
Notes on problem 1 - Classical physics as high entropy limit

Assumptions of Physics Collaboration

NB: these are rough notes on our progress towards an open problem

1 Mathematical setting

Let H be the L2(R) Hilbert space. Let M(H) be the space of mixed states, that is the space
of all positive semi-definite Hermitian operators with trace one. Let I(ρ) = Tr[−ρ log ρ] be
the entropy of the mixed state Let M(I0) = I−1(I0) be the set of mixed state with the given
entropy (i.e. fiber of I0).

Let σq ∈ R be a fixed uncertainty (e.g. σq =
√
~/2 expressed in meters, so that the

uncertainty is balanced between q and p). A Gaussian wave packet |γ(µq, µp)〉 is a pure
state of the form

|γ(µq, µp)〉 =
1

(2πσ2q )
1
4

e
− 1

4

(
q−µq
σq

)2

eı
µpq

~ |q〉 (1)

or in natural units, since σq =
√

1/2,

|γ(µq, µp)〉 =
1

π
1
4

e−
1
2
(q−µq)2eıµpq|q〉 (2)

We note Γ(µq, µp) = |γ(µq, µp)〉〈γ(µq, µp)| ∈M(H) the corresponding density operator.
Note that, given that the Guassian wave packet saturates the uncertainty, we have

σp = ~/2σq (therefore, σp =
√

~/2). In natural units, σp = σq =
√

1/2.
Let G(H) ⊂ M(H) be the space of all mixed state that can be expressed as a mixture

of Gaussian wave packets. That is, ρ =
∫
fρ(q, p)Γ(q, p)dqdp where f(q, p) is a distribution

over phase space. We call G(H) the space of Gaussian approximations. (Alternatively, we
can define them with a probability measure.)

2 GOAL

Show that, as entropy increases, the space of Gaussian approximations becomes “a good
approximation” to the space of mixed states. Also show that, as entropy increases, Hamil-
tonian evolution is “a good approximation” of unitary evolution. Part of the problem means
defining what “good approximation” means.

1



3 Possible approach

Step 1. Define a distance function on M(H). A possible choice is to use the Hilbert-Schmidt
norm

||ρ|| =
√

Tr ρ2 (3)

which induces the distance
D(ρ1, ρ2) =

√
Tr(ρ1 − ρ2)2 (4)

Step 2. Define the distance of the best approximation for each mixed state. That is:

BD(ρ) = inf D(ρ,G(H)) (5)

Then define the worst approximation at a given entropy, that is

WD(I) = supBD(M(I)). (6)

We now have a function of entropy that describes how distant are the mixed state at
that entropy to a corresponding Gaussian approximation. The first goal would be to show
that it is a decreasing function and it tends to zero when entropy goes to infinity.

The other goal is to show that Hamiltonian evolution over the approximation is a good
approximation of unitary evolution. We say that ρ̂ ∈ G(H) is a good approximation of
ρ ∈ M(H) if D(ρ, ρ̂) ≤ 2WD(I(ρ)) (something along these lines). Let H = H(Q,P ) be
a Hamiltonian expressible in terms of position and momentum operators. Let h(q, p) be
the corresponding classical Hamiltonian as a function of position and momentum variables.

The time evolution operator is U(t) = eı
Ht
~ . Let ρ ∈ M(H) be a mixed state. Then,

after a time t, the state will evolve into U †(t)ρU(t). We would like to show that if ρ̂ is a
good approximation of ρ and fρ̂(q, p) is the integrable function associated with ρ̂, then the
Gaussian approximation given by the Hamiltonian evolution ρ̂(t) =

∫
fρ̂(q, p, t)Γ(q, p)dqdp

is a good approximation for U †(t)ρU(t).

4 Possible problems

The choice Hamiltonian may affect what entropy is needed. Consider classical Hamiltonian
evolution. Given that a Gaussian remains a Gaussian only under linear transformation, a
Gaussian will remain a Gaussian if and only if the Hamiltonian is quadratic. On the other
hand, if the Lagrangian is chaotic, it will spread the initial Guassian into a wide-spread and
complicated distribution. Given that entropy is strictly concave and Hamiltonian evolution
conserves entropy, though we may be able to decompose the final distribution into the sum
of infinitely many Gaussians, these must be Gaussians at lower entropy. Something similar
may happen in the quantum case.

5 Gaussian of Gaussians

An interesting case to study could be a Gaussian distribution of Gaussian states. That
is, let λ be a dimensionless parameter. Let σq =

√
λ~/2 expressed in meters and σp =

2



λ~/2σq =
√
λ~/2, so that σqσp = λ~/2. We define the following family of Gaussians

nλ(q, p) =
1

πλ~
e−

σ2pq
2+σ2qp

2

λ2~2 (7)

or, in natural units,

nλ(q, p) =
1

πλ
e−

q2+p2

2λ . (8)

The entropy is
I(nλ) = ln 2πeλ~ (9)

or
I(nλ) = ln 2πeλ (10)

in natural units. Note that I → −∞ as λ→ 0 while I → +∞ as λ→ +∞.
We can construct the mixed state

Nλ =

∫
nλ(q, p)Γ(q, p)dqdp. (11)

In principle, I(Nλ) would describe the entropy of the mixed state as a function of λ. What
we would like to show is that I → 0 as λ → 0. We expect the first derivative to be 0 at
that point and the second derivative to be positive. We hope to show that I(Nλ) converges
to I(nλ) as λ→ +∞. Given that I(Nλ) should be concave for small λ and convex for large
λ, we expect an inflection point for λ a 2 or 3 times 1

2πe~ , which is where I(nλ) is equal to
zero.

6 Entropy increasing functions

We saw that families of distributions that can be written as f
(

q√
λ
, p√

λ

)
play an important

role. We want to find a motivation in terms of entropy.
Let D = PD(X) be the set of all integrable distributions over phase space (one d.o.f.).

Let G be the group of canonical transformations. Therefore g ∈ G is a function g : D− > D.
We say a functional b : D− > D is an entropic magnifier (name is a placeholder) if

• it is linear - b(a1f1 + a2f2) = a1b(f1) + a2b(f2)

• preserves entropy ordering (i.e. I(B(f1)) ≤ I(B(f2)) if and only if I(f1) ≤ I(f2)) and
entropy is non-decreasing (i.e. I(B(f)) >= I(f)).

• for every g ∈ G there exists a g ∈ G such that b(g(f)) = g(b(f))

We can show that b(f(q, p)) = f
(

q√
λ
, p√

λ

)
is an entropy magnifier. In fact

I

(
f

(
q√
λ
,
p√
λ

))
= I(f(q, p)) + log(λ) (12)

which means it is entropy increasing and preserves entropy ordering. A canonical transfor-
mation applied to the argument becomes a stretches canonical transformation applied to
the result.
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Can we claim that b is a change of variable? That is,

b(f(q, p)) = b(

∫
f(u, v)δ(u− q, v − p)dudv) =

∫
f(u, v)b(δ(u− q, v − p))dudv (13)

Therefore we need only to understand how the deltas are mapped. Given that deltas have
the same entropy, minus infinity, they must be mapped to functions of the same entropy.
Note that the linear combination of two delta functions also have minus infinite entropy.
Since entropy is strictly concave, the linear combination of two functions with finite and
equal entropy will always have greater entropy. Therefore delta diracs must be mapped to
functions with zero support (minus infinite entropy).
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