e. For any e, the intersection of all closed
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neighborhoods will contain e, so we just need to show that no other elements can be in
all closed neighborhoods. Consider an entropic closed ball centered around e with radius
r > 0. It will contain an entropic open ball of the same radius and is therefore a closed
neighborhood of e. Given an element a ≠ e, a closed ball with radius less than MS(e, a)
will not contain a. Therefore, the only element contained in all entropic closed balls is e,
which means the intersection of all closed neighborhoods of e contains only e.

Remark. Intuitively, we would expect the entropic balls to be convex. This is true in
both classical and quantum cases as the JSD is convex. However, the current axioms allow
us to use a different entropy function in a space that is not orthogonally decomposable:
the extreme points are not orthogonal. In this case, one is able to create open balls that
are not convex.

Whether this is physically relevant or not depends on whether there are additional
physical constraints on the mixing entropy between three points, which is very likely.

Proposition 1.127. Let U ⊆ E be an open set. Let a ∈ U and L ⊆ E be a line containing
a. Then there is an r ∈ (0,1] such that for all e ∈ L such that MS(a, e) < r we have e ∈ U .

E

U
a

L

Proof. Let U ⊆ E be an open set, a ∈ U and L ⊆ E be a line containing a. Take b ∈ L
such that b ≠ a. Let f ∶ [0,1] → E be such that f(p) ↦ pa + p̄b. Since the mixing operation
is continuous, then f is also continuous. This means that f−1(U) is an open subset of
[0,1]. Since a ∈ U , 1 ∈ f−1(U) and therefore there will be an open interval (λ,1] such
that (λ,1] ⊆ f−1(U). Let c = λa + λ̄b and r = MS(a, c). By 1.118, we have that, for all
p ∈ (0,1], MS(a, pa+ p̄c) < r. We also have pa+ p̄c = pa+ p̄(λa+ λ̄b) = (p+ p̄λ)a+ p̄λ̄b where
p + p̄λ ∈ (λ,1]. Therefore pa + p̄c ∈ f((λ,1]) ⊆ U .

If a is an extreme point of L (i.e. there is no d ∈ L such that pb + p̄d = a), then we are
done. If a is not an extreme point, then we can find d ∈ L such that pb+ p̄d = a. Repeat the
previous procedure with d to find another r′ and let r̂ be the minimum between the two.
Then we have that r̂ ∈ (0,1] such that e ∈ U for all e ∈ L such that MS(a, e) < r̂.

There are a number of conjectures on the topology generated by the entropic open ball
that are probably all related. They are summarized here with some notes on what has been
understood so far.

Conjecture 1.128. For every sequence ai ∈ E, ai → a if and only if MS(a, ai) → 0.

Conjecture 1.129. The topology of the ensemble space is generated by the entropic open
balls.

Conjecture 1.130. Let U ⊆ E be an open set and a ∈ U . Then there exists an r ∈ (0,1] such
that Br(a) ⊆ U .
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Remark. These conjectures are likely the same. If the topology is generated by the entropic
open balls, then convergence in mixing entropy is the convergence criterion associated with
the topology. It also means that we can generate every open set with entropic open balls by
fitting them inside every open set.

Note that all entropic open balls are open sets in the topology, since the mixing entropy is
a continuous function. It suffices to prove that all open sets can be generated by open balls.
We have shown that given a point in an open set we can find a finite range of mixing entropy
along each direction. However, since we do not know if there is a non-zero infimum across all
directions, we do not know whether we can “fit” an entropic open ball.

Similarly, it is clear that if a sequence converges, the mixing entropy goes to zero. However,
we do not know whether there is an open set for which the mixing entropy goes to zero but
the sequence does not converge. This would mean that a sequence always eventually enters
an entropic open ball of any size, but it may not enter all open sets.

Conjecture 1.131. Let a,bi ∈ E and ci = pa+ p̄bi for some p ∈ (0,1). Then bi → b if and only
if ci → c.

Conjecture 1.132 (Affine combinations are continuous). Let e ∈ E and let p ∈ [0,1]. Let
+pa ∶ E → E be the curried function +pa(b) = pa + p̄b. The function is a homeomorphism
between E and +pa(E).

Conjecture 1.133. Mixing is an open map.

Conjecture 1.134. An ensemble space embeds continuously into a topological vector space.

Conjecture 1.135. Let +ab ∶ [0,1] → E be the curried function +ab(p) = pa+ p̄b. The function
is a homeomorphism between [0,1] and +ab([0,1]).

Remark. These are all about showing that mixing allows a continuous inverse. It is easy
to show that mixing gives us a continuous bijection. The problem is showing that the inverse
is continuous.

Continuity of mixtures only shows that we can stretch open sets to bigger open sets. What
we would need is to show that we can shrink open sets to open sets. For example, suppose U
is an open neighborhood of a. The set V = pa+ p̄U is a set that contains a and it is a subset of
U . The question is whether a sequence can stay in U and converge to a without ever entering
V .

Another open question is whether the mixing entropy, or the entropy directly, can be
related to a generalized notion of inner product.

Entropic metric

Following the first observation that the mixing entropy is a pseudo-distance, the second ob-
servation is that the strict concavity of the entropy forces the Hessian to be negative definite.
The negation of the Hessian, then, is a positive definite function of two variations. In general,
the Hessian of a scalar function is not a tensor. However, the ensemble space is a linear space
and that linearity has physical significance. It is only for coordinates linear with respect to the
mixing coefficient that the convex combination of coordinates will equal the statistical mixture
of the corresponding ensembles. Therefore we can define a metric tensor which corresponds to
the negative Hessian calculated on that linear structure. When using non-linear coordinates,
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as long as the coordinates are smooth, one can always make the appropriate transformation
to linear coordinates.

Remark. In this section we will assume that an ensemble space embeds continuously into
a topological vector space, even though we have not yet proved it. We are going to talk
about variations δe on the space, even though it is not yet clear exactly which mathematical
approach is best to make variations well-defined. We are also going to talk about a metric
tensor even though the space is not, in general, a manifold. All these issues will need to be
resolved in due time.

Definition 1.136. An ensemble space is smooth if the entropy is twice differentiable with
respect to the mixing coefficients.

Proposition 1.137. Discrete and continuous classical ensemble spaces and quantum en-
semble spaces are smooth.

Proof. In both the discrete classical case and the quantum case the entropy of an
ensemble is the Shannon entropy of a decomposition in terms of pure states. The Shannon
entropy is a smooth function of the coefficients. For the continuous classical case, the
differential entropy is a smooth function of the probability density, which is linear under
mixture. Therefore the entropy is always smooth with respect to mixing coefficients.

Definition 1.138. Assuming E embeds in a topological vector space and given e ∈ E, a
variation δe of e is a vector in the ambient space such that ∀t ∈ [0,1] e + tδe ∈ E. The
space of all variations at e is noted Te. Unless otherwise noted, we assume the variation
is expressed on the affine structure. Note that it can be re-expressed through a non-linear
map as long as the map is differentiable (i.e. it maps variations to variations).

Remark. Note that since an ensemble space is a convex subset of a real vector space,
coordinate systems that are linear with respect to the vector space are privileged. It is
only in these coordinates, in fact, that linear combinations correspond to mixtures. The
strict concavity of the entropy is therefore guaranteed in these coordinates and only these
coordinates. Given the special physical significance of these coordinates, all differential
objects and properties will be defined in these coordinates.

Definition 1.139. Given an ensemble e ∈ E and a variation δe defined at that point, the
norm of δe is given by

∥δe∥e =
√

8MS(e, e + δe).

The metric tensor (i.e. the inner product between δe1, δe2 ∈ Te) is given by

ge(δe1, δe2) =
1

2
(∥δe1 + δe2∥

2
e − ∥δe1∥

2
e − ∥δe2∥

2
e) .

Theorem 1.140. Let E be a smooth ensemble space. Then, on the affine structure, we
have

∥δe∥2
e = −

∂2S

∂e2
(δe, δe)
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and

ge(δe1, δe2) = −
∂2S

∂e2
(δe1, δe2).

Proof. To recover the first two expressions, we simply have to calculate the leading
term. Since the entropy is twice differentiable, on the affine structure, we can expand it as

S(e + δe) = S(e) +
∂S

∂e
δe +

1

2

∂2S

∂e2
δeδe +O(δe3). (1.141)

Expanding the definition of MS, we have

MS(e, e + δe) = S (
1

2
e +

1

2
(e + δe)) −

1

2
S(e) −

1

2
S(e + δe)

= S (e +
1

2
δe) −

1

2
S(e) −

1

2
S(e + δe)

= S(e) +
∂S

∂e

1

2
δe +

1

2

∂2S

∂e2

1

2
δe

1

2
δe +O(δe3)

−
1

2
S(e) −

1

2
(S(e) +

∂S

∂e
δe +

1

2

∂2S

∂e2
δeδe +O(δe3))

= S(e) +
1

2

∂S

∂e
δe +

1

8

∂2S

∂e2
δeδe

− S(e) −
1

2

∂S

∂e
δe −

1

4

∂2S

∂e2
δeδe +O(δe3)

= −
1

8

∂2S

∂e2
δeδe +O(δe3).

(1.142)

Therefore

∥δe∥2 = 8MS(e, e + δe) = −
∂2S

∂e2
(δe, δe).

We can now substitute the norm in the definition of the metric tensor. We have

ge(δe1, δe2) =
1

2
(∥δe1 + δe2∥

2 − ∥δe1∥
2 − ∥δe2∥

2)

=
1

2
(−
∂2S

∂e2
(δe1 + δe2, δe1 + δe2) +

∂2S

∂e2
(δe1, δe1) +

∂2S

∂e2
(δe2, δe2))

= −
1

2
(
∂2S

∂e2
(δe1, δe1) +

∂2S

∂e2
(δe1, δe2) +

∂2S

∂e2
(δe2, δe1) +

∂2S

∂e2
(δe2, δe2)

−
∂2S

∂e2
(δe1, δe1) −

∂2S

∂e2
(δe2, δe2))

= −
∂2S

∂e2
(δe1, δe2).

(1.143)

We now show that the metric tensor we defined reduces to the Fisher-Rao metric in the
classical case and to its quantum equivalent in the quantum case.
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Proposition 1.144. For a continuous classical ensemble space, the metric corresponds to
the Fisher-Rao metric.

Proof. Let E be a continuous classical ensemble space. Each ensemble is a classical prob-
ability density ρ. Let V ⊆ E be a manifold of probability distributions over X parametrized
by θi. The Fisher-Rao metric is defined as:

gij = −∫
X

∂2 log ρ

∂θi∂θj
ρdx. (1.145)

where log will be the natural logarithm throughout this calculation. Recall that for a
continuous classical ensemble, the entropy is given by

S(ρ) = −∫
X
ρ log ρdx. (1.146)

Let us now calculate the first two terms in the Taylor expansion around ρ with a
variation δρ. Recall that

log(x + dx) = log(x) + dx logxdx +
1

2
dxdx logxdx2 +O(dx3)

= log(x) +
1

x
dx −

1

2

1

x2
dx2 +O(dx3).

(1.147)

We have

S(ρ + δρ) = −∫
X
(ρ + δρ) log(ρ + δρ)dx

= −∫
X
(ρ + δρ) [log ρ +

1

ρ
δρ −

1

2ρ2
δρ2 +O(δρ3)]dx

= −∫
X
ρ log ρdx − ∫

X
[log ρ + 1]dxδρ − ∫

X
[

1

ρ
−

ρ

2ρ2
]dxδρ2 + ∫

X
dxO(δρ3)

= −∫
X
ρ log ρdx − ∫

X
[log ρ + 1]dxδρ −

1

2
∫
X

1

ρ
dxδρ2 + ∫

X
dxO(δρ3)

(1.148)

∂2S

∂ρ2
(δρ, δρ) = −∫

X

1

ρ
δρ2dx = −∫

X

1

ρ
δρ2dx + 0 = −∫

X

1

ρ
δρ2dx + δ2(1)

= −∫
X

1

ρ
δρ2dx + δ2

∫
X
ρdx = −∫

X

1

ρ
δρ2dx + ∫

X
δ2ρdx

= ∫
X
ρdx [−

1

ρ2
δρ2 +

1

ρ
δ2ρ] = ∫

X
ρdxδ [

1

ρ
δρ]

= ∫
X
ρdxδ2 log ρ.

(1.149)

https://en.wikipedia.org/wiki/Fisher_information_metric
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Let us consider a family of ensembles charted by a set of parameters θi, not necessarily
forming a linear chart. We have

ge(dθ
i, dθj) = −

∂2S

∂ρ2
(
∂ρ

∂θi
dθi,

∂ρ

∂θj
dθj) = −∫

X
ρdx

∂2 log ρ

∂θi∂θj
dθidθj (1.150)

which recovers the Fisher-Rao metric.
This same calculation can be done in the case of a discrete classical space.
Remark. For quantum mechanics, the situation is more complicated as there are dif-

ferent definitions of Fisher metricsa. Additionally, we will take steps in the calculations
that are already present in established literature, though the mathematical conditions for
those steps to be well-defined are unclear. We will therefore just show a general connection,
without worrying about the mathematical details.

Proposition 1.151. For a quantum ensemble space, the metric corresponds to the Bures
metric and the quantum Fisher information metric.

Proof. Since we are working in a quantum ensemble space, each ensemble is a density
operator ρ. The entropy is given by the von Neumann entropy

S(ρ) = − tr (ρ log ρ) . (1.152)

where log will be the natural logarithm throughout this calculation. We take the first
variation and have

δS(ρ) = −δ tr (ρ log ρ) = − tr (δρ log ρ + ρδ log ρ)

= − tr (δρ log ρ + ρρ−1δρ)

= − tr ((log ρ + 1) δρ) .

(1.153)

We take the second variation and have

δ2S(ρ) = −δ tr ((log ρ + 1) δρ)

= − tr (δ (log ρ + 1) δρ + (log ρ + 1) δδρ)

= − tr (ρ−1δρδρ + (log ρ + 1) δδρ) .

(1.154)

Note that δρ is defined in a linear chart, therefore δδρ = 0. Therefore we have

∂2S

∂ρ2
(δρ, δρ) = − tr (ρ−1δρδρ) . (1.155)

Let us consider a family of ensembles charted by a set of parameters θi, not necessarily
forming a linear chart. We have

ge(dθ
i, dθj) = −

∂2S

∂ρ2
(
∂ρ

∂θi
dθi,

∂ρ

∂θj
dθj) = tr(ρ−1 ∂ρ

∂θi
∂ρ

∂θj
)dθidθj (1.156)

which recovers one version of the quantum Fisher-Rao metric.
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Noting that the right logarithmic derivative (RLD) LR satisfies ∂ρ
∂θ = ρL

R, we can write

ge(dθ
i, dθj) = tr(ρ−1 ∂ρ

∂θi
∂ρ

∂θj
)dθidθj = tr(ρ−1ρLRi ρL

R
j )dθ

idθj = tr(ρLRi L
R
j )dθ

idθj (1.157)

which recovers the RLD Fisher information.
Remark. The feedback we received on the above derivation is contradictory, as some say

we are handling the possible non-commutativity between ρ and its variation δρ correctly
and others say we aren’t. Note that in all steps we are using the cyclical nature of the
trace, and not commuting ρ and its variation δρ.

Remark. Note that these results relate also to the Ruppeiner metric, which is the
negation of the Hessian of the entropy. They also relate to the Hessian metric as described
in Shima, H. (2013). Lecture Notes in Computer Science, vol 8085.

aFor details, see Vishal Katariya and Mark M Wilde 2021 New J. Phys. 23 073040 or Watanabe, Y.
(2014). Quantum Estimation Theory.

1.7 State capacity

In this section we are going to develop a generalized version of the count of states. In classical
statistical mechanics, the entropy for a uniform distribution ρU over a region of phase space
U is given by S(ρU) = logµ(U), where µ is the count of states given by the Liouville measure.
Since entropy is our starting point, we will define the state capacity of a set of ensembles as
the highest exponential of the entropy achievable by mixing those ensembles. This definition
works in general, and recovers both the classical Liouville measure and the dimensionality of
a quantum subspace.

Given an ensemble, we want to quantify the number of distinguishable cases over which
the ensemble is spread. Since entropy characterizes the variability of the preparations of the
ensemble, greater variability means the ensemble is spread over more cases. Therefore the
count of distinguishable states must be a monotonic function of the entropy. The question is
what function.

The first hint that the exponential is the right function is the relationship S(ρU) = logµ(U)

in classical statistical mechanics. Another hint is that we will want this size to be mul-
tiplicative over independent distributions. That is, if we have two ensembles ρ1 ∈ E1 and
ρ2 ∈ E2 of two different ensemble spaces, we can imagine the composite system ρ = ρ1ρ2

representing the ensemble of the two independent ensembles. While the entropy should be
additive, that is S(ρ) = S1(ρ1) + S2(ρ2), the count of states should be multiplicative, that is
µ(ρ) = µ1(ρ1)µ2(ρ2). This suggests the relationship S(ρ) = logµ(ρ) for all ensembles. The
other hint is that the spread can be, at most, additive. If we mix two ensembles, the spread
can be at most over the configurations of both and not more. The following shows that the
exponential of the entropy has exactly that property.12

12 Note that the state capacity for a single element corresponds to the “ensemble volume” defined in M.J.W.
Hall 1999, Phys. Rev. A 59, 2602 and more recently M.J.W. Hall 2018 J. Phys. A: Math. Theor. 51 364001. It is
connected to various uncertainty relationships, including a stronger form of the quantum uncertainty principle.
It would be interesting to understand what results can be generalized to the ensemble space.

https://en.wikipedia.org/wiki/Ruppeiner_geometry
https://link.springer.com/chapter/10.1007/978-3-642-40020-9_4
https://iopscience.iop.org/article/10.1088/1367-2630/ac1186
https://link.springer.com/chapter/10.1007/978-4-431-54493-7_4
https://link.springer.com/chapter/10.1007/978-4-431-54493-7_4
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.59.2602
https://journals.aps.org/pra/abstract/10.1103/PhysRevA.59.2602
https://iopscience.iop.org/article/10.1088/1751-8121/aad50f
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Proposition 1.158 (Exponential entropy subadditivity). Let a,b ∈ E and e = pa + p̄b for
some p ∈ [0,1]. Then 2S(e) ≤ 2S(a) + 2S(b), with the equality holding if and only if a ⊥ b and

p = 2S(a)

2S(a)+2S(b) .
Proof. If p is fixed, the upper variability bound of entropy is saturated only if a and b

are orthogonal by definition. Therefore the entropy maximum for the mixed ensemble will
be achieved when the elements are orthogonal, for some value of p.

Now fix the entropy of a and b to some values Sa = S(a) and Sb = S(b). The entropy
of the mixture depends only on p, so we need to find the p that maximizes the expression.
Since a and b are orthogonal, S(pa + p̄b) = −p log p − p̄ log p̄ + pSa + p̄Sb which is a smooth
function of p. Let us find the maximum, which is a stationary point.

0 =
d

dp
S(pa + p̄b) =

d

dp
(−p log p − p̄ log p̄ + pSa + p̄Sb)

= − log p − 1 + log p̄ + 1 + Sa − Sb

log
p

p̄
= log 2Sa − log 2Sb

log
p

1 − p
= log

2Sa

2Sb

p2Sb = (1 − p)2Sa

p(2Sa + 2Sb) = 2Sa

p =
2Sa

2Sa + 2Sb

(1.159)

Note that since the entropy is strictly concave, the stationary point must correspond to a
maximum. Having found the value of p that maximizes the entropy, we can calculate the
maximum entropy.

p̄ = 1 −
2Sa

2Sa + 2Sb
=

2Sb

2Sa + 2Sb

S(pa + p̄b) = −p log p − p̄ log p̄ + pSa + p̄Sb

= −
2Sa

2Sa + 2Sb
log

2Sa

2Sa + 2Sb
−

2Sb

2Sa + 2Sb
log

2Sb

2Sa + 2Sb

+
2Sa

2Sa + 2Sb
log 2Sa +

2Sb

2Sa + 2Sb
log 2Sb

=
2Sa

2Sa + 2Sb
log (2Sa + 2Sb) +

2Sb

2Sa + 2Sb
log (2Sa + 2Sb)

=
2Sa + 2Sb

2Sa + 2Sb
log (2Sa + 2Sb)

log 2S(pa+p̄b) = log (2Sa + 2Sb)

2S(pa+p̄b) = 2Sa + 2Sb

(1.160)
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Therefore the maximum entropy obtainable through a mixture is S(pa + p̄b) = log(2S(a) +

2S(b)) which is obtained when a and b are orthogonal and p = 2S(a)

2S(a)+2S(b) .
Remark. We have proved that the exponential of the entropy gives us subadditivity.

Ideally, we should prove that this is the only function of the entropy with that character-
istic.

Conjecture 1.161. Let f ∶ R → R be a continuous function such that f(S(pa + p̄b)) ≤

f(S(a)) + f(S(b)) and the equality can be verified in some condition. Then f(x) = κx for
some arbitrary constant κ.

Given a set of ensembles, we can ask what spread is reachable by a mixture in terms of the
number of distinguishable states. We call this the state capacity as it represents the maximum
potential spread reachable by the set, and because it turns out to be a non-additive measure.13

The state capacity is monotone, subadditive and recovers additivity over orthogonal sets.

Definition 1.162. Let A ⊆ E be a subset of an ensemble space. The state capacity of A
is defined as scap(A) = sup(2S(hull(A)) ∪ {0}).

Corollary 1.163. The state capacity is a convex supremum of the exponential of the
entropy with 0 for the empty set.

Corollary 1.164. Given a set A ⊆ E, the state capacity of all hulls is the same. That is,
scap(hull(A)) = scap(shull(A)) = scap(chull(A)).

Proof. Since the entropy is continuous, by 1.53 scap(A) = scap(hull(A)) = scap(shull(A)) =

scap(chull(A)).

Proposition 1.165. The state capacity is a set function that is

1. non-negative: scap(A) ∈ [0,+∞]

2. increasing: A ⊆ B Ô⇒ scap(A) ≤ scap(B)

3. subadditive: scap(A ∪B) ≤ scap(A) + scap(B)

4. additive over orthogonal sets: A ⊥ B Ô⇒ scap(A ∪B) = scap(A) + scap(B)

5. continuous from below.

Proof. 1. By 1.51, scap(A) ∈ [0, sup(2S(E))] ⊆ [0,+∞].
2. By 1.51.
3. Let A,B ⊆ E and let e = pa + p̄b for some p ∈ [0,1], a ∈ A and b ∈ B. By 1.158

and the definition of state capacity, 2S(e) ≤ 2S(a) + 2S(b) ≤ scap(A) + scap(B). Since this
is true for any finite mixture of elements of A and B, it will be true for any element of
hull(A ∪ B). Consequently, the supremum of the exponential entropy cannot exceed the
sum of the state capacities. Therefore scap(A ∪ B) ≤ scap(A) + scap(B) (i.e. the state
capacity is subadditive).

4. Let A,B ⊆ E be two orthogonal subsets. Let {ai} ⊆ A be a sequence of ensembles
such that 2S(ai) → scap(A) and let {bi} ⊆ B be a sequence of ensembles such that 2S(bi) →

13In some literature, capacities are non-additive measures.
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scap(B). Consider ei = piai + p̄ibi where pi =
2S(ai)

2S(ai)+2S(bi)
. Then, by 1.158, 2S(ei) = 2S(ai) +

2S(bi). This means that 2S(ei) → scap(A)+scap(B). Therefore scap(A∪B) must be at least
scap(A)+ scap(B). Combining with the previous result, scap(A∪B) = scap(A)+ scap(B).
Therefore the state capacity, as a set function, is additive over orthogonal sets of ensembles.

5. By 1.51.
Remark. The state capacity is not continuous from above. Let E be an ensemble space

and a,b ∈ E two distinct ensembles. Without loss of generality, let S(a) ≤ S(b). Then
S(pa + p̄b) ≥ S(a) for all p ∈ [0,1]. Let {ei} ⊂ hull({a,b}) be a sequence of mixtures of a
and b. Let Aj = {ei ∣ i ≥ j} be the family of sets that contains all the elements of the sequence
starting from j respectively. This is a decreasing sequence, since Aj ⊇ Aj+i. We have that
scap(Aj) ≥ 2S(a) > 0 for all j, which means that lim

i→∞
scap(Ai) ≥ 2S(a) > 0. However, ⋂Aj = ∅

which means scap( lim
i→∞

Ai) = 0. This means that, in general, scap( lim
i→∞

Ai) ≠ lim
i→∞

scap(Ai)

for a decreasing sequence.

The state capacity is additive over orthogonal sets. Intuitively, orthogonal sets correspond
to mutually exclusive events, so it makes sense that the count of states is additive. We would
expect the converse to be true as well: if the count of states is additive, the sets correspond
to mutually exclusive events and therefore the sets are orthogonal. This leads to the following
conjecture:

Conjecture 1.166. The state capacity is additive only on orthogonal sets. That is, if scap(A) <

∞, scap(B) < ∞ and scap(A ∪B) = scap(A) + scap(B), then A ⊥ B.

One should be able to prove that if the state capacity adds, then the states with highest
entropy satisfy the upper variability bound and are orthogonal. What needs to be shown is
that this is enough to say all elements are orthogonal. There is a series of nice results connected
to this to expand the whole theory. If a ⊥ b then a is orthogonal to all the components of b.
If a is the ensemble with maximum entropy in chull(A), it should be true that all elements of
the hull are components of a. One should be able to show that, given two sequences with a
convergent entropy and whose elements are orthogonal to each other, one can create another
sequence that converges to an entropy higher than both of them. Another useful tool would
be a type of sequence within hull(A) whose entropy always increases, tends to the supremum
and each element is a component of the following. Also, the state with maximal entropy (if
it exists) is an internal point. All internal points are in the σ-hull. We leave these series of
conjectures for future work.

We now show that the state capacity recovers a notion of number of cases in all three
target spaces. In the discrete classical case it recovers the number of points; in the continuous
classical case, it recovers the Liouville volume; in the quantum case, it recovers the number
of orthogonal pure states.

Proposition 1.167. Let E be a discrete classical ensemble space. Let U ⊆ {si} be a subset
of the corresponding (extreme) points and A be the set of probability distributions whose
support is a subset of U . Then scap(A) = #U .

Proof. Let A be the set of probability distributions defined over a discrete countable
set U . The highest entropy is achieved by the uniform distribution, which equals log(#U).
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Therefore scap(A) = 2log(#U) = #U .

Proposition 1.168. Let E be a continuous classical ensemble space. Let U ⊆X be a subset
of the corresponding symplectic manifold (i.e. phase space) and A be the set of probability
distributions whose support is a subset of U . Then scap(A) = µ(U) where µ(U) is the
Liouville measure.

Proof. Let A be the set of probability distributions whose support is a subset of U . The
highest entropy is achieved by the uniform distribution, which equals log(µ(U)). Therefore
scap(A) = 2log(µ(U)) = µ(U).

Proposition 1.169. Let E be a quantum ensemble space. Let U ⊆ H be a subspace of the
corresponding Hilbert space and A be the set of density operators defined on that subspace
(i.e. zero eigenvalues outside). Then scap(A) = dim(U) where dim(U) is the dimensionality
of the subspace.

Proof. Let A be the set of density operators defined on a finite-dimensional subspace U .
The highest entropy is achieved by the maximally mixed state, and equals log(dim(U)).
Therefore scap(A) = 2log(dim(U)) = dim(U). Now let U be infinite dimensional. Then there
is no upper bound on the entropy, and therefore scap(A) = ∞ = dim(U).

1.8 Fraction capacity

In this section we are going to define the fraction capacity, which can be understood as
a generalization of probability that works with any ensemble space. In classical probability,
additivity is justified by the mutual exclusivity of all elements of the sample space. In quan-
tum mechanics, classical probability can be recovered only on orthogonal subspaces precisely
because they represent mutually exclusive events. Therefore, the fraction capacity achieves
the generalization not by focusing on probability of outcomes, but by focusing on mixing
coefficient.

The typical way to understand probability is through outcomes of a process: 50% prob-
ability for tails means that if we repeated the coin toss multiple times, we would expect
roughly half to be tails. In classical mechanics, it can also be understood as the probability of
preparation: roughly half the times we selected a preparation procedure that prepared tails.
In quantum mechanics, this does not work as the probability used during the mixing is the
same as the probability of the outcome only if we are mixing orthogonal states. Effectively,
probability in the usual sense is defined only on outcomes. The fraction capacity, instead,
defines a measure on preparations.

The fraction capacity tells us how much of an ensemble e can be constructed through a
mixture of ensembles from a set A. It is a non-negative, unit bounded, subadditive, monotone
continuous (from below) measure, and it reduces to the probability measure in the classical
case, and over measurement contexts in the quantum case. The goal is to create a measure
theoretic generalization of probability theory that can work on all ensemble spaces.

First we define the fraction of one element with respect to another. For example, as shown
in Fig. 1.6, suppose e123456 is a uniform distribution for a six-faced die. Suppose e3 represents
the outcome 3 with 100% probability. Then e123456 can be understood as e123456 =

1
6e3+

5
6e12456

where e12456 is the uniform distribution over the outcomes 1,2,4,5 and 6. Note that 1
6 is the
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e123456

= 1
6

e3

+5
6

e12456

Figure 1.6: Visual representation of the fraction.

highest coefficient we can put in front of e3 in a convex combination and have e123456 as a
result, which coincides with the probability of obtaining 3 from a uniform distribution over
six outcomes. That is how we define the fraction of e3 with respect to e123456.

Definition 1.170. Let e, a ∈ E be two ensembles. The fraction of a with respect to e is
the greatest mixing coefficient for which e can be expressed as a mixture of a. That is,
frace(a) = sup({p ∈ [0,1] ∣ ∃b ∈ E s.t. e = pa + p̄b}).

ea b1 b2 ⋯

Remark. We need to take the supremum as the maximum may not exist. For example,
as shown in the figure, consider a discrete classical ensemble space and remove the extreme
points. At the moment, there is no reason to rule out such space as unphysical.

Corollary 1.171. Let e, a ∈ E, then frace(a) = 0 if and only if a is not a component of e.

Proof. Note that a is a component of e if we can write e = λa+ λ̄b for some λ ∈ (0,1] and
b ∈ E . In this case, frace(a) ≥ λ > 0. Conversely, if frace(a) > 0 we can find λ ∈ (0, frace(a)]
such that e = λa + λ̄b for some b ∈ E .

e

a1

a2

a3

Figure 1.7: Discontinuity of fraction.

Intuitively, we would expect the fraction frace(a) to be continuous both in a and e, but
this is not the case. For example, as shown in Fig. 1.7, let E be the Bloch ball and let ai be a
sequence of pure states (i.e. extreme points) that converge to another pure state e. Since they
are all extreme points, we have frace(ai) = 0 and fracai(e) = 0 for all i. However, frace(e) = 1.
This is the recurring problem of the non-continuity at the edges. The following conjecture,
however, may still be true:

Conjecture 1.172. The fraction frace(a) is a continuous function both in a and e in the
algebraic interior.
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e123456

= 1
3

1
2e3 +

1
2e4

+2
3

e1256

Figure 1.8: Visual representation of the fraction capacity.

We now define fraction capacity of a set of ensembles with respect to another ensemble.
Like before, as shown in Fig. 1.8, suppose e123456 is a uniform distribution for a six-faced die,
but now take A = {e3, e4} as, respectively, the outcomes 3 and 4 with 100% probability. Then
e can be understood as e123456 =

1
3
(1

2e3 +
1
2e4)+

2
3e1256, where e1256 is the uniform distribution

over outcomes 1,2,5 and 6. Again, note that 1
3 is the highest coefficient we can put in front of

any convex combination of elements of A, and still make a convex combination that has e as
a result. That is how we define the fraction capacity of A with respect to e123456.

The fraction capacity, then, defines how much of the ensemble e can be constructed with
elements of A. The term capacity is used first because, intuitively, it tells us how much A
can hold, and second because capacity is a name used to describe non-additive measures.
The fraction capacity, in fact, has several nice properties. First, its value is always between
zero and one, since the coefficient of a convex combination must be so bound. Second, it is
monotone in the sense that if A gets bigger, the fraction capacity cannot decrease. Third,
it is subadditive, meaning that the fraction capacity of the union of two sets must be the
sum of the respective fraction capacities or less. Fourth, it is continuous from below. Note
that if subadditivity is replaced by additivity, these are exactly the defining properties of a
probability measure, since additivity and continuity are equivalent to σ-additivity.

Definition 1.173. Let e ∈ E be an ensemble and A ⊆ E a subset. The fraction capacity
of A with respect to e is the biggest fraction achievable with convex combinations of A.
That is, fcape(A) = sup(frace(hull(A)) ∪ {0}).

Corollary 1.174. The fraction capacity is a convex supremum of the fraction with 0 for
the empty set.

Remark. Since we have shown that the fraction is not a continuous function, we can use
the same example to show that the fraction capacity of the closed hull is not necessarily the
same as the fraction capacity of the convex hull. As previously shown in Fig. 1.7, let E be a
Bloch ball and let A = {ai} be a sequence of pure states (i.e. extreme points) that converge
to another pure state e ∉ {ai}. Since e is an extreme point, it can only be written as a convex
combination of itself. Since e ∉ A, e ∉ hull(A) and therefore fcape(hull(A)) = 0. However,
since e is the limit of the sequence, we have e ∈ chull(A), and therefore fcape(chull(A)) = 1.
The fraction capacity of the closed hull, then, can be different from the fraction capacity
of the convex hull.

An open question is whether some type of equality still holds for internal points and the
σ-hull of internal points. For example, fcape(hull(A)) = fcape(shull(A)) if e is an internal
point and A is a set of internal points.
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Corollary 1.175. The fraction capacity uniquely identifies an ensemble. That is, let a,b ∈
E such that a ≠ b. Then fcapa ≠ fcapb.

Proof. Note that e = 1a + 0b if and only if e = a. Therefore, let a,b ∈ E such that a ≠ b.
We have fcapa({a}) = 1 and fcapb({a}) ≠ 1. Which means fcapa ≠ fcapb.

Proposition 1.176. The fraction capacity with respect to an ensemble is a set function
that is

1. non-negative and unit bounded: fcape(A) ∈ [0,1]
2. increasing: A ⊆ B Ô⇒ fcape(A) ≤ fcape(B)

3. subadditive: fcape(A ∪B) ≤ fcape(A) + fcape(B)

4. continuous from below: fcape( lim
i→∞

Ai) = lim
i→∞

fcape(Ai) for any increasing sequence

{Ai}

Proof. 1. By 1.51, fcape(A) ∈ [0, sup(frace(E))] = [0,1].
2. By 1.51.
3. Let A,B ⊆ E and let p ∈ [0,1] such that e = pe1 + p̄e2 for some e1 ∈ hull(A ∪B) and

e2 ∈ E . Since e1 ∈ hull(A ∪ B), we can write e1 = λa + λ̄b for some λ ∈ [0,1], a ∈ A and
b ∈ B. Therefore we have e = pλa+pλ̄b+ p̄e2. By the definition of fraction capacity, we must
have pλ ≤ fcape(A) and pλ̄ ≤ fcape(B), therefore p = pλ + pλ̄ ≤ fcape(A) + fcape(B). Since
fcape(A ∪ B) is the supremum for a set of coefficients p for which the expression always
holds, we have fcape(A ∪B) ≤ fcape(A) + fcape(B). The fraction capacity is subadditive.

4. By 1.51.
Remark. The fraction capacity is, in general, not continuous from above. Let E be the

Bloch ball. Let e ∈ E be the maximally mixed state (i.e. the center of the sphere). Let {ei}
be a countable set of distinct pure states. Let Aj = {ei ∣ i ≥ j}. Then fcape(Aj) ≥

1
2 for all j

because Aj contains at least one pure state. This means that lim
i→∞

fcape(Ai) ≥
1
2 . However,

⋂Aj = ∅ which means fcape( lim
i→∞

Ai) = 0. This means that, in general, fcape( lim
i→∞

Ai) ≠

lim
i→∞

fcape(Ai) for a decreasing sequence.

One open question is whether subadditivity extends to the infinite case. Since additivity
plus continuity implies σ-additivity14, it may be true that subadditivity plus continuity implies
σ-subadditivity.

Conjecture 1.177. The fraction capacity is σ-subadditive. That is, fcape(⋃Ai) ≤ ∑i fcape(Ai).

It is still an open question to understand exactly when the fraction capacity recovers
additivity. We believe that this should be related to the ability to write an element as a
mixture of separate components.

Conjecture 1.178. The fraction capacity fcape is additive over A,B ⊆ E if and only if there
exists a C ⊆ E such that A ã B, B ã C, A ã C and e ∈ hull(A ∪B ∪C).

We now show that fraction capacity recovers classical probability in the classical case.
The key insight is that each event, each Borel set A, corresponds to a subspace of probability

14See for example Michel Grabisch, Set Functions, Games and Capacities in Decision Making.

https://link.springer.com/book/10.1007/978-3-319-30690-2
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measures for which that event will be true. This is the set of probability measure whose
support is always within the given Borel set A. A probability measure, then, can always be
decomposed in a part for which that event will be true, the part supported by A, and a part for
which that event will be false, the part supported by the complement. The fraction capacity
corresponds to the mixing coefficient of this decomposition.

p

= p(A)

pA

+p(A∁)

pA∁

Figure 1.9: Connection between probability and fraction capacity.

Proposition 1.179. Let E be a discrete or continuous classical ensemble space with sample
space X. Let A ∈ ΣX be an event and EA ⊆ E the set of distributions with support contained
in A. Let p ∈ E a probability measure in the ensemble space. Then p(A) = fcapp(EA). That
is, the probability of an event is equal to the fraction capacity of the subspace corresponding
to that event.

Proof. Let p ∈ E be a probability measure over X, absolutely continuous with respect to
the appropriate measure µ (i.e. discrete for the discrete case and Liouville for the continuous
case). Given A ∈ ΣX , we can write p = p(A)pA+p(A∁)pA∁ where pA is a probability measure
with support with A and pA∁ is a probability measure with support with A∁.

Let EA ⊆ E be the subset of probability measures with support contained in A. Then
pA ∈ EA and fcapp(EA) ≥ p(A). Given that pA∁ has support disjoint from A, we can find no
further component of p that has support in A. Therefore fcapp(EA) = p(A). The fraction
capacity, then, recovers the probability.

We now show that the fraction capacity recovers probability over measurements in the
quantum case. The setup is essentially the same that as of the classical case, except that we
start with an observable O, and each Borel set A for that observable will have a corresponding
subspace of H and a projector ΠA. A post-measurement state of O is a mixed state that
commutes with O, since it will commute with any projector that commutes with O. We can
show, then, that the fraction capacity recovers the decomposition of any post-measurement
state of O over the subspace corresponding to ΠA.

Proposition 1.180. Let E be a quantum ensemble space associated to a Hilbert space H.
Let O ∶ H → H be a quantum observable. Let A ∈ ΣR be a Borel set and ΠA be the projector
associated with the subspace of H corresponding to the subset A of the spectrum of O. Let
EA be the set of ensembles within that subspace. Let ρ ∈ E be a mixed state that commutes
with O (i.e. the ensemble resulting from a measurement of O). Then tr(ρΠA) = fcapρ(EA).

Proof. Let ρ ∈ E be a mixed state that commutes with O. Let A ∈ ΣR be a Borel set
and ΠA be the projector associated with the subspace of H corresponding to the subset A
of the spectrum of O. Then we can write ρ = λρA + λ̄ρA∁ where ρA, ρA∁ ∈ E are such that
tr(ρAΠA) = 1 and tr(ρA∁ΠA) = 0. We have tr(ρΠA) = λ.

Let EA ⊆ E be the subset of mixed states d such that tr(dΠA) = 1. Then d ∈ EA
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and fcapρ(EA) ≥ λ. Given that ρA∁ is in the subspace orthogonal to EA, we can find no
further component of ρ in that subspace. Therefore fcapρ(EA) = λ. We have tr(ρΠA) = λ =
fcapρ(EA) The fraction capacity, then, recovers the probability.

1.9 Statistical properties and quantities

In this section we define statistical quantities, which are the generalization of classical random
variables and quantum observables. Given our ensemble-first approach, statistical quantities
are affine (linear) functions of ensembles as they represent an expectation over ensembles.
The possible values of the quantities will need to be recovered with constructions that mimic
spectral theory, though we will not want to talk about eigenstates and eigenvalues in the
general case since these are not properly defined for a continuous quantity.

Properties and quantities

These definitions extend the notion of properties and quantities that we defined for an ex-
perimental domain. In that case, we simply required that a property be a continuous map
to a set of possible values for the property. For a statistical property, the set of values are a
topological convex space, so that the property allows statistical mixing. For a quantity, the
topological convex space is simply a linearly ordered property, which in this case will always
be a real-valued quantity. The convexity, the averaging operation, fills in the gaps in the linear
order in case that all intermediate values can be obtained. For example, even if the values
on the pure states are rationals or integers, the expectations will always span a contiguous
interval of the reals.

Definition 1.181. A statistical property, or simply property, is an attribute that al-
lows statistical mixing. Formally, it is a continuous map F ∶ E → Q where Q is a convex
topological space such that F (pa + p̄b) = pF (a) + p̄F (b) (i.e. it is an affine map).

A statistical quantity, or statistical variable, or simply variable, is a numerical sta-
tistical property. That is, it is a continuous real-valued affine map F ∶ E → R.

Justification. This definition extends to the statistical case the general definition of
properties and quantities we already gave in the previous chapter. As before, continuity
is required since verifying the value of the quantity corresponds to verifying that we are
dealing with a specific subset of ensembles.

The ability to create convex combinations corresponds to the ability to create statistical
averages. Therefore Q must be a convex set. Given that preparation instances are assumed
to be independent, a mixture of the preparations will produce a mixture of the properties
according to the same fraction coefficients.

Quantities are simply properties that are linearly ordered. The ability to create convex
combinations becomes the ability to take weighted averages of the quantities. Regardless of
whether one starts from integers, rationals or real-valued quantities, the statistical averages
will, in general, be a real number.

Note that the numerical value cannot be infinite. Given that we can only measure the
finite average of a finite sequence of outcomes, we must have that these sampled averages
converge to the expectation. The only way this could happen for an infinite expectation
would be if the sampled average kept increasing over time. But this would be a contradiction
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of the assumption that an ensemble represents a reproducible collection of preparations.
Therefore, statistical variables with infinite expectations are not justified.

Remark. Note that variables will have a contiguous range on the ensembles because,
given two ensembles with different values, we can mix them to obtain any intermediate
value. This does not mean that the variable can take all possible values on pure states.
For example, the number of particles in a pure state will necessarily be a non-negative
integer, but we can mix those to create ensembles that have non-integer average number
of particles.

Corollary 1.182. A set of statistical quantities {Fi}i∈I can be collected into a single sta-
tistical property F ∶ E → RI where F (e) = {Fi(e)}i∈I .

Here we show that statistical quantities recover the standard random variables of classical
mechanics. That is, every statistical variable is a random variable and every random variable
is a statistical variable.

Proposition 1.183. Let E be a discrete or continuous classical ensemble space. Then each
statistical quantity is the expectation of a random variable and vice-versa.

Proof. Let E be a discrete or continuous classical ensemble space over some sample
space X. Let f ∶ X → R be a random variable and p ∈ E a probability measure, then the
expectation F (p) ↦ ∫X fdp is a continuous real affine map and is therefore a statistical
quantity. Conversely, let F ∶ E → R be a linear functional of the measures. Then, by the
Riesz representation theorem, we can write F (p) = ∫X fdp for some f ∶X → R.

For a quantum system, we can show that all expectations of observables are statistical
quantities.

Proposition 1.184. Let E be a quantum ensemble space. All expectations of observables
are statistical quantities.

Proof. Let E be a quantum ensemble space over some Hilbert space H. Let O ∶ H → H

be a Hermitian operator and ρ be a density matrix. Then F (ρ) ↦ tr(ρO) is a continuous
real affine map of E and it is therefore a statistical quantity.

Remark. We still need to prove that the converse is true: every statistical quantity in
quantum mechanics corresponds to an operator. We may need to constrain the problem to
bounded quantities, and recover the unbounded ones only as a limit.

Quantifiable spaces and locally convex vector spaces

In physics, we typically are able to fully identify ensembles by using measurable quantities.
An ensemble space is quantifiable, then, when we have enough statistical quantities to recover
all ensembles. There is a subtle problem with infinity, though, that is still not completely
closed.

In principle, the space of ensembles may include quantities whose expectation is infinite
over some distributions. In classical mechanics, for example, given any probability distribution
ρ with infinite support we can find a random variable f such that ∫X fρdx diverges. For
example, we can simply set f(x) = 1/ρ(x) where ρ(x) ≠ 0 and f(x) = 0 otherwise. This
can be solved in classical mechanics because we can always find distributions with compact
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support, which will guarantee convergence for all functions. In quantum mechanics, however, a
wavefunction with compact support in position will have non-compact support in momentum
and vice-versa. However, if we were to restrict ourselves to the Schwartz wavefunctions we
would have finite expectation for all polynomials of position and momentum, and they would
be dense in the Hilbert space. What makes sense to expect physically, then, is that there is
a set of quantities that physically define the system which will need finite expectation. These
will need to remain finite under coordinate transformations and time evolution for the physics
to make sense. All these details are yet to be understood and framed in a mathematically
precise way. Yet, it is clear that we need, at least, to characterize the case where a set of
statistical quantities fully characterizes all ensembles.

Definition 1.185. A quantifiable ensemble space is an ensemble space where each en-
semble can be identified by a set of statistical quantities. That is, there is family of statistical
variables Fi ∶ E → R such that, given e1, e2 ∈ E, Fi(e1) = Fi(e2) for all i if and only if e1 = e2.
Moreover, the topology is generated by those quantities.

We are going to show that the statistical quantities can be used to construct seminorms
on the embedding vector space inducing a topology that is Hausdorff and locally convex.
Since the statistical quantities are continuous in both the topology of the ensemble space
and on this topology of the embedding vector space, the embedding of the ensemble space
is continuous. Note that this embedding is not necessarily a homeomorphism onto the image
as convergence of the expectation of continuous variables (i.e. weak convergence) does not
guarantee convergence of the entropy (which requires, for example, convergence of the related
inner products in the classical and quantum cases). Therefore, all the topological details of
the ensemble space remain open even in this case.

Proposition 1.186. A statistical variable F induces a seminorm on the vector space that
embeds E.

Proof. Let F be a variable on E , let a ∈ E be an internal point and let Va be the vector
space of differences. Define Fa ∶ Va → R such that Fa([r(b − a)]) = ∣r(F (b) − F (a))∣.

First we show that Fa does not depend on the representative. If we have the zero class,
then either r = 0 or b = a. In both cases, the function evaluates to zero. For the non-zero
class, we have

Fa ({(r + j) ((
r

r + j
b +

j

r + j
a) − a)}) = {∣(r + j) (F (

r

r + j
b +

j

r + j
a) − F (a))∣}

= {∣(r + j) (
r

r + j
F (b) +

j

r + j
F (a) − F (a))∣}

= {∣rF (b) + jF (a) − (r + j)F (a)∣}

= {∣r(F (b) − F (a))∣} .

(1.187)

Since Fa evaluates to an absolute value, it is a non-negative function. Since Fa(r[s(b−
a)]) = Fa([(rs)(b− a)]) = ∣(rs)(F (b) −F (a))∣ = ∣r∣∣s(F (b) −F (a))∣ = ∣r∣Fa([s(b− a)]), Fa is
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absolutely homogeneous. We also have

Fa([r(b − a)] + [s(c − a)])

= Fa ([(r + s + k) ((
r

r + s + k
b +

s

r + s + k
c +

k

r + s + k
a) − a)])

= ∣(r + s + k) (F (
r

r + s + k
b +

s

r + s + k
c +

k

r + s + k
a) − F (a))∣

= ∣rF (b) + sF (c) + kF (a) − (r + s + k)F (a)∣

= ∣r(F (b) − F (a)) + s(F (c) − F (a))∣

≤ ∣r(F (b) − F (a))∣ + ∣s(F (c) − F (a))∣

= Fa([r(b − a)]) + Fa([s(c − a)]).

(1.188)

This means that Fa is subadditive. Therefore Fa is a seminorm by definition.

Proposition 1.189. A quantifiable ensemble space embeds continuously into a Hausdorff
locally convex topological vector space.

Proof. Let E be a quantifiable ensemble space and Va be the embedding vector space
corresponding to the internal point a ∈ E . Consider all the seminorms defined by the family
of statistical variables that make E quantifiable. These will induce a topology on Va making
it a topological vector space (see Prop 2.2 in here). Since the topology is generated by
seminorms, it is locally convex. Since the seminorms fully identify each point, the topology
is Hausdorff (see Prop 2.6 in here).

Now consider E as embedded into Va. If F ∶ E → R is a statistical variable, then
∣rF (b)−F (a)∣ is also a statistical variable since difference, scalar multiplication and absolute
value are all continuous. This means that the open balls given by the seminorm on the
vector space restricted to the ensemble space are open sets as they correspond to the open
balls in the ensemble space. Moreover, since all elements of Fi, the statistical quantities that
characterize the ensembles, are continuous in the ensemble space, a convergent sequence in
the ensemble space will correspond to the convergence of all the seminorms in the vector
space, thus convergence in the topology generated by said seminorms. The embedding,
then, is continuous.

At this point, we are not guaranteed that ensembles can be characterized by a countable
family of statistical variables. The issue is that, while a second countable locally convex topol-
ogy is generated by countably many seminorms, we know that the topology of the ensemble
space is second countable but we do not know whether the subtopology generated by the sta-
tistical variables through the seminorms is second countable. Physically, it would mean that
we have a way to experimentally distinguish between two ensembles (i.e. a second countable
topology) but not through the expectation of statistical quantities. The entropy would, for
example, provide other more stringent ways. It is not yet clear whether this is something that
can indeed happen, and therefore a potential source of new physics, or we simply are missing
a way to prove the result. Currently, the second option seems more likely.

If one is able to prove that the topology induced by the statistical variables is second
countable, or if we simply impose that a countable family of statistical variables is enough to
distinguish between ensembles, then the space is a metrizable second countable locally convex

https://en.wikipedia.org/wiki/Seminorm
https://personal.math.ubc.ca/~cass/research/pdf/TVS.pdf
https://personal.math.ubc.ca/~cass/research/pdf/TVS.pdf
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topological vector space.

Proposition 1.190. If a quantifiable ensemble space is fully determined by countably many
statistical variables, then it embeds continuously into a metrizable second countable locally
convex topological vector space.

Proof. If a quantifiable ensemble space is characterized by countably many statistical
variables, the topology induced on the vector space is second countable. A Hausdorff second
countable topological vector space is metrizable.

Remark. Note that we are missing completeness in terms of the seminorms to obtain a
Fréchet space and it is unclear we are going to have it. For the classical case, suppose we
restrict ourselves to all absolutely continuous probability measures with compact support.
Expectations of all polynomials of position and momentum fully identify the measure.
However, Dirac measures are also fully identified by those quantities, which can be achieved
as the limit of a uniform distribution whose support shrinks to a point. That would give
us a sequence of convergent expectations whose corresponding ensembles do not converge
in the space.

Proposition 1.191. Discrete/continuous classical ensemble spaces and quantum ensemble
spaces are quantifiable.

Proof. For discrete classical spaces, the expectation of the indicator of each extreme
point defines a countable set of quantities that fully identifies the distribution.

For continuous classical spaces, note that L1(R2n) is a Hausdorff second countable
locally convex topological space.

For quantum ensemble spaces, the expectations of projectors define a family of statis-
tical variables that can distinguish any pair of mixed states.

An open problem is whether statistical quantities are required by ensemble spaces or they
are an additional requirement. If we were able to show that ensemble spaces always embed
continuously into a locally convex second countable topological vector space, one may use
the seminorms to define quantities. Another approach is to investigate whether the existence
of linear transformations parameterized by real quantities, such as time evolution, gives us
statistical quantities through the generators of the transformations. It would also mean that,
if time is not modeled as a real-valued parameter, then the ensemble space would have to
change.

Connection to Choquet theory

We now want to establish a connection between ensemble spaces and Choquet theory. Specifi-
cally, we want to show that the fraction capacity restricted to the extreme points corresponds
to the supremum of all possible measures that represent an ensemble. Moreover, the fraction
capacity over the extreme points is additive exactly when the ensemble space is a Choquet
simplex.

The goal of Choquet theory is to study how a point of a compact convex set can be
represented by a probability measure over its extreme points. First, we need to define what
it means to represent an ensemble with a probability measure. Let E be a convex subset of
a locally convex topological vector space V and X the set of extreme points. We say that
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e ∈ E is represented by a probability measure p ∶ ΣE → [0,1] if F (e) = ∫E Fdp for every
continuous linear functional F on V . Moreover, we say that p is supported by the extreme
points if p(X) = 1. Given any probability measure p over the extreme points X, we can always
find an e ∈ E that is represented by p. Therefore, we have a map from the set of probability
measures to the set of ensembles. Choquet theory characterizes how the map works in the
opposite direction.

The first question is whether each ensemble is represented by a probability measure. Cho-
quet theory tells us that this is the case:

Theorem 1.192 (Choquet-Bishop-de Leeuw). Let E be a compact convex subset of a
locally convex topological vector space V , and let e ∈ E. Then there exists a probability
measure pe on E which represents e and is supported by the extreme points X.

The second question is whether the representation is unique. Choquet theory has a clear
answer.

Theorem 1.193 (Choquet uniqueness). Let E be a compact convex subset of a locally
convex topological vector space V . Then E is a Choquet simplex if and only if for each
e ∈ E there exists a unique measure pe which represents e and is supported by the extreme
points X.

The definition of a Choquet simplex is rather involved, so it is omitted. Intuitively, it is the
generalization of the finite-dimensional simplex. The key point is that E is a Choquet simplex
if and only if the ensemble space does not allow multiple decompositions in terms of extreme
points.

Note that there is a mismatch between ensemble spaces and the definition required by
Choquet theory. While ensemble spaces are convex subsets of a vector space, they will not
necessarily be compact. For example, in the classical continuous case, the space of absolutely
continuous probability distributions is not compact, even if we restrict ourselves to a compact
subset of phase space. The issue is that the extreme points, the Dirac distributions, are not
ensembles. Moreover, ensemble spaces are equipped with an entropy, and therefore have more
structure than required by Choquet theory.

However, the link we want to establish to Choquet theory is limited to the fraction capacity,
which can be defined for any convex set. Therefore we are going to study the relationship
between the fraction capacity in all cases where Choquet theory is applicable. If an ensemble
space E is compact, the results will apply directly. If an ensemble space E admits some type of
compactification E, like extending the space of ensembles to a compact set, then the results
will apply to these extreme points that are not necessarily ensembles.

We first note that there is a connection between mixtures and the representation through
a probability measure. We can, in fact, write e = λa+ λ̄b if and only if e can be represented by
the probability measure p({a}) = λ, p({b}) = λ̄, and p(E∖{a,b}) = 0. Therefore, if Me is the set
of probability measures that represent e, the fraction frace(a) is given by the maximum value
over {a} that can be taken by one of those measures. That is, frace(a) = sup{p({a}) ∣p ∈Me}.
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Proposition 1.194. Let E be a compact convex subset of a locally convex topological vector
space V and define the fraction capacity as for an ensemble space. Let e ∈ E be a point
and Me be the set of measures that represent e. Then frace(a) = sup{p({a}) ∣p ∈ Me} for
all a ∈ E and fcape(A) = sup{p(A) ∣p ∈Me} for all A ⊆ E.

Proof. Let e ∈ E and suppose e = λa + λ̄b with a,b ∈ E and λ ∈ [0,1]. Then the
measure p such that p({a}) = λ, p({b}) = λ̄ and p(E ∖ {a,b}) = 0 represents e. In fact,
for any statistical variable F we have F (e) = λF (a) + λ̄F (b) = ∫E Fdp. The converse is
true as well. If p ∈ Me such that p({a}) = λ, p({b}) = λ̄ and p(E ∖ {a,b}) = 0, then
e = λa + λ̄b. Since a Dirac measure at a point a represents a, the convex combination of
two Dirac measures represents the convex combination of the two corresponding points.

Now let p ∈Me such that p({a}) ≠ 1. We can write it as p = p({a})δa + p(E ∖ {a})
p∣E∖{a}
p(E∖{a})

where δa is the Dirac measure over a. But since every probability measure will represent

an element of E, we can find b ∈ E that is represented by
p∣E∖{a}
p(E∖{a}) . Therefore there is

p̂ ∈Me such that p̂({a}) = p({a}), p̂({b}) = p(E ∖ {a}) and p̂(E ∖ {a,b}) = 0. Which means
frace(a) = sup({λ ∈ [0,1] ∣ ∃b ∈ E s.t. e = λa + λ̄b}) = sup{p({a}) ∣p ∈Me}.

Now let A ⊆ E be convex and let MA be the set of all measures whose support is
in A. Each measure in MA will represent a point in A. Also, since the expectation of a
convex combination of measures corresponds to a convex combination of the expectation

values, MA will be convex as well. If p represents e and p(A) ≠ 0, then
p∣A
p(A)

is a probability

measure that represents an element a ∈ A such that e = p(A)a+p(A∁)b. Therefore frace(A) =

sup{p(A) ∣p ∈Me}.

If we restrict the fraction capacity to the set X of extreme points, it will represent the
supremum of all probability measures over the extreme points. If E is a Choquet simplex, then
each ensemble will be represented by a unique measure over the extreme points, therefore the
fraction capacity over the extreme points will coincide with that measure, and will be additive.
Conversely, if the fraction capacity over the extreme points is additive, the fraction capacity
must be the supremum over a single measure. If the fraction capacity over the extreme points is
additive for all ensembles, then each ensemble is represented by a unique probability measure
over the extreme points. In other words, the additivity of the fraction capacity over the
extreme points exactly captures the single decomposition of ensembles into pure states and
the Choquet simplex case.

Proposition 1.195. Let E be a compact convex subset of a locally convex topological vector
space V . Then the following statements are equivalent:

1. E is a Choquet simplex
2. each ensemble is uniquely represented by a measure over its extreme points X
3. the fraction capacity restricted over the extreme points is additive

Proof. By theorem 1.193, 1 and 2 are equivalent.
Now consider frace∣X . By 1.194, fcape∣X gives us the supremum of all possible measures

supported byX that represent e. By 1.192, e is represented by at least one measure. Suppose
that it is represented by exactly one measure p. Then frace∣X = p and therefore frace∣X is
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additive. Now, suppose that e is represented by at least two distinct measures p1 and p2.
Then there will be a set A ⊆X such that p1(A) ≠ p2(A). Suppose, without loss of generality,
that p1(A) > p2(A). We will also have p1(A∁) = 1 − p1(A) < 1 − p2(A) = p2(A∁). Therefore
fcape(A ∪A∁) = fcape(X) = 1 = p1(A) + p1(A∁) < p1(A) + p2(A∁) ≤ fcape(A) + fcape(A

∁).
The fraction capacity is therefore additive if and only if e is represented by a single measure
over the extreme points. Therefore 2 and 3 are equivalent.

Macrostates and thermodynamics

In this section we try to recover some elements of thermodynamics on the generalized ensemble
space. We want to recover Gibbs’ thermodynamics, which means an equation of state in
terms of extensive quantities. Instead of extensive quantities, we are going to use statistical
quantities. Note that the idea that all extensive quantities are statistical (i.e. the average
during mixing) seems to work. In fact, in statistical mechanics the energy, the number of
particles and the volume are averages over microstates. It also seems that intensive quantities
do not average during mixing. Temperature, for example, is only defined on equilibria (i.e. of
Boltzmann distributions) and the mixture of two equilibria at different temperatures is not an
equilibrium. Still, we would need a general proof, which would require the notion of product
spaces (i.e. intensive/extensive quantities represent system/subsystem relationship).

Definition 1.196. Let E be an ensemble space. Let F ∶ E → Q be a statistical property. The
coarse graining of E over F is the setM⊆ E represented by the ensembles that maximize
the entropy for each fixed value of the property. That is, there exists a map ψ ∶ Q → M

such that F (ψ(x)) = x and S(ψ(x)) ≥ S(e) for all e ∈ E such that F (e) = x. The equation
of state is the map S ∶ Q → R defined as S(x) ↦ S(ψ(x)) that returns the entropy given
the value of the statistical property.

The set of ensembles that maximize entropy will be a set of points fully identified by
finitely many real numbers. We would expect this to be a manifold, though we still have to
understand how the topology of the ensemble space relates to the topology of M.

Conjecture 1.197. Let F ∶ E → Rn be a vector of statistical quantities. Then the corre-
sponding coarse graining M of E is a manifold. The equation of state S ∶ Rn → R returns
the entropy as a function of the values of the statistical quantities.

Remark. We need to prove that M inherits the topology from E . Are we be able to
recover the topological isolation of phase transitions? The quantities will typically be energy
plus other extensive quantities (i.e. volume, number of particles, ...).

What we can already prove, however, is that the entropy is a strictly concave function of
the state variables. Note that, in this setting, the convex combination between state variables
does not give a statistical mixture, but rather it gives us the ensemble that maximizes entropy
on the averaged constraint. Therefore, the concavity of the entropy on the coarse grained state
space is not the same concavity of the entropy on the ensemble space.

Proposition 1.198. Given a coarse graining M of E, its equation of state is strictly
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concave. That is, S(λx + λ̄y) ≥ λS(x) + λ̄S(y) and the equality holds if and only if x = y.
Proof. Let x, y ∈ Q be two possible values for the statistical property, and let λx + λ̄y

be a convex combination. We have F (ψ(λx+ λ̄y)) = λx+ λ̄y = F (λψ(x) + λ̄ψ(y)). That is,
ψ(λx+λ̄y) and λψ(x)+λ̄ψ(y) are two ensembles that share the same value for the statistical
property. By definition, the entropy of the first cannot be lower than the entropy of the
second. We have

S(λx + λ̄y) = S(ψ(λx + λ̄y))

≥ S(λψ(x) + λ̄ψ(y))

≥ λS(ψ(x)) + λ̄S(ψ(y))

= λS(x) + λ̄S(y),

(1.199)

which shows that the equation of state is concave.
To show that the equation of state is strictly concave, suppose that x = y. Then on one

side S(λx+ λ̄y) = S(x) and on the other side λS(x)+ λ̄S(y) = S(x). Therefore S(λx+ λ̄y) =
λS(x)+ λ̄S(y), which means the inequality holds with the equal. Conversely, suppose that
x ≠ y. Then ψ(x) ≠ ψ(y). By the strict concavity of the entropy, we have

S(λx + λ̄y) = S(ψ(λx + λ̄y))

≥ S(λψ(x) + λ̄ψ(y))

> λS(ψ(x)) + λ̄S(ψ(y))

= λS(x) + λ̄S(y),

(1.200)

which shows that the equality holds if and only if x = y and therefore the equation of state
is strictly concave.

Remark. In the case of thermodynamics, where the statistical property is a vector
of statistical values, the equation of state will be concave in all arguments and in all
combinations of arguments.

1.10 Orthogonal and separate subspaces

In this section we recover the notion of subspaces from orthogonality and separateness. Since
orthogonality as defined from the entropy coincides with the orthogonality of the inner product
for classical and quantum ensemble spaces, orthogonal subspaces as defined here will coincide
with those defined by the inner product.

Irreflexive symmetric relations and topped ∩-structures

We first present a generic construction, which is sometimes called orthogonality space or
orthomodular space, and it sometimes appears in the context of Galois connections. The
general idea is that given any irreflexive and symmetric relation, we can define a closure
that gives us an orthocomplemented lattice. Since orthogonality and separateness, as defined
before, satisfy those properties, they will each give a notion of subspace.

To get an idea, we look at how orthogonality and orthogonal subspaces work in inner
product spaces. Let V be an inner product space. If we take a set U ⊆ V of vectors, we can
define the set U⊥ of all the vectors that are orthogonal to all elements of U . This will return
the subspace orthogonal to all elements of U . We can also define (U⊥)⊥ as the set of all the
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vectors that are orthogonal to all elements of U⊥. The set (U⊥)⊥ will contain all the elements
of U , because they are all orthogonal to all elements of U⊥ by definition, but it will also include
all the elements in the same subspace. If U were a subspace to begin with, then U = (U⊥)⊥.
Note that we can therefore define subspaces without having a notion of space, just by using
the orthogonality relationship, by looking for sets such that U = (U⊥)⊥.15

The construction works for any binary relationship that is symmetric and irreflexive. For
example, given two distributions, the fact that they have disjoint support is a symmetric and
irreflexive relationship: a distribution does not have disjoint support with respect to itself,
and the order of comparison does not matter. We can then construct subspaces based on this
relationship, and find sets of functions that are all defined within different regions. In our
case, separateness, as defined by the mixing function, and orthogonality, as defined by the
entropy, are symmetric and irreflexive.

We start with a generic set X and a symmetric relation (i.e. if aRb then bRa). We define the
R-complement UR of all elements that are R-related to U and study some useful properties.
The symmetry of the relation is already enough to recover most of the properties we will need.

Definition 1.201. Let X be a set and R ⊆ X ×X a symmetric relation. Given a subset
U ⊆X, we define the R-complement to be

UR = {a ∈X ∣ ∀b ∈ U,aRb}.

Proposition 1.202. Let X be a set and R ⊆X ×X a symmetric relation. Then

1. U ⊆ V Ô⇒ V R ⊆ UR

2. U ⊆ (UR)R

3. UR = ((UR)R)R

4. UR = (V R)R ⇐⇒ (UR)R = V R

5. (⋃i∈I Ui)
R = ⋂i∈I(Ui)

R

6. ∅R =X

Proof. 1. Suppose a ∈ V R. Then, by definition, ∀b ∈ V, aRb. Since U ⊆ V , it is also true
that ∀b ∈ U,aRb. Therefore a ∈ UR by definition. Since a was arbitrary, V R ⊆ UR.

2. By expanding the definition of complement, we have (UR)R = {a ∈X ∣ ∀b ∈ UR, aRb} =
{a ∈X ∣ ∀b ∈ {c ∈X ∣ ∀d ∈ U, cRd}, aRb} = {a ∈X ∣ ∀b ∈X s.t.(∀d ∈ U, bRd), aRb}.

Let a ∈ U and let b ∈X such that ∀d ∈ U, bRd. Since a ∈ U and bRd for all b ∈ U , we have
bRa in particular. Since R is symmetric, aRb. Given that b was arbitrary, we conclude that
∀b ∈ X s.t.(∀d ∈ U, bRd), aRb. Therefore a ∈ (UR)R by definition of complement. Given
that a was arbitrary, U ∈ (UR)R.

3. We again expand the definition and have ((UR)R)R = {a ∈X ∣ ∀b ∈ (UR)R, aRb}.
Let x ∈ ((UR)R)R. Then ∀b ∈ (UR)R, xRb by definition of the complement. Since by

1. U ⊂ (UR)R, we can restrict the previous expression to only the elements of U , and
therefore ∀b ∈ U,xRb. But this means that x ∈ UR by definition of the complement. Since
x was arbitrary, ((UR)R)R ⊆ UR. But by 1., we also have UR ⊆ ((UR)R)R since UR is just

15This type of construction is similar to some constructions related to Galois connections.
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a set onto which we can apply the complement twice . By two-way containment, we have
UR = ((UR)R)R.

4. Let U,V ⊆X such that UR = (V R)R. Applying the complement on each side, (UR)R =

((V R)R)R. By the previous property ((V R)R)R = V R and therefore (UR)R = V R. Switching
U and V proves the other direction.

5. We have:

(⋃
i∈I

Ui)
R = {a ∈X ∣ ∀b ∈ ⋃

i∈I

Ui, aRb}

= {a ∈X ∣ ∀Ui,∀b ∈ Ui, aRb}

= {a ∈X ∣ ∀Ui, a ∈ {c ∈X ∣ ∀b ∈ Ui, cRb}}

= ⋂
i∈I

{c ∈X ∣ ∀b ∈ Ui, cRb}

= ⋂
i∈I

(Ui)
R

Note that this property does not rely on the symmetry of R.
6. Let a ∈ X. There is no b ∈ ∅ such that aRb. Therefore ∀b ∈ ∅, aRb. This means that

a ∈ ∅R. Since a was arbitrary, X = ∅R.

The next two properties depend on both the symmetry and the irreflexivity.

Proposition 1.203. Let X be a set and R ⊆ X ×X a symmetric and irreflexive relation.
Then

1. U ∩UR = ∅

2. XR = ∅

3. (U ∪UR)R = ∅

Proof. 1. Let a ∈ U . Since R is irreflexive, aRa is false. Therefore it is not true that, for
all b ∈ U , aRb. This means that a ∉ UR. Since a was arbitrary, U ∩UR = ∅.

2. Suppose a ∈ XR. Then for all b ∈ X, aRb. In particular, we would have aRa, which
can’t be true since R is irreflexive. Therefore a ∉XR and, since a is arbitrary, XR = ∅.

3. Suppose a ∈ (U ∪ UR)R. Then aRb for all b ∈ U ∪ UR. Since aRb for all b ∈ U ,
a ∈ UR. But this would mean aRa, which is not possible since R is irreflexive. Therefore
(U ∪UR)R = ∅.

We now define a notion of R-subspace by requiring that a subspace is the R-complement of
its R-complement. We then construct the lattice of subspaces and show it satisfies properties
we would expect from a lattice of subspaces.

Definition 1.204. Let X be a set and R ⊆ X ×X an irreflexive symmetric relation. Let
U ⊆X. The R-closure of U is ⟨U⟩R = (UR)R. An R-subspace of X is a set U ⊆X such
that U = ⟨U⟩R. The lattice of R-subspaces is the set L = {U ⊆ X ∣U = ⟨U⟩R} ordered by
inclusion.

Corollary 1.205. The lattice of R-subspaces L is a topped ⋂-structure on X and therefore
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is also a complete lattice.

Proof. The set L is a collection of subsets of X. Let {Ui}i∈I ⊆ L be a non-empty family.
Then, using the definition of subspace, and the third and fifth properties of 1.202, we have

⋂
i∈I

Ui = ⋂
i∈I

(URi )R = (⋃
i∈I

URi )R

= (((⋃
i∈I

(URi )R)R)R = ((⋂
i∈I

(URi )R)R)R

= ((⋂
i∈I

Ui)
R)R.

Therefore ⋂i∈I Ui ∈ L. This means L is an ⋂-structure. Using the second property of 1.203,
X = ∅R = (XR)R. Therefore L is a topped ⋂-structure. This also means that it is a complete
lattice.

Proposition 1.206. The lattice of R-subspaces is orthocomplemented. That is

1. the R-complement is a lattice complement: A ∧AR = ∅ and A ∨AR =X
2. (AR)R = A
3. A ⊆ B implies BR ⊆ AR.

Proof. Note that 2 is satisfied because A is an R-closure and 3 is already proven in
1.202. For 1, since the lattice is an ⋂-structure, A ∧AR = A ∩AR and from 1.203 we have
A ∩AR = ∅. Since the lattice is an ⋂-structure, A ∨AR ⊇ A ∪AR. Using 1.202 and 1.203
we have ((A ∨AR)R)R ⊇ ((A ∪AR)R)R = (∅)R =X.

Corollary 1.207. The lattice of R-subspaces satisfies de Morgan’s laws. That is

1. (A ∨B)R = AR ∧BR

2. (A ∧B)R = AR ∨BR

Proof. Every orthocomplemented lattice satisfies de Morgan’s laws.a

Corollary 1.208. The R-closure satisfies the following properties

1. U ⊆ ⟨U⟩R
2. U ⊆ V Ô⇒ ⟨U⟩R ⊆ ⟨V ⟩R
3. ⟨⟨U⟩R⟩R = ⟨U⟩R

and is therefore a closure operation.

Proof. 1. The first property is true by the second property of 1.202.
2. Using the first property of 1.202 we have U ⊆ V implies V R ⊆ UR which in turn

implies (UR)R ⊆ (V R)R. Therefore ⟨U⟩R ⊆ ⟨V ⟩R.
3. Using the fifth property of 1.202 we have ⟨⟨U⟩R⟩R = (((UR)R)R)R = (UR)R = ⟨U⟩R.

Proposition 1.209. Let X be a set and R ⊆ X ×X a symmetric and irreflexive relation.
Then
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1. ⟨U⟩R is the smallest R-subspace containing U
2. if U,V ∈ L then U = V R ⇐⇒ UR = V

Proof. 1. Let U ⊆ X and V ∈ L such that U ⊆ V and V ⊆ ⟨U⟩R. Since U ⊆ V , using the
second property of 1.208, ⟨U⟩R ⊆ ⟨V ⟩R = V . Since V ⊆ ⟨U⟩R and ⟨U⟩R ⊆ V , ⟨U⟩R = V . This
means that no R-subspace that contains U is smaller than ⟨U⟩R.

2. Since U,V ∈ L, U = (UR)R = V R which, by the fourth property of 1.202, implies
UR = (V R)R = V . Switching U and V proves the other direction.

aSee, for example, Wikipedia.

We now show that if we start with the mere notion of orthogonality defined from an inner
product vector space, we recover the notion of orthogonal components and subspaces. That
is, the full structure of subspaces of an inner product space can be fully recovered only from
pairwise orthogonality.

Proposition 1.210. Let X be an inner product space and R = {(a, b) ∣ ⟨a, b⟩ = 0}. Then

1. R is an irreflexive and symmetric relation
2. UR = U⊥

3. ⟨U⟩R = clX(span(U))

Proof. 1. Given that the inner product is symmetric, so will be R. Given that no vector
is orthogonal to itself, R is irreflexive.

2. The orthogonal complement is defined as U⊥ = {a ∈ X ∣ ∀b ∈ U, ⟨a, b⟩ = 0}. Since
aRb ⇐⇒ ⟨a, b⟩ = 0, UR = U⊥.

3. We have ⟨U⟩R = (U⊥)⊥ which returns the smallest closed subspace that contains
U .

Separate and orthogonal subspaces

Since orthogonality and separateness are irreflexive symmetric operations, they will both give
a lattice of subspaces. Here we present a series of conjectures about these subspaces that we
have yet to prove.

Definition 1.211. Let E be an ensemble space. An ⊥-subspace is an R-subspace defined
by ⊥ and a ã-subspace is an R-subspace defined by ã.

In the classical case, since both orthogonality and separateness coincide with disjoint
support, a subspace consists of all the probability distribution whose support is within a
given set U .16

Proposition 1.212. Let E be a discrete or continuous classical ensemble space over a
sample space X. Then A ⊆ E is an ⊥-subspace if and only if there exists U ⊆ X such that
A = {p ∈ E ∣p(U) = 1}.

16Clearly, not all closed sets will give a different subspace. For example, over R, [0,1] and [0,1] ∪ [2,2] will
correspond to the same subspace. Characterizing that equivalence class is still an open question.

https://en.wikipedia.org/wiki/Complemented_lattice
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Proof. Recall that in a classical ensemble space, p ⊥ λ if and only if λ(supp(p)) = 0. Let
A ⊆ E be an ⊥-subspace. Let U = ⋃p∈A supp(p) be the union of all supports. Then λ ∈ A⊥

(i.e. is orthogonal to all elements of A) if and only if λ(U) = 0. Conversely, p ∈ A only if
it is orthogonal to all elements, which means if and only if p(U) = 1. Therefore if A is a
subspace, there is a U ⊆X such that A = {p ∈ E ∣p(U) = 1}.

Conversely, let A = {p ∈ E ∣p(U) = 1} for some U ⊆ X. Then A⊥ = {p ∈ E ∣p(U) = 0}.
The orthogonal complement of the orthogonal complement will return A, which means
A = (A⊥)⊥ is a subspace.

In the quantum case, the orthogonality coincides with orthogonality in the Hilbert space,
and therefore an ⊥-subspace coincides with the set of density operators supported by a given
subspace.

Proposition 1.213. Let E be a quantum ensemble space over a Hilbert space H. Then
A ⊆ E is an ⊥-subspace if and only if there exists a subspace U ⊆ H with a corresponding
projector 1U such that A = {ρ ∈ E ∣ tr[1U ρ] = 1}.

Proof. Recall that to each subspace U ⊆ H is associated a projector 1U whose eigenvec-
tors with eigenvalue 1 span U . Given a density operator ρ ∈ E , its support is the subspace
U = supp(ρ) spanned by the non-zero eigenvectors. Therefore tr[1U ρ] = 1 and tr[1U⊥ ρ] = 0.

Also recall that, for a quantum ensemble space, ρ ⊥ σ if and only if tr[1supp(ρ) σ] = 0.
Let A ⊆ E be an ⊥-subspace. Let U = ⋁ρ∈A supp(ρ) be the subspace U spanned by all
supports. Then σ ∈ A⊥ (i.e. is orthogonal to all elements of A) if and only if tr[1U σ] = 0.
Conversely, ρ ∈ A if and only if it is orthogonal to all elements of A⊥, which is the case if
and only if tr[1U ρ] = 1. Therefore if A is a subspace, there is a subspace U ⊆ H such that
A = {ρ ∈ E ∣ tr[1U ρ] = 1}.

Now let A = {ρ ∈ E ∣ tr[1U ρ] = 1} for some subspace U ⊆ H. The orthogonal complement
A⊥ will be the set of all density operators σ ∈ E such that tr[1U σ] = 0. The complement of
the complement will return A, which means A = (A⊥)⊥ is a subspace.

Note that, in general, the two notions of subspaces, and therefore their lattices, will be
different. Note that a feature of classical ensemble spaces is exactly that orthogonality and
separateness coincide, which also means the two lattices will coincide.

Another question is whether the lattice of ⊥-subspaces has to be necessarily orthomodular,
as one requires, for example, in quantum logic. The cut triangle 1.215 is a counterexample.
The only orthogonality relationships are 2 ⊥ p3 + p̄b and 3 ⊥ p2 + p̄a. This means that the
only ⊥-subspaces are the bottom � = ∅, 2 = {2}, 3 = {3}, A2 = {p2 + p̄a}, B3 = {p3 + p̄b} and
the top ⊺ = E . As we can is see in Fig. 1.10, the subspaces form an M6 lattice, which is not
orthomodular. In fact, 3 ⊆ B3 but 3 ∨ (3⊥ ∧B3) = 3 ∨ (A2 ∧B3) = 3 ∨ � = 3 ≠ B3. The lack of
orthomodularity is due to the multiple complements where one is a subset of the other.
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A2 B3

a

2 3

b

⊺ = E

A2 B3

2 = {2} 3 = {3}

� = ∅

Figure 1.10: On the left, the cut triangle. On the right, the lattice of the orthogonal subspaces.
The red lines connect the orthogonal complements.

This leads to the following:

Conjecture 1.214. The lattice of ⊥-subspaces is orthomodular if and only if the ensemble
space is orthogonally decomposable (i.e. every decomposable ensemble is orthogonally decom-
posable).

If this is true, the requirement of orthomodularity is an additional requirement that can
be understood physically.

Note, however, that the lattice of ã-subspaces of the cut triangle is orthomodular, though
not commutative. This shows how the two lattices can be very different.

⊺ = E

2P = AB ∪B3 AP = B3 ∪ 23 BP = 23 ∪A2 3P = A2 ∪AB

B3 = {pB + p̄3} 23 = {p2 + p̄3} A2 = {pA + p̄2} AB = {pA + p̄B}

3 = {3} 2 = {2} A = {a} B = {b}

� = ∅

Figure 1.11: In this diagram, the lower tier represents the singletons of the extreme points,
the middle tier represents each side and the top tier represents the pairs of sides that are the
ã-complement of the extreme points. The red lines connect the complements. Note that the
lattice is not distributive (e.g. A ∨ (3 ∧A2) = A ∨ � = A ≠ (A ∨ 3) ∧ (A ∨A2) = BP ∧A2 = A2).
In fact, {�,3,A,A2,BP} is an N5 sublattice.

1.11 Examples

In this section we plan to collect examples that appear throughout the chapter to exemplify
corner cases, wanted or unwanted.
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Cut triangle

The cut triangle is an example of a simple classical space with a constraint, which makes it
an interesting candidate for testing concepts and definitions on a small deviation from the
classical case.

Example 1.215 (Cut triangle). The cut triangle is the subset of probability measures over
three elements where the probability of the first is constrained to be no more than 1

2 .

a

2 3

b

c

Figure 1.12: Cut triangle.

This ensemble space is the standard two simplex, a triangle, where the top is cut off. This
is the space of probability distributions [p1, p2, p3] such that p1 ≤ 1

2 , where entropy is the
Shannon entropy. The extreme points of the space are 2 = [0,1,0], 3 = [0,0,1], a = [1

2 ,
1
2 ,0]

and b = [1
2 ,0,

1
2]. Every ensemble that is decomposable is also separately decomposable but

not necessarily orthogonally decomposable. Most ensembles, all those in the interior, are also
separately multidecomposable. For example, c can be expressed as a mixture of a and 3, and
of b and 2.

Real interval with right topology

This example shows how one can have a topological convex space that embeds in a vector
space, but its topology is not compatible with the vector space operations. In a topological
vector space, the multiplication by −1 forces sets that are the mirror image of open sets to be
open. This is not guaranteed in a topological convex space.

Note that the topology in the example is T0 but not T1. The existence of an entropy
function forces the space to be at least Hausdorff, therefore this is not a valid ensemble space.

Example 1.216 (Real interval with right topology). Let E be the interval [0,1] ⊂ R with the
topology generated by sets of the form (r,1]. Since the topology is not T1, it cannot be an
ensemble space, but the mixing operation is continuous.

To show that the mixing operation is continuous, it suffices to show that the inverse
image of sets of the form (r,1] is open. To do that, we show that each point in +−1((r,1]) =
{(p, a, b) ∈ [0,1]3 ∣pa + p̄b > r} has an open neighborhood. First, note that sets of the form
(p,1] × (a,1] × (b,1] and [0, p) × (a,1] × (b,1] are open because they are the product of open
sets. Next note that if pa + p̄b > m, then if a ≥ b, for any λ > p, c > a and d > b, λc + λ̄d > m.
This is because the convex combination can only increase if the elements increase and/or if
the coefficient of the greater element increases. In terms of sets, if pa + p̄b > m and a ≥ b,
+((p,1], (a,1], (b,1]) ⊆ (m,1]. Conversely, if a ≤ b, +([0, p), (a,1], (b,1]) ⊆ (m,1]. Now, let
pa + p̄b = m > r. Then pa + p̄b > m+r

2 . If a ≥ b, +((p,1], (a,1], (b,1]) ⊆ (m+r
2 ,1] ⊆ (m,1]. If

a < b, +([0, p), (a,1], (b,1]) ⊆ (m+r
2 ,1] ⊆ (m,1]. Therefore, every point in +−1((r,1]) has an

open neighborhood, and +−1((r,1]) is an open set. This means that the mixing operation is
continuous.
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1.12 Lessons learned

This section summarizes insights from previous attempts that failed. We collect them here for
reference.

Entropy and convex structure

Insight 1.217. The entropy is not uniquely determined by the convex structure.

When defining the entropy given a space of probability distributions, there is typically
an underlying assumption that all “pure states” are equivalent. That is, they have the same
entropy. For example, in a discrete classical space, the entropy is typically −∑i pi log pi which
assumes the entropy is zero for all extreme points. This assumption is not tenable in general.

Example 1.218 (Mixed gas). Let’s assume we have a mixture of two gases at a fixed tempera-
ture and volume. The state is therefore defined by the variables na and nb that represent the
number of molecules of the respective gases. The entropy of each configuration is log 1 = 0. If
we have a uniform distribution over [0,Na] for na and [0,Nb] cases of nb, the total number of
cases is (Na + 1)(Nb + 1), and therefore the entropy of the joint state is log((Na + 1)(Nb + 1)).
Now, suppose we cannot control the number of molecules for each gas, but only the total n.
Each value of n will not correspond to the same variability of the elements of the ensemble. If
we fix n number of molecules, in fact, there will be n+1 configurations possible, and therefore
the entropy of each case should be log(n + 1).

If we have the space of probability distributions over a single variable that represents
the total number of molecules, then we would not be able to know whether these are all
indistinguishable or divided into two distinct types. Therefore we would not know which is
the correct physical entropy.

Note that in quantum mechanics there is a tacit assumption that all pure states have the
same entropy. We could imagine, however, a theory where the pure states, the ones that we
can ideally prepare and control, are not all at the same entropy. This would bake into the
state space that not all evolutions are reversible. There is no reason to exclude this case, and
it may turn out to be what we need for future theories.

Continuity of affine combinations

Insight 1.219. Mixing cannot be a homeomorphism.

To answer whether the embedding of the ensemble space in the topology of the vector space
is continuous, we wanted to understand whether the inverse of the mixing is continuous. It
turns out, it can’t be in general because of the extreme points.

Proposition 1.220. Let E = [0,1] and suppose that mixing is a homeomorphism, meaning
+pa(b) = pa + p̄b is a homeomorphism onto its image. Then E would have to have the discrete
topology, which is not possible, since the topology must be second countable.

Proof. Consider + 1
2

0([0,1]) = [0, 1
2]. Since [0,1] = E is an open set, then [0, 1

2] is an

open set as + 1
2

0([0,1]) is a homeomorphism. Similarly, + 1
2

1([0,1]) = [1
2 ,1] is an open set.

This means that {1
2
} = [0, 1

2] ∩ [1
2 ,1] is an open set. This means that, for every p ∈ [0,1],

+p0({
1
2}) = {1

2(1−p)} is an open set. Similarly, for every p ∈ [0,1], +p1({
1
2}) = {1

2(1+p)} is an
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open set. This means that every singleton is open, and the topology is discrete. The topology,
then, cannot be second countable and E cannot be an ensemble space.

Note that, in the above example, +ab ∶ [0,1] → E would also fail to be a homeomorphism,
though it is not clear how this is related to the failure of continuous embedding in a topological
vector space (probably failure of scalar multiplication?).

The continuity of the mixing function means we can stretch open sets and still have open
sets, but not, in general, shrink them. In retrospect, this makes sense as the bounds created by
the boundaries of the convex set are of a different nature than the bounds of a finite precision
measurement.

Convergence of points without convergence of fraction

Insight 1.221. In a limit, the fraction does not necessarily converge to one.

Since the fraction tells us how much an ensemble is part of another, an intuitive conjecture
would be that if ai → a then fraca(ai) → 1. That is, the fraction increases as we get closer to
the limit. This does not work because one can make a limit over the extreme points.

Example 1.222 (Pure state convergence in a quantum space). Let ψi be a sequence of pure
states and ψ a pure state such that ψi → ψ and ψi ≠ ψ for all i. For example, on a Bloch
sphere, it would be a sequence of points on the surface that converges to a point on the
surface. Then, since they are all pure states, we have fracψ(ψi) = 0. This means ψi → ψ while
fracψ(ψi) → 0 ≠ 1.

Measures and topology

Insight 1.223. Boundaries of open sets can have non-zero measure.

An earlier attempt when trying to find a compatibility condition between measures and
topology was to impose that boundaries of open sets have measure zero. The idea was that we
cannot associate a non-zero measure to non-terminating conditions. Though the conceptual
idea is sensible, the specific implementation does not work. We can find a counterexample on
the real line.

Proposition 1.224. Let µ be the Lebesgue measure on the real line R. There exists an open
set U such that µ(U) ≠ µ(U).

Proof. Let C be the SmithVolterraCantor set. This is a closed set with no interior for
which µ(C) = 1

2 . Let U = (0,1) ∖ C. We have that U is an open set and U = [0,1]. We have

µ(U) = µ([0,1]) = 1 while µ(U) = µ((0,1)) − µ(C) = 1
2 .

Subspaces from convex structure

Insight 1.225. The convex structure, by itself, cannot define subspaces.

Initially, we tried recovering the notion of subspaces purely from the convex structure. We
did make some progress in the finite-dimensional case, but ultimately this does not work. We
identified two problems.

The original definition was as follows.

https://en.wikipedia.org/wiki/Smith%E2%80%93Volterra%E2%80%93Cantor_set
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Definition 1.226. Let E be a convex space and X ⊆ E be a subset. We say that X is a
subspace of E if it contains all the convex combinations and all the components of its elements.
That is, for every e1, e2, e3 ∈ E and λ ∈ (0,1) such that pe1 + p̄e2 = e3 we have:

• e1, e2 ∈X implies e3 ∈X
• e3 ∈X implies e1, e2 ∈X.

The convex span of X is the smallest subspace containing X.

Remark. As defined, the convex span of two elements will include all their possible mixtures
(i.e. the segment that connects them), all possible decompositions (i.e. all lines that pass
through them) plus, recursively, all other mixtures and decompositions that can be reached
from those. Physically, the idea is that if we act on some ensembles, then we are also acting
on all their components and mixtures. Therefore, the proper definition of subspace does not
include just the mixtures, but all possible components and all their possible mixtures.

Example 1.227 (Classical discrete spaces). Let S be a set of n possible discrete states and let
E be the space of probability distributions over the set S (i.e. E is an n-simplex and S its
extreme points). A subspace X of E is a convex hull of a subset U of S. That is, a subspace
of E is the space of probability distributions over a subset of the cases. Geometrically, it is
one of the sides (possibly recursively) of the simplex.

To see this, first note that the convex hull X of any subset U of extreme points S is
a subspace. In fact, it will contain all convex combinations of U , and any element can be
decomposed in convex combinations of only U . Second, note that only convex hulls of a
subset of extreme points can be a subspace. In fact, any element of E can be expressed as
a non-trivial convex combination of a set of extreme points U . Therefore, if an element is
present in a subspace X, then U ⊂ X, which means all elements of the convex hull of U are
in X.

Example 1.228 (Finite-dimensional quantum spaces). LetH be an n-dimensional Hilbert space
and let E be the space of density matrices (i.e. positive semi-definite self-adjoint operators
with trace one). A subspace X of E is the space of density matrices of a subspace U of H.
That is, a subspace of E is the space of mixed states over a subspace of pure states.

To see this, first note that the space of density matrices X of a subspace U of H is a
subspace of E . In fact, X will contain all convex combinations of its elements. Moreover, any
element x ∈X can be decomposed in a convex combination of pure states of only U . Therefore
any convex decomposition of x has all its elements in X. Second, note that only the space of
density matrices X of a subspace U of H is a subspace of E . In fact, any element x of E can
be expressed as a non-trivial convex combination of orthogonal pure states, its eigenstates.
These elements will span a subspace U of H. From those elements, we can construct an equal
mixture which represents the maximally mixed states and, mathematically, is the identity
operator I/m divided by the number of elements m ≤ n of U . The equal mixture of any
orthogonal basis of U will also give the maximally mixed state. Therefore, given an element
x, any subspace that contains x will also contain a basis of U , the maximally mixed state I/n,
all possible basis of U , which means all the pure states, and finally all convex combinations
of the pure states, which means all possible density matrices, all possible mixed states.

The definition works in these cases, which is why it looked promising, but not in general.



90 CHAPTER 1. ENSEMBLE SPACES

Insight 1.229. Rate of convergence cannot be changed by a convex combination.

Proposition 1.230. Let E be the space of probability measures over [0,1]. Let a be the uniform
distribution and let b be a distribution whose density goes to zero at the endpoints. Then b is
a component of a but not vice-versa. Therefore the convex span of a is the whole E while the
convex span of b is not the whole E.

Proof. Consider the two probability densities ρa and ρb associated with the ensembles. The
density ρb has a supremum supρb that is greater than 1, which means p = 1

supρb
is smaller than

one. The function ρc =
1
p̄ρa −

p
p̄ρb will be a non-negative function that integrates to one. The

same procedure could be applied for any probability density, which means every probability
measure over [0,1] is a component of the uniform distribution. Therefore the convex span of
a is the whole E .

Conversely, consider a possible convex combination pρa + p̄ρc = ρb. Since ρb converges to
zero at the endpoints, for each p there will be a neighborhood of 0 for which pρa is greater than
ρb. Therefore ρc cannot be a non-negative function. This means that a is not a component of
b and the convex span of b is not the whole E .

This means that this notion of subspace does not simply return all the functions with the
same support, but the function with the same support and a particular class of convergence
on the boundaries, and possibly at interior points.

One key problem is that it cannot be generalized to the classical continuous case, as the
rate of convergence cannot be changed by finite convex combinations. Even if that problem
were fixed, there would be nothing to determine the dimensionality of U , and we could create
convex maps that “stretch” the space. This led to the following:

Insight 1.231. Dimension/count of states cannot be determined by the convex structure.

Even if the previous problem is solved, the “size” of the subspace cannot be determined
with a convex structure alone. In the finite-dimensional case this works, but in the infinite-
dimensional case it does not.

Proposition 1.232. Let X = M1([0,1]) and Y = M1([0,2]) be the spaces of probability
measures on [0,1] and [0,2] respectively. The function f ∶ [0,1] → [0,2] such that f(x) = 2x
is a diffeomorphism and induces a bijective continuous affine map between M1([0,1]) and
M1([0,2]). However, the entropy is not conserved through the map.

Proof. In terms of the probability measures, the map simply acts on the transformed
sets. That is, µY (A) = µX(f−1(A)). This, for example, maps the uniform distribution over
[0,1] to the uniform distribution over [0,2]. Therefore A and B are isomorphic as convex
spaces. However, the entropy over a uniform distribution changes with the range, therefore
the entropy is not conserved through the map.

This means that the convex structure and the topology are not enough to determine the
size of the space. This means that, without information about the entropy, we are not going
to be able to tell that we spread ensembles over double the distance.

Spectrum from subspaces

Insight 1.233. The lattice of subspaces is not enough to recover the points.
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Originally, we intended to recover the spectrum of an operator (i.e. the possible values
over which the distribution is defined) by taking the limit of subspaces. For example, for
position a possible value x would be the limit of the sequence of subspaces of distributions
with support [x − ε, x + ε]. Formally, the construction was similar to Stone’s representation
theorem for Boolean algebras, and the points were the ultrafilters. However, this does not
work as the ultrafilters are “too fine.” When reconstructing a real line, for example, the limit
approaching from below and the limit approaching from above would be two separate points.

The core of the problem is that the lattice of subspaces recovers the Boolean algebra of the
regular open sets. However, the lattice of the regular open sets is not enough to reconstruct
the points of the space.

Proposition 1.234 (Regular open sets are not enough). Let X and Y be two topological
spaces such that the respective lattices of regular open sets RX and RY are isomorphic as
Boolean algebras. It does not follow that X and Y are homeomorphic as topological spaces.

Proof. Let X = S1 be a circle with the standard topology, Y = R be the real line with the
standard topology and Z = R ∖ {0} be the real line without the origin. Note that the circle
is the one-point compactification of the real line, and therefore Y = X ∖ {∞}. This forms a
chain of embedding Z → Y →X.

Suppose UX is a regular open set in X. Then UY = UX ∖ {∞} is an open set in Y . We
also have UY = UX ∖ {∞} and int(UY ) = int(UX) ∖ {∞} where the closure and interior are
taken in the respective spaces. Therefore UY is a regular open set. Also, let UX and VX be
two distinct open sets of X. Then, since every open set that contains {∞} also contains an
open neighborhood of {∞}, the corresponding UY and VY will also be two distinct open sets.
Then ι(UX) = UX ∖ {∞} is an injection between the regular open sets of X and Y . Now let
UY be a regular open set on Y . Let UX = int(UY ∪ {∞}) where the closure and interior are
taken in X. Then UX is a regular open set of X because it is the interior of a closure. Also
note that int(ι(UX) ∪ {∞}) = int(UX ∖ {∞} ∪ {∞}) = int(UX) = UX . Therefore the map ι is
a bijection between the regular open sets of X and Y .

Note that regular open sets form a Boolean algebra where the complement is the exterior,
the join is the interior of the closure of the union and the meet is the intersection. Note
that if UX ⊂ VX , then ι(UX) ⊂ ι(VX), therefore ι preserves the joins and the meets. Now
let VX = ext(UX) and consider ι(VX). This will contain all the exterior points of UX minus
{∞}. But these are also the exterior points of ι(UX). Therefore ext(ι(UX)) = ι(ext(UX)). The
bijection is an isomorphism of Boolean algebras, and the corresponding algebras of regular
open sets are isomorphic. The same reasoning applies when comparing Y to Z.

Now, note that {∞} is a closed set, but not a regular closed set. Therefore we are going
to be able to construct a similar argument for the lattice of regular closed sets

Since the construction in terms of subspaces recovered the algebra of regular open (or
closed) sets, and wanted to recover the points as limits, the above proposition implies that
this is not possible. We would not be able to know, for example, whether the points form a
circle or a real line. Even if we knew that they form a real line, and knew what half-lines we
have, we would not know how to stitch them back together, as we could do it with {0} or
with {∞}. We would need to know, at least, which intervals correspond to a finite interval
(e.g. a finite entropy), which requires more structure.

https://en.wikipedia.org/wiki/Stone%27s_representation_theorem_for_Boolean_algebras
https://en.wikipedia.org/wiki/Stone%27s_representation_theorem_for_Boolean_algebras
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Open problems

This a collection of open problems related to the topics of this chapter. Here we summarize
the status of some of them, which may include failed attempts and wrong results.

1.13 Open problem: Affine sets and affine hulls

Tags: Ensemble spaces, Convex spaces, Affine spaces

In the context of ensemble spaces, we have defined closures in terms of convex combinations. It
may be useful to also define closures in terms of affine combinations. It needs to be understood
whether this is useful, and how to make sure that these closures work for infinite dimensional
spaces.

The following notes represent an early attempt. It needs to be understood whether this is
at all needed and, in that case, revised and finalized. We used the term flat in this notes, but
if may be better to first define an affine set as one closed under affine combinations and then
the affine hull. This would be more consistent with the previous definitions and some of the
literature.

In some cases, it may useful to define sets closed under affine combinations instead of
convex combinations. That is, if a = pb + p̄c and two of the ensembles are in the set, then the
other one is in the set as well. This allows us to get all the ensembles in the same hyperplane.
We call this a flat. In the triangle example, the only flats available are the single vertexes,
each side and the whole triangle. For the Bloch ball, if we took two elements, we would get
the whole segment that connects them and extends to the surface. But if we get three points,
we get a circle, which is not a simplex. This affine closure, essentially, allows us to remove
“ensembles from each other” as much as possible, so that we can get to their most distinct,
most separate, form.

It still needs to be understood what the best definition for flat is, its relationship with the
topological closure, its corresponding hull and so on.

Definition 1.235. A simplex is a subset U ⊂ Rn that is the hull of finitely many affinely
independent points. That is, U = hull({xi}

n
i=0) such that {xi −x0}

n
i=1 are linearly independent.

Definition 1.236. A flat A ⊆ E is a closed convex subset that contains all lines between all
elements. That is, for any a,b ∈ A, A also contains the line that contains a and b. Given a
set U ⊆ E, the flat closure of U is the smallest flat that contains U . A flat is finite if it can
be generated by a finite number of elements. An n-flat is a flat that must be generated by a
set with at least n elements.
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Figure 1.13: Flat vs convex set. The ball is the ensemble space. The triangle represents a
convex subset. The disc containing the triangle is the flat closure of the triangle. The plane
is the affine closure of the triangle.

Proposition 1.237. A flat includes all possible affine combinations of elements of E that are
contained in E. The flat closure of U ⊆ E is the intersection of E with the affine closure of U
in the embedding vector space.

Proof. Let A ⊆ E be a flat and let V be the real vector space that embeds E . A line between
two elements a,b ∈ A can be extended in V and can be written as a + x (b − a) with x ∈ R.
Therefore any ensemble that can be written as an affine combination of two ensembles in A
is an element of the flat. Recursively, this means that any ensemble that can be written as an
affine combination of finitely many ensembles in A is also in the flat. Moreover, since the flat
is a closed set, it will also include all its limits. Therefore every affine combination of A that
is also an element of E is in A, which means A is the intersection of an affine subspace of the
embedding vector space and the ensemble space.

Now let U ⊆ E be a set of ensembles. The affine closure of U will be an affine subspace
of the embedding vector space. The flat closure will be the intersection of the affine closure
with E . Since the affine closure is the smallest closed affine subspace that contains U , its
intersection with E will be the smallest flat that contains U , which is the flat closure of U .

Conjecture 1.238. An n-flat is a simplex if and only if its 3-flats are simplexes (i.e. trian-
gles).

Remark. In classical discrete ensemble spaces, any flat is a simplex. In classical continu-
ous ensemble spaces, infinite dimensional flats will depend on what limits are allowed. In a
quantum ensemble space, if we take three ensembles inside a Bloch ball, the corresponding
flat will be a circle. If we take three orthogonal pure states, however, the corresponding flat
will be a simplex.

1.14 Open problem: Classicality as reducibility
Tags: Ensemble spaces, Convex spaces

We still need a solid characterization of the ensemble space for classical theories. Effectively,
we are looking for a characterization of a convex space to be a symplex without extreme
points, such that the extreme points can be understood as limits, and not elements of the
convex space.
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Part of the problem is isolating the different parts that may lead to different features that
one may consider classical. For example, finite discrete classical spaces are simplexes such
that all extreme points are orthogonal to each other and have zero entropy. One may have
a simplex where all extreme points are orthogonal, though the extreme points have different
entropy. All features of a classical theory are there, expect that the entropy function has to
be corrected to S(e) = I(pi) + ∑i piS(xi). A weaker case is when the ensemble space may be
a simplex, but the extreme points are not orthogonal.

The definition will need to work for the classical continuous case. Given that classical
phase space is not, in general compact, the space of probability distribution is not a Choquet
simplex. Moreover, even if we restrict to ourselves to the compact case, the Dirac measures
cannot be in the ensemble space, as their entropy is minus infinity.

Here, we focus on the intermediate property: the ensemble can be orthogonally decom-
posed, but the entropy of the extreme points is not necessarily uniform.

Definition 1.239. An ensemble space E is reducible if every decomposable ensemble can be
decomposed into ensembles with no common components and ensembles that have no common
component are mutually exclusive. That is, it is separately decomposable and separateness
implies orthogonality (i.e. e1 ã e2 implies e1 ⊥ e2).

Justification. The idea of reducibility is that we can take ensembles and decompose them
into parts that are mutually exclusive. This is the basic expectation in the classical case.

If we assume reducibility, then, if an ensemble is a mixture of other ensembles, we must be
able to express it as a mixture of separate ensembles. This justifies separate decomposability.

Given that e1 ⊥ e2 implies e1 ã e2, reductibility add the opposite implication. Therefore it
excludes the case where two ensembles are orthogonal but not separate. This case describes
two ensembles that have elements in common, but there is no ensemble corresponding to
those common elements. That is, we cannot refine the ensembles into three separate ones: one
with only elements of the first, one with only elements of the second and one with elements
of both. In other words, we cannot reduce the coarser description of the system into finer
separate descriptions. In the excluded case, then, the coarser description is irreducible into
finer ensembles. This justifies that, under reducibility, separate ensemble must be orthogonal.

Proposition 1.240. Continuous and discrete classical ensemble spaces are reducible.

Proof. As we saw before, classical ensemble spaces are separately decomposable. We also
saw that both separateness and orthogonal both correspond to disjoint support. Therefore
separateness implies orthogonality.

What we need to prove is that every reducible ensemble space can be represented by a
subspace of probability measures. The strategy would be to prove the following series of con-
jectures. The lattice of ⊥-subspaces L⊥ forms a Boolean algebra. Using Stone’s representation
theorem for Boolean algebras, there is a set X and L⊥ correspond to the clopen sets, and
orthogonal subspaces correspond to disjoint sets. Set functions over clopen sets can be ex-
tended to the Borel algebra of X. Since the state capacity is additive over orthogonal sets,
it is an additive set function when defined to the Borel algebra of X and, therefore, it is a
measure. Similarly, one finds that the fraction capacity becomes additive, and, given its other
properties, it is a probability measure over X. Additionally, since every ensemble has a finite
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entropy and the state capacity gives us the supremum of the exponential of the entropy, the
fraction capacity for a set of measure zero (i.e. minus infinity entropy) must be zero (i.e. no
component can exist).

Conjecture 1.241. Every reducible ensemble space can be represented by a space of probability
measures. That is, given a reducible ensemble space E there is a topological space X such
that each e ∈ E is represented by a unique probability measure pe over X that is absolutely
continuous with a measure µ over X.

1.15 Open problem: Classical contexts
Tags: Ensemble spaces, Convex spaces

Even if an ensemble space is not classical, we want to be able to characterize subsets of
ensembles spaces that look classical. In quantum mechanics, this would recover the contexts
in which classical probability can be defined

There is again the difference of just considering the convex structure (i.e. they form a
simplex) or also add the entropic structure (i.e. separate ensembles are orthogonal). In the
attempt below, we chose to only use the convex structure. These are still rough ideas that
may need to be refined.

The basic idea is that the hull of a set of orthogonal states in quantum mechanics forms
a simplex, so we can understand projection measurements as moving the system to one of
those states. Ideally, a classical context should be a subset of an ensemble space that is a
classical ensemble space. An additional problem is the multiplicity of extreme points for the
same measurement outcome. In that case, the set of post-measurement ensembles are not a
simplex. It may be that the correct definition for a classical context would be the domain of
a map to simplex that preserves orthogonality.

Sets decomposability

Since contexts set can be a subset of, for example, a quantum ensemble space and this property
must work recursively, the first step is to restring the notion of decomposability to sets.

Definition 1.242. Let C be a convex set. The set is separately/orthogonally decompos-
able if every element of C that is decomposable in C is also separately/orthogonally decom-
posable in C. The set is monodecomposable if every element in C that is decomposable in
C is monodecomposable in C. The set is separately/orthogonally monodecomposable if
it is both separately/orthogonally decomposable and monodecomposable.

Definition 1.243. Let C be a convex set. We say that mixtures preserve separateness
in C if e ã a and e ã b implies e ã pa + p̄b for all p ∈ [0,1].

Proposition 1.244. A convex set C is monodecomposable in C if and only if mixtures pre-
serve separateness in C.



96 CHAPTER 1. ENSEMBLE SPACES

Remark. A convex set that is separately decomposable is not necessarily a flat (e.g. triangle
within a sphere). A flat is not necessarily separately decomposable (e.g. open segment as a
whole is a flat, but is not separately decomposable).

We can now define a classical probability context as a flat that does not allow multiple
decompositions. The definition below may still need to be refined. In particular, we may want
need to include the requirement of orthogonality during the decomposition for an actual clas-
sical context as classical probability implicitly requires that the cases are mutually exclusive.
We would need a different name when the requirement is only on the convex structure, like
below.

Definition 1.245. Let E be an ensemble space. A classical probability context is a flat
C ⊆ E where each decomposable element in C is separately decomposable in C but not separately
multidecomposable in C.

The idea should be that we can use the lack of multidecomposability to split classical
contexts recursively.

Proposition 1.246. A flat C ⊆ E is a classical probability context if and only if every decom-
posable element is separately decomposable and mixtures preserve separateness in C. That is,
if e ã a and e ã b, then e ã pa + p̄b in C for all e, a,b ∈ C and p ∈ [0,1].

Proof. Suppose mixtures do not preserve separateness. Then we can find e, a,b, c ∈ E such
that e ã a, e ã b and e ã c = pa + p̄b for some p ∈ (0,1). Since e ã c, we can find d, f,g such
that c = λd + λ̄f and e = µd + µ̄g. Since separateness extends to all mixtures (1.24) and a ã e,
a ã d and, similarly, b ã d, which means that c is separately multidecomposable.

Now suppose mixture do preserve separateness, and let e = pa1 + p̄a2 = λb1 + λ̄b2. Since
a1 is a component of e, then e ã a1. Since e is a mixture of b1 and b2 and mixtures preserve
separateness, then either a1 ã b1 or a1 ã b2. Similarly, a2 ã b1 or a2 ã b2. Therefore e is not
separately multidecomposable.

Conjecture 1.247. A convex subset U ⊆ E is a classical probability context if and only if all
finite flats are simplexes.

Proposition 1.248. Let C ⊆ E be a classical probability context. Let U ⊆ C be a set of
ensembles. Then A = Uã = {a ∈ C ∣ ∀e ∈ U, a ã e} and B = (Uã)ã = {b ∈ C ∣ ∀a ∈ A,b ã a} are
two probability contexts such that C = hull(A ∪B).
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Proof. First we show that C contains only three types of ensembles: those that are limits
of convex mixtures of A, those that are limits of convex mixtures of B and those that are
limits of convex mixtures of both A and B. Any ensemble in C is one of these three types. For
c ∈ C to not be a mixture of A or B, then c cannot be in either A or B. This means that it
must be separate from both A and B. But B contains all the elements that are separate from
A, which is a contradiction. Since separate multidecomposition is forbidden, an ensemble e
cannot be written both as a convex combination of A and as a convex combination with an
element of B. This would yield two decompositions in which one component, the one chosen
from B, is separate from all the components of the other. This means that an element of C is
either a mixture of A, a mixture of B or a mixture of both A and B.

Now we show that both A and B are convex sets. Since a mixture of A can only be
expressed as a mixture of components of A, it is separate from all elements of B. Therefore A
contains all its mixtures. With the same logic, B will contain all its mixtures. The argument
works for infinite convex combinations as well. If e = ∑∞

i=1 piai with pi ∈ [0,1] and ∑∞
i=1 pi = 1,

it can be understood as the limit of the series p1
Pn

a1+
p̄1
Pn
∑ni=2 piai where Pn = ∑

n
i=1 pi. Therefore

e =
∞

∑
i=1

piai = lim
n→∞

n

∑
i=1

pi
Pn

ai = lim
n→∞

p1

Pn
a1 + lim

n→∞

p̄1

Pn

n

∑
i=2

pi
p̄1

ai = p1a1 + p̄1

∞

∑
i=2

pi
p̄1

ai

= p1a1 + p̄1â1

(1.249)

where â1 = ∑
∞
i=2

pi
p̄1
ai. Since e and a1 are elements of the ensemble space, the series converges

to â1, which is in the hull of A. It will also be an element of A because multidecompositions
are forbidden.

To see that C is the hull of A and B, note that all the elements in C that are not already
in A or B are the mixtures of A and B. These are exactly added when taking the hull of
A ∪B.

Now we show that A and B are classical probability contexts. First we have to show that
they are flats. Let L be the line that connects two elements a1, a2 ∈ A. Take a3 ∈ L. If it is a
mixture of a1 and a2 then it is an element of A. If a1 is a mixture of a2 and a3, since a1 cannot
have a common component with B, and a3 is a component of a1, a3 cannot have components
in B as well. Therefore a3 must be a mixture of elements of A. Similarly if a2 is a mixture of
a1 and a3. Therefore A is a flat. Similarly, B is a flat.

Now we show that A, and by symmetry B, is a classical probability context. We have seen
that A is a flat. If an element of A is decomposable in A it is also decomposable in C and is
therefore separately decomposable in C. Because multidecomposability in C is not allowed,
it must be separately decomposable into elements of A. Lastly, if multidecomposability were
allowed in A, it would also be allowed in C. Therefore it is not allowed in A. This means that
A is a classical probability context.
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Figure 1.14: TODO: make the final picture not go through the center, change the label for
the points to e1 and e2

Remark. Note that if multiple separate decompositions are not ruled out, the sub-contexts
will not include all convex combinations. Take a disk as a convex space. Suppose U is made
of two points e1 and e2. All other points on the surface are separate from both and therefore
belong to A. Now consider the convex combinations of e1 and e2. These are not separate from
U but they are also not separate from all the other elements on the surface. Therefore they
are neither in A nor B. Moreover, any other point in the interior can be seen as a convex
combination of e1 and another element of the surface that is not e2. Therefore no point in
the interior is in either A or B. Thus A and B are not necessarily convex sets if C is not a
classical probability context.

Remark. While a classical probability context can be decomposed into classical probability
contexts whose closure is the original context, the converse is not true. That is, given two
classical probability contexts, their convex or flat closure is not in general a classical probability
context. Take a disk (the ensemble space) and two lines connecting three points (the two
probability contexts). The convex closure is the triangle, which is not a flat as it misses some
affine combinations. The flat closure is the disk, which is not a probability context.

Conjecture 1.250. Let A,B ⊆ E be two classical probability contexts. Then their flat closure
and convex closure coincide if and only if these closures are a classical probability context.

Conjecture 1.251. The defining property of a classical probability context is exactly that
property that allows A and B so constructed to be convex sets whose closure is C.
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Proposition 1.252. Let C ⊆ E be a classical probability context. The lattice of ã-subspaces
L is distributive and is therefore a Boolean algebra.

Proof. Let X,Y,Z ∈ L be three ã-subspaces. Let e ∈X ∧(Y ∨Z), then e ∈X and e ∈ Y ∨Z.
This also means that all components of e are in both X and Y ∨ Z since the components of
e are not separate from e and, given the absence of multi-decomposability, are separate from
all elements that are separate from e. Since Y ∨ Z = hull(Y ∪ Z), we can decompose e into
components of Y and Z. But these must be in X, and therefore e ∈ hull((X ∧Y )∪ (X ∧Z)) =

(X∧Y )∨(X∧Z)). Therefore X∧(Y ∨Z) ⊆ (X∧Y )∨(X∧Z). Now let e ∈ (X∧Y )∨(X∧Z), then
e ∈ hull((X∧Y )∪(X∧Z)). Therefore e is the mixture of ensembles that are in X, which means
that e ∈X. Since e is the mixture of elements that are also in Y and Z, e ∈ hull(Y ∪Z) = Y ∨Z.
This means e ∈ X ∧ (Y ∨ Z). Therefore (X ∧ Y ) ∨ (X ∧ Z) ⊆ X ∧ (Y ∨ Z). Which means
X ∧ (Y ∨Z) = (X ∧ Y ) ∨ (X ∧Z).

Now let e ∈X∨(Y ∧Z), then e ∈ hull(X∪(Y ∧Z)). That is, e is a mixture of elements of X
and of elements that are in both Y and Z. Which means e ∈ hull(X ∪Y ) and e ∈ hull(X ∪Z).
Therefore e ∈ hull(X ∪ Y ) ∩ hull(X ∪ Z) = (X ∨ Y ) ∧ (X ∨ Z), which means X ∨ (Y ∧ Z) ⊆

(X ∨ Z) ∨ (Y ∧ Z). Conversely, let e ∈ (X ∨ Y ) ∧ (X ∨ Z) = hull(X ∪ Y ) ∩ hull(X ∪ Z). Then
e can be expressed as a mixture of elements of X and Y and also of elements of X and Z.
Now consider the elements of Y in the first decomposition. Since multiple decomposition is
not allowed, they cannot be separate from both X and Z, end therefore must be in their hull.
Similarly, the elements of Z in the second decomposition must be in the hull of X and Y .
Therefore e ∈ hull(X ∪ (Y ∧ Z)) = X ∨ (Y ∧ Z). Therefore (X ∨ Y ) ∧ (X ∨ Z) ⊆ X ∨ (Y ∧ Z).
Which means X ∨ (Y ∧Z) = (X ∨Z) ∨ (Y ∧Z).

The lattice L is therefore a distributive orthocomplemented lattice, which means it is a
Boolean algebra.

Proposition 1.253. Let C ⊆ E be a classical probability context. Let L be the lattice of ã-
subspaces. Then the fraction capacity is an additive set function on the lattice. That is, for
all e ∈ C and A,B ∈ L such that A ∩B = ∅, fcape(A ∨B) = fcape(A) + fcape(B).

Proof. Let A,B ∈ L such that A∩B = ∅. Then A is separate from B. Therefore A∨B is a
classical probability context that is the convex closure of two separate probability contexts.
Therefore, as we saw in a previous proof, A ∨B consists of convex combinations of A, which
are all in A, of convex combinations of B, which are all in B, and of convex combinations of
both, which are in neither A nor B.

We want to show that fcape(A ∨B) = fcape(A) + fcape(B) if e ∈ A ∨B. Let e ∈ A ∨B be
an ensemble that is the mixture of elements of A. Then e ∈ A and it has no components in B.
Therefore fcape(A∨B) = 1 and fcape(A) = 1 while fcape(B) = 0. This means fcape(A∨B) = 1 =
1+0 = fcape(A)+ fcape(B). If e is a mixture of elements of B, we get the same conclusion. The
last case is when e is a mixture of elements of A and B. That is, e = ∑i piai+∑j λjbj with ai ∈ A,
bj ∈ B, pi, λj ∈ [0,1] and ∑i pi +∑j λj = 1. By definition of fraction capacity, ∑i pi ≤ fcape(A).
Suppose ∑i pi < fcape(A). Then there is â ∈ A such that e = ∑i piai+pâ+λc for some p, λ ∈ [0,1]
and c ∈ A ∨B. But then e would be separately multidecomposable, which is a contradiction
since it is an element of a classical probability context. Therefore ∑i pi = fcape(A). Similarly,
we find that ∑j λj = fcape(B). Since ∑i pi +∑j λj = 1, fcape(A) + fcape(B) = 1 = fcape(A ∨B)

for all e ∈ A ∨B.
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Now let e ∈ C. We have (A ∨B)ã ∈ L and (A ∨B) ∩ (A ∨B)ã = ∅. Therefore fcape(C) =

fcape(A ∨B) + fcape((A ∨B)ã). Note that e, in general, is a convex combination of elements
of A ∨B and (A ∨B)ã. Components in A ∨B are convex combinations of elements of A and
B, which also disjoint. Therefore e is a convex combination of elements of A, B and (A∨B)ã,
which are pairwise disjoint. As before, since multidecomposability is forbidden in a classical
probability context, the sum of the coefficients for each part will have to match the fraction
capacity of its subcontext. Therefore fcape(A) + fcape(B) + fcape((A ∨ B)ã) = fcape(C) =

fcape(A ∨B) + fcape((A ∨B)ã). Thus fcape(A ∨B) = fcape(A) + fcape(B) for all e ∈ C.

Probability measures from classical probability contexts

The next step is to show that each ensemble in a classical probability context can be under-
stood as a probability measure and vice-versa. The issue is how to recover the set of points,
the spectrum σ(C) of the context, and its topology and σ-algebra Σσ(C). This is still an open
problem. The Stone’s representation theorem can be used as a fallback, though it does not
recover the correct points.

Definition 1.254. Let C be a context. An spectral element of C is a non-empty collection
of subspaces c ⊂ C such that

1. if {Xi}i∈I ∈ s then ⋂i∈I Xi ∈ s
2. if X ∈ s and Y ∈ L such that X ⊆ Y , then Y ∈ s
3. if X ∈ s and Y ∈ L such that Y ⊂X and Y ≠ ∅, then there exists Z ∈ s such that Z ⊂X.

The set of all elements of the context is called the spectrum of the context and is noted σ(C).

Remark. The above should correspond to an ultrafilter.

Definition 1.255. Let C be a context and X ∈ C be a subspace. A spectral element of X
is a spectral element c ∈ σ(C) such that X ∈ c. The spectral set of X is the collection of all
its spectral elements. The standard topology of the spectrum σ(C) is the one generated by the
spectral sets of all subspaces X ∈ C.

Definition 1.256. Given a poset (P,≤) downward refined filter is a proper filter F such that
if x ∈ F and there exists a y ∈ P such that y < x, then there exists a z ∈ F such that z < x.

Definition 1.257. Given a classical probability context C ⊆ E, the spectrum σ(C) is the
set of equivalence classes of sequences of ensembles that eventually become separate from
each other. More rigorously, given a probability context, the spectrum is the collection of the
downward refined filters of the lattice of ã-subspaces Lã(C). The spectrum of each ã-subspace
is given by σ(A) ↦ {x ∈ σ(C) ∣A ∈ x}. The standard topology of the spectrum is the one
generated by the spectra of all ã-subspaces (i.e. σ(Lã(C)).

Proposition 1.258. Let C ⊆ E be a classical probability context and σ(C) its spectrum. Then
the following are true:

1. A ⊆ B if and only if σ(A) ⊆ σ(B)

2. ext(σ(A)) = σ(Aã)
3. ∂σ(A) = {x ∈ σ(C) ∣A ∉ x,Aã ∉ x}
4. σ(A)∁ = σ(Aã)

https://en.wikipedia.org/wiki/Ultrafilter
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5. σ(⋀i∈I Ai) = int (⋂i∈I σ(Ai))

6. σ(⋁i∈I Ai) = int (⋃i∈I σ(Ai))

7. if U open, then U = ⋃i∈I σ(Ai) for some family of Ai ∈ L
ã(C)

Proof. For 1, since all x ∈ σ(C) are upward closed, A ∈ x means B ∈ x as well. Therefore
if x ∈ σ(A) then x ∈ σ(B), which means σ(A) ⊆ σ(B). Conversely, if σ(A) ⊆ σ(B) then all
downward sets of Lã(C) that contain A must also contain B, which means B ⊇ A.

For 2 and 3, note that σ(A) = {x ∈ σ(C) ∣A ∈ x} and therefore σ(A)∁ = {x ∈ σ(C) ∣A ∉ x}.
Since σ(A) is an open set, σ(A)∁ = ext(σ(A)) ∪ ∂σ(A). Now consider σ(Aã). This is an
open set and it is disjoint from σ(A). In fact, if x ∈ σ(A) ∩ σ(Aã) then A,Aã ∈ x. But this
would mean that ∅ ∈ x, which can’t be because x is a proper filter and cannot contain ∅.
Since Aã is the largest ã-subspace that is separate from A, there is no set in σ(Lã(C))

that is larger than Aã and still disjoint from A. Therefore σ(Aã) = ext(σ(A)). We have
∂σ(A) = σ(C) ∖ (int(σ(A)) ∪ ext(σ(A))) = {x ∈ σ(C) ∣A ∉ x,Aã ∉ x}.

For 4, since σ(A) is an open set, the complement is the closure of the exterior. Therefore,
given 2, σ(A)∁ = σ(Aã).

For 5, consider ⋀i∈I Ai. This is the largest ã-subspace that is contained by all Ai. Then,
given 1, σ (⋀i∈I Ai) must be the largest open set that is contained by all σ(Ai). This corre-
sponds to int (⋂i∈I σ(Ai)).

For 6, we have

σ(⋁
i∈I

Ai) = ext(ext(σ(⋁
i∈I

Ai))) = ext(σ((⋁
i∈I

Ai)
ã)) = ext(σ(⋀

i∈I

Aãi ))

= ext(int(⋂
i∈I

σ(Aãi ))) = ext(⋂
i∈I

σ(Aãi )) =

= ext(⋂
i∈I

σ(Ai)
∁
) = ext

⎛

⎝
(⋃
i∈I

σ(Ai))
∁⎞

⎠

= int(⋃
i∈I

σ(Ai))

For the last step, note that the union of the closure is not necessarily the closure of the union,
but they have the same interior.

For 7, note that an open set U is generated from σ(Lã(C)) through finite intersection
and arbitrary union. Note that the finite intersection of open sets is an open set, so we have

⋂i∈I σ(Ai) = int (⋂i∈I σ(Ai)) = σ(⋀i∈I Ai). Therefore the finite intersection corresponds to a
ã-subspace. This means that we can can generate all open sets with arbitrary unions of sets
from σ(Lã(C)).

Corollary 1.259. For every A ∈ σ(Lã(C)), σ(A) is a regular open set. The topology of a
spectrum is semiregular.

Proof. Since the lattice is orthocomplemented, we have σ(A) = σ((Aã)ã) = ext(σ(Aã)) =
ext(ext(A)). Therefore σ(A) is a regular open set.

The topology is generated by regular open sets, and is therefore semiregular.

Conjecture 1.260. Given a point x ∈ σ(C) and an open neighborhood U of x, we can find a
closed neighborhood A that is a subset of U . The topology of a spectrum is regular.
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Proof. Since U is an open set, it is the union of a family of sets σ(Ai). Since U is a
neighborhood of x, x ∈ σ(A) with A = Ai for some i. Now consider y ∈ ∂σ(A). Since both x and
y are two distinct downward refined filters, there will be a ã-subspace By such that By ∈ x but
By ∉ y. That is, x ∈ σ(By) ⊆ σ(A) and y ∉ σ(By). Now consider D = ⋂y∈∂σ(A)By. Since Lã(C)

is an intersection structure, D ∈ Lã(C). We also have D ∈ x and therefore D ≠ ∅. Therefore
σ(D) is an open set that is a subset of σ(A) where we removed an open neighborhood around
its boundary. This means that ∂σ(D) ⊆ σ(A). This means that σ(D) ⊆ σ(A). Therefore we
found a closed neighborhood of x that is a subset of U .

The above means that the closed neighborhoods of x form a local base for x, which is
another way to characterize regular topological spaces.

Remark. Note how the infinite joins/meets on the lattice of the ã-subspaces do not cor-
respond to the infinite operations on the lattice of the topology or of the Borel sets. For
example, suppose we are taking the lattice of probability measures defined over the interval
[0,1] that are absolutely continuous with respect to the Lebesgue measure. Each ã-subspace
will correspond to a set of measures whose support lives in a particular region. A singleton
will not correspond to any subspace as it cannot support an absolutely continuous measure.
Therefore, if we take all the ã-subspaces of all measures that have 1/2 within the support,
the intersection of all those subspaces will be the empty set, which is a ã-subspace. However,
the intersection of the sets representing their support is the singleton {1/2}, which is not the
empty set. However, its interior is the empty set.

The fact that a single probability measure is an equivalence class of probability densities is
related to this distinction. Consider a uniform distribution over [0,1]. The related probability
density can be understood as a constant between those values and zero everywhere else.
However, the same constant over [0,1/2) ∪ (1/2,1] will also work. That is, the same element
of the ensemble space can be represented in different ways as a function over the spectrum.

Conjecture 1.261. Let C ⊆ E be a probability context and e ∈ C be an ensemble in the context.
The set function pe ∶ Σσ(C) → [0,1], defined such that p∗e(U) = inf({fcape(A) ∣σ(A) ⊇ U}), is a
measure. Therefore each ensemble of a probability context is associated with a unique measure
over the spectrum.

Conjecture 1.262. A convex subset U ⊂ E is a classical probability context if and only if it is
the affine subspace of probability measures of a vector space of measures over a sample space
Ω.

Conjecture 1.263. Discrete and continuous classical ensemble spaces are classical probability
contexts.

A quantum ensemble space, however, does not allow a description in terms of classical
probability precisely because it allows separate multidecompositions.

Proposition 1.264. A quantum ensemble space is not a classical probability context.

Proof. Let E be a quantum ensemble space. Let A ⊆ E the space of mixtures of a two
dimensional subspace (i.e. a Bloch sphere) and consider the states x+, x−, z+, and z−, which
are points on the surface that form a square. These are all separate ensembles. We have
1
2x

+ + 1
2x

− = 1
2z

+ + 1
2z

− therefore the space allows separate multidecomposition and is not a
classical probability context.
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However, given a maximal set of commuting observables, we can define a classical prob-
ability context as the set of all mixed states that commute with all the observables. This
makes the spectrum of all the density operator coincide with the product of the spectra of all
commuting observables, and therefore those mixed states can be characterized by a measure
over the spectra.

Conjecture 1.265. Let E be a quantum ensemble space. Let Oi a maximal set of commuting
observables. Let C ⊆ E be the set of mixed state that commute with all Oi. Then C is a classical
probability context.

Alternative definition for contexts

Alternatively, a context can be define in terms of a lattice of orthogonal sets.

Definition 1.266. Let L be the lattice of subspaces and ∧,∨, (⋅)⊥ be respectively the join, meet
and orthogonal complement. A context is a lattice of subspaces C ⊆ L such that

1. if {Xi}i∈I ∈ C then ⋀i∈I Xi ∈ C, ⋁i∈I Xi ∈ C and X⊥i ∈ C
2. if X,Y ∈ C and X ∩ Y = ∅, then X ⊥ Y.

That is, the join, meet and complement operation in L and C are the same (i.e. smallest sub-
space that contains all, biggest subspace contained by all, orthogonal subspace). The additional
property is that disjoint subspaces are orthogonal.

Proposition 1.267. Let C ⊆ L be a context. Then scap is an additive measure over the
context. That is, scap(X∨Y ) = scap(X)+scap(Y ) for all X,Y,X∨Y ∈ C such that X∩Y = ∅.

Proof. Since X∨Y contains both X and Y , we have X∪Y ⊆ (X∨Y ). By 1.293, hull(X∪Y ) ⊆

(X ∨ Y ). By

Definition 1.268. An ensemble e ∈ E is compatible with a context C ⊆ L if it is orthogonally
decomposable into an X-maximal sequence and X⊥-maximal sequence for any X ∈ C.

Corollary 1.269. Let e ∈ E an ensembles compatible with a context C ⊂ L. Then pe(X
⊥) =

1 − pe(X).

Proof. Since e is compatible with C, we can write e = pixi + λiy + εiei where xi ∈ X and
yi ∈X

⊥ are maximal component sequences. Note that pe(X
⊥) = 1−pe(X) if and only if εi → 0.

Suppose it didn’t. Then every ei would have a component that is neither in X or X⊥. That
would mean it is orthogonal from all the element of X and of X⊥. But X contains all the
elements disjuct from X⊥ and vice-versa. Therefore such component cannot exist, εi → 0 and
pe(X

⊥) = 1 − pe(X).

Conjecture 1.270. Let C ⊆ L be a context and e ∈ E an ensemble compatible with the context.
Then pe is an additive measure over the context. That is, pe(X ∨ Y ) = pe(X) + pe(Y ) for all
X,Y,X ∨ Y ∈ C and X ∩ Y = ∅.

Remark. The additivity of probability is more of a special condition than one may expect.
Naively, one would expect that if U and V are separate, then pe(U ∪ V ) = pe(U) + pe(V ).
That is, the component of e in U ∪ V is simply the sum of the components within U and V ,
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which are going to be separate and orthogonal (i.e. will not overlap). However this is not true
in quantum mechanics.

Take a singe quibit and let e be the maximally mixed state. Then pe({x}) =
1
2 for any pure

state x. However, if we take two pure states x and y that are not orthogonal, the maximally
mixed state is not a mixture of x and y, which means pe({x, y}) < 1 = pe({x}) + pe({y}).

Conjecture 1.271. An ensemble space E is a classical ensemble space if and only if L is a
context.

Conjecture 1.272. An ensemble space E is orthogonally decomposable if and only if every
ensemble is compatible with some context.

1.16 Open problem: Topological Measures
Tags: Topology, Measure theory

We still need to understand what requirements a measure must satisfy to describe a well-posed
physical problem. The issue is that the set of all probability measures defined over a space
is too broad, but it is not clear how it should be restricted. There must be a link between
the underlying experimental verifiability that motivates topologies and the possible outputs
associated to the procedures that are connected to the measures.

If we consider the real line, given the Lebesgue measure µ, Lebesgue’s decomposition
theorem assures us that every measure ν can be divided into these three components: an
absolutely continuous part νac with respect to the Lebesgue measure (i.e. νac(U) = 0 for all
sets U for which µ(U) = 0), a pure point part νpp (i.e. there is a set of countable points {xi}
such that νpp({xi}∁) = 0) and a singular continuous part νsc (i.e. µ({x}) = 0 for all x and
there is a set U such that µ(U) = 0 and νsc(U∁) = 0).

To make this more concrete, let us assume that we are working on phase space, µ is the
Liouville measure, which in statistical mechanics quantifies the states in a region, and p is a
probability measure. If p is absolutely continuous with respect to µ, it means that if a region
has no states, it will have zero probability. This is the requirement under which the Radon-
Nikodym theorem applies and a probability density dp

dµ exists. Without this requirement, for
example, the entropy cannot even be defined. On physics grounds, this requirement makes
a lot of sense. A pure point measure would correspond to the case where the probability
is concentrated into a few isolated points. In physics, these are often represented with delta
functions. There is an inherent unphysicality of these measures: if we really have a continuum,
it would make no sense to say that we are are able to prepare an exact value with certainty.
We are essentially saying that we are able to concentrate the whole distribution on a set that
is not experimentally verifiable (i.e. it is a closed set with no interior) and contains no states
(i.e. the Liouville measure is zero). Yet, there are some cases where the distribution is over
real values, but only certain values are allowed. For example, the mass spectrum for particles
or the energy spectrum for a bound quantum system can only take certain values. In this
case, the Lebesgue measure is the one that is meaningless, because the region in between the
allowed value contains no physically meaningful cases. A singular continuous measure may be
something physically irrelevant, like the Cantor distribution which is defined only on a Cantor
set, but it may also represent a constrained distribution. For example, a uniform distribution
over the surface of a sphere, if defined over three dimensional space, would have support on
a measure zero set, and have zero probability at every point. The issue, again, is that the

https://en.wikipedia.org/wiki/Lebesgue%27s_decomposition_theorem
https://en.wikipedia.org/wiki/Lebesgue%27s_decomposition_theorem
https://en.wikipedia.org/wiki/Absolute_continuity#Absolute_continuity_of_measures
https://en.wikipedia.org/wiki/Radon%E2%80%93Nikodym_theorem
https://en.wikipedia.org/wiki/Radon%E2%80%93Nikodym_theorem
https://en.wikipedia.org/wiki/Cantor_distribution
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imposition of the constraint has to be applied to the whole mathematical structure, not just
the probability measure.

While absolutely continuity is a requirement for a physically meaningful probability mea-
sure, it may not be enough. Consider a probability measure with a uniform distribution over
a fat Cantor set. It would seem to be absolutely continuous but unlikely to be of physical
interest.

Physically, the requirement of experimental verifiability poses constraints on what mea-
sures are possible, which means, mathematically, that there measures must satisfy some com-
patibility condition with the topology. In fact, it can be argued that some topological spaces
may not allow any experimentally verifiable probability measure. Take, for example, the exper-
imental domain generated by verifiable statements of the type “there are at least i elements.”
That is, we can only verify the existence of some objects (e.g. fundamental particles) and not
able to verify the non-existence of others. This gives us the natural numbers with the right
topology. Can we, in line of principle, put a measure on this space? The problem is that,
experimentally, we can only exclude a range below what was verified, so we cannot perform
a repeated set of measurement and build a histogram. The only thing we would be able to
confirm is the case that below a certain threshold we have probability zero.

It is not clear, however, what is the general rule. Naively, we thought that, given a verifiable
statement, the non-termination condition (i.e. the boundary of the corresponding open set)
cannot be assigned a non-zero measure. This intuition was reinforced by the finding that open
sets have the feature that their boundary is nowhere dense (i.e. it has no interior), and sets
with a nowhere dense boundary actually form a nice algebra. However, as we see in 1.223,
there exists open sets that have boundaries with non-zero measures. Therefore, finding the
right characterization is still an open problem.

We leave here the characterization of the algebra of sets with a nowhere dense boundary,
in case it may be useful.

Nicely boundaried sets

Part of an original attempt to square measure and topology, sets with a nowhere dense bound-
ary form a nice algebra that may, or may not, be useful.

Definition 1.273. Let X be a topological space. A set A ⊆X is nicely boundaried if its
boundary is nowhere dense.

Proposition 1.274. The following are true:

1. open sets are nicely bounded
2. the complement of a nicely bounded set is nicely bounded
3. closed sets are nicely bounded
4. the union of nicely bounded sets is nicely bounded
5. the intersection of nicely bounded sets is nicely bounded.

Open and closed sets are nicely bounded. The complement of a nicely bounded set is
nicely bounded. The intersection and the union of nicely bounded sets are nicely bounded.
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The closure of open sets under complement, finite intersection and finite union is a Boolean
algebra RX of nicely bounded sets.

Proof. For 1, let A ⊆ X be an open set. We have A = int(A) and, since ∂A and int(A)

are disjoint, ∂A and A are disjoint. Let U ⊆ ∂A be an open set. Then U is disjoint from A
and therefore U ⊆ ext(A). Since the boundary and the exterior are disjoint, U must be the
empty set.

For 2, let A be nicely bounded. Since ∂A = ∂A∁, A∁ is also nicely bounded.
For 3, note that closed sets are complements of open sets, which are nicely bounded.
For 4, let A,B ⊆ X be two nicely bounded sets. The boundary satisfies the property

∂(A ∪B) ⊆ ∂A ∪ ∂B. The union of two nowhere dense sets is nowhere dense and a subset
of a nowhere dense set is nowhere dense. Therefore ∂(A ∪B) is nowhere dense and A ∪B
is a nicely bounded set.

For 5, since complements and unions of nicely bounded sets are nicely bounded, by De
Morgan intersections are nicely bounded as well.

Proposition 1.275. Let X be a topological space, the closure of open sets under com-
plement, finite intersection and finite union is a Boolean algebra RX of nicely bounded
sets.

Proof. By definition, RX is closed under complement, finite intersection and finite union
and is therefore a Boolean algebra. Since open sets are nicely bounded, and the operation
preserve the property, RX is composed of only nicely bounded sets.

Remark. Note that the algebra RX does not contain all the nicely bounded sets. Con-
sider a circle in R2. Let U be the open set of all the interior points and B be the points
on the circle at a rational angle. Now consider A = U ∪B: U is the interior of A and B its
boundary. The boundary is nowhere dense, therefore A is a nicely bounded set. However,
we cannot generate A with finite operations from open sets of R2.

1.17 Open problem: Spectrum of a quantity
Tags: Ensemble spaces, Spectral theory, Topological vector spaces, Order theory

We are looking for a definition of the spectrum of a quantity (i.e. linear functional) that
can be defined for a general ensemble space (i.e. convex space). It would already be helpful
to establish whether the entropic structure is required, or whether the convex structure is
sufficient.

We leave here the latest attempt, more for inspiration and reference.

Definition 1.276. Let E be an ensemble space and let F ∶ E → R be a statistical quantity. Let
x, y ∈ R such that x ≤ y. We say a is within [x, y] of F if F (e) ∈ [x, y] for every component
e of a. Analogous definitions apply for intervals bounded only on one side.

We say a ∈ E is supported by [x, y] of F if:

1. a is within [x, y] of F
2. let e be in the flat generated by a and all ensembles within (−∞, x], then F (e) ≤ F (a)
3. let e be in the flat generated by a and all ensembles within [y,+∞), then F (a) ≤ F (e).

Analogous definition applies for intervals bounded only on one side.

https://proofwiki.org/wiki/Boundary_of_Union_is_Subset_of_Union_of_Boundaries
https://proofwiki.org/wiki/Subset_of_Nowhere_Dense_Subset_is_Nowhere_Dense
https://proofwiki.org/wiki/Subset_of_Nowhere_Dense_Subset_is_Nowhere_Dense


1.17. OPEN PROBLEM: SPECTRUM OF A QUANTITY 107

An eigenstate of F is an ensemble a ∈ E that is supported by a singleton U = [a, a], where
a ∈ R is called the respective eigenvalue.

Proposition 1.277. Let E be a discrete classical ensemble space over the set of points X,
and F a statistical quantity. Then F (X) is the set of possible eigenvalues, and an eigenstate
is any ensemble that can be expressed as a mixture of points with the same eigenvalue.

Proof. First we show that any extreme point a ∈ E is an eigenstate with eigenvalue F (a).
First, we have F (a) ∈ [F (a), F (a)], which satisfies the first condition for the support. Now
let b ∈ E be an ensemble within (−∞, F (a)]. Let {ei} be the set of extreme points that are
components of b. Since {ei} are components of b, F (ei) ≤ F (a) since b is within (−∞, F (a)].
Recall that orthogonality, for a classical space, coincides with disjoint support of the proba-
bility distribution. Also recall that, in a discrete classical ensemble space, all ensembles can be
decomposed in terms of the extreme points. Then ⟨{a,b}⟩⊥ is exactly hull({ei} ∪ {a}). Given
the linearity of F , for any convex combination e of ei and a we have F (e) ≤ F (a). This satisfies
the second condition for the support. The argument can be repeated with the upper bound,
so the third condition is also satisfies. This means that any extreme point is a is an eigenstate
of F with eigenvalue F (a).

Note that the above argument works also if e is a mixture of eigenstates with the same
eigenvalues.

Lastly, we show that any ensemble that is a mixture of two extreme points with different
eigenvalue is not an eigenstate. Let e = pa + p̄b be a mixture of two extreme points a,b ∈ E

such that F (a) ≠ F (b). Without loss of generality, suppose F (a) < F (b). Given the linearity
of F , we have F (a) < F (e) < F (b). Therefore e is not within [F (e), F (e)], is not supported by
[F (e), F (e)] and therefore is not an eigenstate. This also means that any ensemble of extreme
points with different eigenvalue is not an eigenstate.

Proposition 1.278. Let E be a continuous classical ensemble space over the symplectic man-
ifold X, and F a statistical quantity. Then ρ ∈ E is supported by [x, y] of F if and only if the

∫[x,y] ρdµ = 1. Moreover, a ∈ R is an eigenvalue if and only if there is an open set U ⊂X such

that f−1(a) ⊇ U where f ∶X → R is the state variable corresponding to F .

Proof. Let F be a statistical quantity over a continuous classical ensemble space. Then we
can find f ∶ X → R such that F (ρ) = ∫X fρdµ for all ρ ∈ E . Given an interval [x, y] ⊆ R, then
we can define U[x,y] = f

−1([x, y]) which can be understood as the set of particle states for
which the value of the property is within the bounds. Any probability distribution ρ can be
decomposed as

ρ = p(−∞,x]ρ(−∞,x] + p[x,y]ρ[x,y] + p[y,−∞)ρ[y,−∞)

where

p(−∞,x] = ∫
U(−∞,x]

ρdµ p[x,y] = ∫
U[x,y]

ρdµ p[y,−∞) = ∫
U[y,−∞)

ρdµ

ρ(−∞,x] =
ρ∣U(−∞,x]

p(−∞,x]
ρ[x,y] =

ρ∣U[x,y]

p[x,y]
ρ[y,−∞) =

ρ∣U[y,−∞)

p[y,−∞)

(1.279)

Suppose the support of ρ is within U[x,y]. Then ∫X ρdµ ∈ [x, y]. Since any of its components
will also have support within U[x,y], the expectation of f for all its components is also within



108 CHAPTER 1. ENSEMBLE SPACES

[x, y], within means that ρ is within [x, y] of F . Conversely, if the support of ρ is not within
U[x,y], then we can find a component whose support is either within U(−∞,x] or U[y,−∞).
Therefore, ρ is within [x, y] of F if and only if the support of ρ is within U[x,y].

Now suppose ρ is within
Now we show that ρ is supported by [x, y] of F if ρf(f) = 0 for all f ∉ [x, y] where ρf

is the probability density function (PDF) of F . Since ρ is a probability measure and f is a
random variable, we can define a PDF ρf . This can also be understood as the marginal of
ρ over f . If φ is a component of ρ, the corresponding φf will be a component of ρf . If ρ is
supported by [x, y] of F , then the expectation of f for any component of ρf must be within
[x, y]. This can only happen if the support of ρf is within [x, y], as any component below
or above those bounds would have expectation below or above the bounds. Conversely, if the
support of ρf is within [x, y] Therefore, ρ is within [x, y] of F if ρf(f) = 0 for all f ∉ [x, y]
where ρf

1.18 Open problem: Conditional expectation values
Tags: Ensemble spaces, Probability, Non-additive measures

There should be a way to generalize the notion of conditional expectation to a generic ensemble
space. The general idea should be that, given a target ensemble and a set of ensembles, we find
the biggest component of the target that is a mixture of ensembles of the set. The expectation
of a quantity for the target ensemble restricted to that set would be the quantity evaluated
on the representative. In classical probability, it would recover the expectation of a random
variable conditioned to an event.

Maximal component sequence

Definition 1.280. Let e ∈ E be an ensemble. A sequence of ensembles {ai} ⊆ E is an increas-
ing component sequence of e if we can write

e = piai + p̄ibi

ai+1 =
pi
pi+1

ai +
pi+1 − pi
pi+1

∆ai

where {bi} ⊆ E, {∆ai} ⊆ E and {pi} ⊆ (0,1] is an increasing sequence. The fraction of the
sequence is the limit pi → p.

Remark. Since the sequence of pi is increasing and is bounded, it must converge. The set
of all possible limits is bounded and therefore must have a supremum.

Definition 1.281. Let e ∈ E be an ensemble and A ⊆ E a set of ensembles. Then the A-
components of e are the components of e that are mixtures of A. That is, Ae = {e1 ∈

hull(A) ∣ ∃p ∈ (0,1], e2 ∈ E s.t. e = pe1 + p̄e2}. An increasing A-component sequence of e
is an increasing component sequence of e such that {ai} ⊆ hull(A) and {∆ai} ⊆ hull(A). The
sequence {ai} ⊆ hull(A) is maximal if the fraction of the sequence is fcape(A).

Corollary 1.282. The fraction of A-component sequences are bounded by fcape(A).

Proof. For all elements of component sequences we have pi ≤ fcape(A). Therefore the limit
of pi cannot exceed fcape(A).
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Proposition 1.283. Let e ∈ E be an ensemble and A ⊆ E a set of ensembles, then there exists
a maximal A-component sequence of e.

Proof. Consider the hull of A. This can be ordered by the fraction frace, which is less or
equal to one. If there is a maximum, then simply take a sequence of an element with the
maximum faction. If not, we can take a sequence of ever increasing fractions whose limit
is the fraction capacity, and find a corresponding sequence of ensembles within hull(A). By
definition, this will be a maximal A-component sequence of e.

Proposition 1.284. Let {ai} ⊆ hull(A) be an A-component sequence of e ∈ E. A complement
sequence is an increasing sequence {bi} ⊆ E such that

e = piai + qibi + (pi + qi)εi

where {εi} ∈ E and (pi + qi) → 1. In this sense, the sum of the two sequences converges to e.

Remark. Note that complement sequences always exist since we can set εi = bi, qi = p̄ and
recover the definition of a component sequence.

Proposition 1.285. An A-component sequence {ai} ⊆ hull(A) of e ∈ E is maximal if and
only if it admits a complement sequence that is always separate from the hull of A. That is,
{bi} ã hull(A).

Proof. Suppose that {ai} is maximal and let {bi} be a complement.

e = piai + qibi + (pi + qi)εi.

Proposition 1.286. Let e ∈ E be an ensemble, A ⊆ E a set of ensembles and ai and bi two
maximal A-component sequence of e. Then we can write ai = pibi+ p̄ici where ci ∈ E, pi ∈ [0,1]
and pi → 1.

Proof. Note that we can always write ai = pibi + p̄ici because we can always choose pi = 0
and ci = ai. Therefore, if the proposition is not true, we can always find pi → p, except that
p ≠ 1.

Suppose the proposition is not true. We can still write e = λiai+ λ̄idi = λipibi+λip̄ici+ λ̄idi.
But bi is maximal, therefore λipibi can be increased. But ci ∈ hull(A), which means we can
write an A-component sequence whose fraction is higher than the maximal, which cannot be.
Therefore the proposition is true.

TODO: this may need to be fixed. Can’t reconstruct the argument.

Conjecture 1.287. Let e ∈ E be an ensemble, F ∶ E → R be a statistical variable and A ⊂ E be
a set of ensemble. Let ai and bi be maximal A-component sequences of e. Then limi→∞ F (ai) =
limi→∞ F (bi).

Definition 1.288. Let e ∈ E be an ensemble, F ∶ E → R be a statistical variable and A ⊂ E be
a set of ensemble. Then the contribution to F over A given e is the limit of variable for
a maximal A-component sequence of e. That is, Fe(A) = limi→∞ F (ai) where ai is a maximal
A-component sequence of e.
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Proposition 1.289. The contribution to F is a set function.

Proof. Since Fe takes a set of an argument and returns a real value, is a set function.

Remark. Note that the contribution cannot be monotone in the same way that the expec-
tation of a random variable to an event is not monotone. Not clear whether the additivity of
the variable may tell us something about the additivity of the contribution.

Conjecture 1.290. We can define a “derivative” fe between Fe and fcape such that Fe(A) =

∫A fe dfcape where ∫ is the ??? integral.

Remark. This may still not be the correct formulation of the problem. Note that A is a
set of ensembles. In the classical case it would correspond to a set of probability measures,
not a subset of the sample space (i.e. an event). However, in the discrete case and in the
quantum case, A can also be restricted to a set of pure state (i.e. extreme points), which
would correspond to a subset of the sample space. It may be worth at least understanding
that case.

1.19 Open problem: Ensemble subspaces
Tags: Ensemble spaces, convex spaces

We should create a notion of ensemble subspaces that recovers those of classical and quantum
mechanics. In classical probability, each event identifies the subspace of probability measures
whose support is within that even. In quantum mechanics, each subspace of the Hilbert space
identify a subspace of density operators that can be defined on that subspace alone.

Given that orthogonality of subspaces in all three cases (i.e. discrete/continuous classical
and quantum) corresponds to ensembles saturate the upper entropy bound (i.e. orthogonal in
the sense of the entropy), we will define the notion of subspaces based on the entropy.

We will now use the previous results where X is an ensemble space and R is the orthogo-
nality relation between two ensembles.

Proposition 1.291. Let E be an ensemble space, orthogonality ⊥ is an irreflexive symmetric
relation.

Proof. Since any ensemble mixed with itself saturates the lower bound of entropy, it does
not satureate the upper bound and it is therefore not orthogonal with itself. Therefore or-
thogonality is irreflexive. Two elements are orthogonal if they satureate the upper entropy
bound. This does not depend on their order. Therefore orthogonality is symmetric.

Definition 1.292. Let E be an ensemble space and X ⊆ E be a subset. The orthogonal
complement X⊥ ⊆ E is the set of all ensembles that are orthogonal from all elements of X.
An ensemble subspace is a subset X ∈ E such that X = (X⊥)⊥.

Proposition 1.293. Let X ⊆ E be an ensemble subspace. Then hull(U) ⊆X for all U ⊆X.

Proof. Let U ⊆ X. Then U ⊥ X⊥. But since mixtures preserve orthogonality, we also have
hull(U) ⊥X⊥. Therefore hull(U) ⊆X.

Corollary 1.294. Let X ⊆ E be an ensemble subspace, then hull(X) =X.
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Proof. Since X ⊆X, hull(X) ⊆X by 1.293. By 1.38, we also have X ⊆ hull(X). Therefore
hull(X) =X.

Remark. The converse is not true: hull(X) =X does not mean X is an ensemble subspace.
For example, let E the ensemble space of a two state quantum system (i.e. the Bloch ball).
Let U be the set of all mixtures of two pure states (i.e. and the segment that connects two
points on the surface). Then U is closed under mixture (i.e. convex combinations) but it is
not a subspace. In fact we have that U⊥ = ∅ and therefore (U⊥)⊥ = E .

Proposition 1.295. Let E be a discrete classical theory and X ⊆ E an ensemble subspace.
Then X is the set of all probability distributions over a subset A of pure states.

Proof. Let E be a discrete classical ensemble space. Then each ensemble is a sequence pi
such that ∑i pi = 1. The dimensionality of the space fixes the range of i. Note that, given that
the space is discrete, the collection pi can be understood as a continuous function of the pure
elements.

Note that two probability distributions will be orthogonal if and only if their supports are
disjoint. Therefore orthogonality for a discrete classical ensemble space is the same as having
disjoint support. This means that a subspace is given by all possible probability distributions
over a subset A of all pure states.

Proposition 1.296. Let E be a continuous classical theory and X ⊆ E an ensemble subspace.
Then X is a set of measures whose support is a regular closed set (i.e a set that is the closure
of its own interior).

Proof. Let E be a continuous classical ensemble space. Then the probability density asso-
ciated to each ensemble is a continuous function over a symplectic manifold M that integrates
to one. Since the function is continuous, it is non-zero on an open set, and the support is the
closure of that set.

Consider two continuous probability densities. They will be orthogonal if and only if
they have disjoint support, meaning the interior of their supports are disjoint. Therefore
orthogonality for a continuous classical ensemble space is the same as having disjoint support.

Take a set of ensembles U ⊆ E . An ensemble e ∈ E will be orthogonal from all ensembles in
U if and only if its support is disjoint from the union of all the supports of all the elements
of U . Therefore U⊥ is the set of all ensembles whose support is within the closure of of the
exterior of the union of all supports of elements of U . With a similar logic, (U⊥)⊥ is the set of
all ensembles whose support is within the closure of the exterior of the union of the support
of elements of U⊥. Therefore, X will contain all probability measure whose support within a
set A ⊆M that is the that A = int(int(A)) and is therefore a regular set.

Now take a regular closed set A ⊆ M and let X be the set of all continuous probability
densities whose support is within A. Then X⊥ is the subspace of all continuous probabil-
ity densities that have support within ext(A) and (X⊥)⊥ is the subspace of all continuous
probability densities that have support within ext(ext(A)) = int(A) = A. Therefore X is a
subspace.

Proposition 1.297. Let E be a quantum ensemble space and X ⊆ E an ensemble subspace.
Then X is the set of mixed state whose support is a subspace of the corresponding Hilbert
space.



112 CHAPTER 1. ENSEMBLE SPACES

Proof. Let E be a quantum ensemble space. Then each ensemble is a density operator
defined over a Hilbert space H. Consider two density operators. They will be orthogonal, that
is the entropy increase is maximal, if and only if they are defined on orthogonal subspaces of
H. That is, e1∣ψ⟩ ≠ 0 only if e2∣ψ⟩ = 0 and vice-versa. Therefore X contains exactly all the
mixed states whose support is a subspace of H.

1.20 Open problem: Ensemble space composition
Tags: Ensemble spaces, convex spaces

We need a definition for composite systems that takes two ensemble spaces and create the
product. The issue is that it is unclear whether this can be a single definition, as product spaces
for classical ensembles and quantum ensembles are different. Note, however, that the additional
structure given by the entropy and, potentially, by the missing Lie algebraic structure may
fill the gaps.

1.21 Open problem: Poisson structure over ensemble spaces
Tags: Ensemble spaces, Poisson structure, Lie algebras

Both classical and quantum mechanics contain a Poisson/symplectic structure implemented
by Poisson brackets and commutators. We need to be able to generalize this structure on
ensemble spaces, without reference to the classical and quantum implementation. The goal
would be to write generalized Hamiltonian equations that work in both cases.
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