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Abstract

In this note we want to explore how much of relativity is already contained in Hamil-
tonian particle mechanics. One central idea is that the metric tensor emerges as the
linear relationship between conjugate momentum and velocity. When expressing the
symplectic form in terms of position and velocity, the metric tensor and the force ten-
sor appear, therefore these are really characterizations of the geometry of the tangent
bundle. We want to re-understand those object in this setting, and in particular under-
standing whether the the properties of the symplectic form impose conditions among

those elements.

1 General properties

We start with a summary of the main relationships so that we can bridge the tensor notation
used in physics (i.e. index notation of general relativity) with the one used in symplectic

geometry.

We use roman letters i, j, k to span spatial indexes (i.e. {z,vy,2}), greek letters a, 8,7 to
span space-time indexes (i.e. {t,q¢'} or {—FE,p;}), roman letters a, b, ¢ to span phase space

variables (i.e. {¢“ pa}).
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2 Position and conjugate momentum

We review the canonical one-form and two-form in canonical coordinates. The expression

is independent of the Hamiltonian.
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3 Position and kinetic momentum

We now switch non-canonical coordinate position and kinetic momentum. This depends on
the choice of the Hamiltonian, which is taken to be the one under vector potential forces
(i.e. EM). Note that we use the extended phase space formulation: # is both the generator
of the affine parameter s and the constraint on the mass.
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Note how the force tensor appears as the spatial component of the symplectic form.
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Note how the force tensor appears as the Poisson bracket between kinetic momentum.
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Note how we recover the equation of a geodesic modified by the force tensor.

4 Position and velocity

We now switch to position and velocity.
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Note the appearance of the new symbol G5,. Note it is different from the torsion as it
anti-symmetrizes the first two indexes of the Christoffel symbols (the torsion uses the second
two).
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Again, note how the geodesic equation is recovered.

5 More on G,

To better understand G,g,, we study how the anti-symmetrization of the covariant deriva-
tive works.
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Note how the symmetrization of the covariant derivative is equal to the symmetrization of
the partial derivative. However, this is not true with the controvariant indexes. In this case,
G can be used to express the difference.

If we look at the transformation rules, G is not a tensor.
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If Gogy = 0, then gog = 0,035 where S is a scalar function. In fact
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If we are in an inertial Cartesian frame, then G,g, = 0. What is the characteristic of
reference frames in which G, = 07 Do they exist in curved space-time?
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