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Abstract

In this note we want to explore how much of relativity is already contained in Hamil-
tonian particle mechanics. One central idea is that the metric tensor emerges as the
linear relationship between conjugate momentum and velocity. When expressing the
symplectic form in terms of position and velocity, the metric tensor and the force ten-
sor appear, therefore these are really characterizations of the geometry of the tangent
bundle. We want to re-understand those object in this setting, and in particular under-
standing whether the the properties of the symplectic form impose conditions among
those elements.

1 General properties

We start with a summary of the main relationships so that we can bridge the tensor notation
used in physics (i.e. index notation of general relativity) with the one used in symplectic
geometry.

We use roman letters i, j, k to span spatial indexes (i.e. {x, y, z}), greek letters α, β, γ to
span space-time indexes (i.e. {t, qi} or {−E, pi}), roman letters a, b, c to span phase space
variables (i.e. {qα, pα}).

a ∧ b = a⊗ b− b⊗ a
gαβe

α ∧ eβ = gαβe
α ⊗ eβ − gαβeβ ⊗ eα = gαβe

α ⊗ eβ − gβαeα ⊗ eβ

= (gαβ − gβα)eα ⊗ eβ
(1)

∂αδ
β
γ = 0 = ∂α(gβδgδγ) = ∂αg

βδgδγ + gβδ∂αgδγ

∂αg
βγ = −gβδgγε∂αgδε

Γαβγ =
1

2
(∂γgαβ + ∂βgαγ − ∂αgβγ)

Γαβγ = gαδΓδβγ

(2)

2 Position and conjugate momentum

We review the canonical one-form and two-form in canonical coordinates. The expression
is independent of the Hamiltonian.

1



θ =
[
pα 0

]
θ = θae

a = pαe
qα

ω = −∂θ = −∂bθaeb ∧ ea = −epα ∧ eqα

ω =

 0 In

−In 0


ω = ωabe

a ⊗ eb = eq
α ⊗ epα − epα ⊗ eqα = eq

α ∧ epα

(3)

3 Position and kinetic momentum

We now switch non-canonical coordinate position and kinetic momentum. This depends on
the choice of the Hamiltonian, which is taken to be the one under vector potential forces
(i.e. EM). Note that we use the extended phase space formulation: H is both the generator
of the affine parameter s and the constraint on the mass.

dξaωabdξ
b = dqαdpα = dxαgαβdu

β

qα = xα

pα = mgαβu
β + qAα

= Πα + qAα

Πα = mgαβu
β

= dqidpi − dtdE

H =
1

2m
Παg

αβΠβ

(4)

eq
α

=
∂qα

∂xβ
ex

β
+
∂qα

∂Πγ
eΠγ = ex

α

epα =
∂pα
∂xβ

ex
β

+
∂pα
∂Πγ

eΠγ

= q
∂Aα
∂xβ

ex
β

+ eΠα

(5)
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θ = (Πα + qAα)ex
α

ω = ex
α ∧

(
q
∂Aα
∂xβ

ex
β

+ eΠα

)
= q

∂Aα
∂xβ

ex
α ∧ exβ + ex

α ∧ eΠα

= q

(
∂Aα
∂xβ

−
∂Aβ
∂xα

)
ex

α ⊗ exβ

+ ex
α ⊗ eΠγ − eΠγ ⊗ exα

Fαβ = ∂αAβ − ∂βAα

ωab =

−qFαβ In

−In 0



(6)

Note how the force tensor appears as the spatial component of the symplectic form.

eqα =
∂xβ

∂qα
exβ +

∂Πβ

∂qα
eΠβ

= exα − q
∂Aβ
∂qα

eΠβ

epα =
∂xβ

∂pα
exβ +

∂Πγ

∂pα
eΠγ

= eΠα

(7)

{xα, xβ} = {qα, qβ} = 0

{xα,Πβ} = {qα, pβ − qAβ} = {qα, pβ} − {qα, qAβ}
{f(xα),Πβ} = {f(qα), pβ − qAβ} = {f(qα), pβ} − {f(qα), qAβ}

= ∂βf(qα)

{Πα,Πβ} = {pα − qAα, pβ − qAβ}
= {pα, pβ} − {pα, qAβ} − {qAα, pβ}+ {qAα, qAβ}
= {qAβ, pα} − {qAα, pβ} = q(∂αAβ − ∂βAα)

= qFαβ

(8)
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Note how the force tensor appears as the Poisson bracket between kinetic momentum.

dsx
α = {xα,H} =

1

2m
{xα,Πβg

βγΠγ} =
1

m
gαβΠβ

mgαβdsx
β = Πα

dsΠα = {Πα,H} =
1

2m
{Πα,Πβg

βγΠγ}

=
1

2m

(
{Πα,Πβ}gβγΠγ + {Πα, g

βγ}ΠβΠγ + {Πα,Πγ}Πβg
βγ
)

=
1

2m

(
qFαβg

βγΠγ − ∂αgβγΠβΠγ + qFαγΠβg
βγ
)

= − 1

2m
∂αg

βγΠβΠγ +
q

m
Fαβg

βγΠγ

=
1

2m
gβδgγε∂αgδεΠβΠγ +

q

m
Fαβg

βγΠγ

=
1

2m
gβδgγε(∂εgδα − ∂εgδα + ∂αgδε)ΠβΠγ +

q

m
Fαβg

βγΠγ

=
1

2m
gβδgγε(∂δgεα − ∂εgδα + ∂αgδε)ΠβΠγ +

q

m
Fαβg

βγΠγ

=
1

2m
gβδgγε(∂δgεα + ∂αgδε − ∂εgαδ)ΠβΠγ +

q

m
Fαβg

βγΠγ

=
1

m
gβδΓγδαΠβΠγ +

q

m
Fαβg

βγΠγ

= dsx
δΓγδαΠγ +

q

m
Fαβg

βγΠγ

DsΠα = dsΠα − dsxδΓγδαΠγ =
q

m
Fαβg

βγΠγ

dsf(xα) = {f(xα),H} =
1

2m
{f(xα),Πβg

βγΠγ}

=
1

m
Πβg

βγ{f(xα),Πγ} = gβδdsx
δgβγ∂γf(xα)

= dsx
δ∂δf(xα) = dsf(xα)

(9)

Note how we recover the equation of a geodesic modified by the force tensor.

4 Position and velocity

We now switch to position and velocity.
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qα = xα

pα = mgαβu
β + qAα

H =
1

2
muαgαβu

β

eq
α

=
∂qα

∂xβ
ex

β
+
∂qα

∂uγ
eu

γ
= ex

α

epα =
∂pα
∂xβ

ex
β

+
∂pα
∂uγ

eu
γ

=

(
m
∂gαγ
∂xβ

uγ + q
∂Aα
∂xβ

)
ex

β
+mgαγe

uγ

θ = (mgαβu
β + qAα)ex

α

ω = ex
α ∧

[(
m
∂gαγ
∂xβ

uγ + q
∂Aα
∂xβ

)
ex

β
+mgαγe

uγ
]

=

(
m
∂gαγ
∂xβ

uγ + q
∂Aα
∂xβ

)
ex

α ∧ exβ +mgαγe
xα ∧ euγ

=

(
muγ

(
∂gαγ
∂xβ

−
∂gβγ
∂xα

)
+ q

(
∂Aα
∂xβ

−
∂Aβ
∂xα

))
ex

α ⊗ exβ

+mgαγe
xα ⊗ euγ −mgαγeu

γ ⊗ exα

Fαβ = ∂αAβ − ∂βAα

Gαβγ = ∂αgβγ − ∂βgαγ =
1

2
(∂αgβγ − ∂βgαγ)− 1

2
(∂βgαγ − ∂αgβγ)

=
1

2
(∂γgαβ + ∂αgβγ − ∂βgαγ)− 1

2
(∂γgαβ + ∂βgαγ − ∂αgβγ)

= Γβαγ − Γαβγ

ωab =

−mGαβγuγ − qFαβ mgαβ

−mgαβ 0



(10)

Note the appearance of the new symbol Gαβγ . Note it is different from the torsion as it
anti-symmetrizes the first two indexes of the Christoffel symbols (the torsion uses the second
two).

Gαβγ = gαδgβεgγζGδεζ = gαδgβεgγζ∂δgεζ − gαδgβεgγζ∂εgδζ
= −gαδ∂αgβγ + gβε∂βg

αγ

= ∂βgαγ − ∂αgβγ

Fαβ = gαγgβδFγδ = gαγgβδ∂γAδ − gαγgβδ∂δAγ
= gαγ∂γ(gβδAδ)− gβδ∂δ(gαγAγ)− gαγ∂γgβδAδ + gβδ∂δg

αγAγ

= ∂αAβ − ∂βAα + ∂βgαγAγ − ∂αgβδAδ
= ∂αAβ − ∂βAα +GαβγAγ

(11)
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∂ω = ∂
(

(m∂βgαγu
γ + q∂βAα) ex

α ∧ exβ +mgαβe
xα ∧ euβ

)
= ∂xδ (m∂βgαγu

γ + q∂βAα) ex
δ ∧ exα ∧ exβ +m∂xδgαβe

xδ ∧ exα ∧ euβ

+ ∂uδ (m∂βgαγu
γ + q∂βAα) eu

δ ∧ exα ∧ exβ +m∂uδgαβe
uδ ∧ exα ∧ euβ

= (m∂δ∂βgαγu
γ + q∂δ∂βAα) ex

δ ∧ exα ∧ exβ +m∂δgαβe
xδ ∧ exα ∧ euβ

+m∂βgαγδ
γ
δ e
uδ ∧ exα ∧ exβ

= (m∂δ∂βgαγu
γ + q∂δ∂βAα) ex

δ ∧ exα ∧ exβ +m∂δgαβe
xδ ∧ exα ∧ euβ

+m∂δgαβe
uβ ∧ exα ∧ exδ

= (m∂δ∂βgαγu
γ + q∂δ∂βAα) ex

δ ∧ exα ∧ exβ +m∂δgαβe
xδ ∧ exα ∧ euβ

−m∂δgαβex
δ ∧ exα ∧ euβ

(12)

{xα, xβ} = {qα, qβ} = 0

{xα, uβ} = {qα, 1

m
gβγ(pγ − qAγ)} = {qα, 1

m
gβγpγ} − {qα,

q

m
gβγAγ}

=
1

m
gαβ

{uα, uβ} =
1

m2
{gαγpγ − qAα, gβδpδ − qAβ}

=
1

m2

[
{gαγpγ , gβδpδ} − {gαγpγ , qAβ} − {qAα, gβδpδ}+ {qAα, qAβ}

]
=

1

m2

[
gαγ{pγ , pδ}gβδ + pγ{gαγ , pδ}gβδ + gαγ{pγ , gβδ}pδ + pγ{gαγ , gβδ}pδ

−gαγ{pγ , qAβ} − pγ{gαγ , qAβ} − {qAα, pδ}gβδ − {qAα, gβδ}pδ
]

=
1

m2

[
Gαβγpγ + q(∂αAβ − ∂βAα)

]
=

1

m2

[
Gαβγm(gγδu

δ + qAγ) + q(∂αAβ − ∂βAα)
]

=
1

m2

[
Gαβγmgγδu

δ + q(GαβγAγ + ∂αAβ − ∂βAα)
]

=
1

m2

[
Gαβγmgγδu

δ + qFαβ
]

(13)
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dsx
α = {xα,H} =

1

2
m{xα, uβgβγuγ} = muβgβγ{xα, uγ}

= muβgβγ
1

m
gαγ = uα

dsu
α = {uα,H} =

1

2
m{uα, uβgβγuγ}

= muβgβγ{uα, uγ}+
1

2
muβuγ{uα, gβγ}

= muβgβγ
1

m2
(Gαγδmgδεu

ε + qFαγ)− 1

2
muβuγ

1

m
gαδ∂δgβγ

= uβuεgβγgεδG
αγδ − 1

2
uβuγgαδ∂δgβγ +

q

m
Fαγgγβu

β

= uβuεgαγGγβε −
1

2
uβuγgαδ(∂βgγδ − ∂βgγδ + ∂δgβγ) +

q

m
Fαγgγβu

β

= uβuγgαδGδβγ − uβuγgαδ
1

2
(∂γgδβ + ∂δgβγ − ∂βgγδ) +

q

m
Fαγgγβu

β

= uβuγgαδ(Γβδγ − Γδβγ − Γβδγ) +
q

m
Fαγgγβu

β

= −uβuγgαδΓδβγ +
q

m
Fαγgγβu

β

Dsu
α = dsu

α + uβdsx
γΓαβγ =

q

m
Fαγgγβu

β

(14)

Again, note how the geodesic equation is recovered.

5 More on Gαβγ

To better understand Gαβγ , we study how the anti-symmetrization of the covariant deriva-
tive works.
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∇αAβ = ∂αAβ − ΓγβαAγ

∇αAβ −∇βAα = ∂αAβ − ΓγβαAγ − ∂βAα + ΓγαβAγ

= ∂αAβ − ∂βAα
∇αAβ = ∂αA

β + ΓβγαA
γ

∇αAβ = ∇α(gβγA
γ) = gβγ∇αAγ = gβγ∂αA

γ + gβγΓγδαA
δ

= ∂α(gβγA
γ)− ∂αgβγAγ + gβγΓγδαA

δ

= ∂αAβ − ∂αgβγAγ + ΓβγαA
γ

= ∂αAβ − ∂αgβγAγ +
1

2
(∂αgβγ + ∂γgβα − ∂βgαγ)Aγ

= ∂αAβ +
1

2
(−∂αgβγ + ∂γgβα − ∂βgαγ)Aγ

= ∂αAβ − ΓγβαA
γ

= ∂αAβ − ΓγβαAγ = ∇αAβ
∇αAβ −∇βAα = gαγ∇γAβ − gβγ∇γAα

= gαγ(∂γA
β + ΓβδγA

δ)− gβγ(∂γA
α + ΓαδγA

δ)

= ∂αAβ − ∂βAα + gαδgβεAγ(Γεδγ − Γδεγ)

= ∂αAβ − ∂βAα +GαβγAγ

(15)

Note how the symmetrization of the covariant derivative is equal to the symmetrization of
the partial derivative. However, this is not true with the controvariant indexes. In this case,
G can be used to express the difference.

If we look at the transformation rules, G is not a tensor.

gα′β′ = Λαα′Λ
β
β′gαβ

∂α′gβ′γ′ = Λαα′∂α

(
Λββ′Λ

γ
γ′gβγ

)
= Λαα′∂α

(
Λββ′

)
Λγγ′gβγ + Λαα′Λ

β
β′∂α

(
Λγγ′
)
gβγ + Λαα′Λ

β
β′Λ

γ
γ′∂αgβγ

Gα′β′γ′ = ∂α′gβ′γ′ − ∂β′gα′γ′

= Λαα′∂α

(
Λββ′

)
Λγγ′gβγ + Λαα′Λ

β
β′∂α

(
Λγγ′
)
gβγ + Λαα′Λ

β
β′Λ

γ
γ′∂αgβγ

− Λββ′∂β (Λαα′) Λγγ′gαγ − Λββ′Λ
α
α′∂β

(
Λγγ′
)
gαγ − Λββ′Λ

α
α′Λ

γ
γ′∂βgαγ

= Λαα′∂α

(
Λββ′

)
Λγγ′gβγ + Λαα′Λ

β
β′∂α

(
Λγγ′
)
gβγ

− Λββ′∂β (Λαα′) Λγγ′gαγ − Λββ′Λ
α
α′∂β

(
Λγγ′
)
gαγ

+ Λαα′Λ
β
β′Λγ′Gαβγ

= Λαα′∂α

(
Λββ′Λ

γ
γ′

)
gβγ − Λββ′∂β

(
Λαα′Λ

γ
γ′

)
gαγ

+ Λαα′Λ
β
β′Λγ′Gαβγ
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If Gαβγ = 0, then gαβ = ∂α∂βS where S is a scalar function. In fact

Gαβγ = 0 = ∂αgβγ − ∂βgαγ
gαβ = ∂αaβ

gαβ − gβα = 0 = ∂αaβ − ∂βaα
aα = ∂αS

gαβ = ∂α∂βS

(16)

If we are in an inertial Cartesian frame, then Gαβγ = 0. What is the characteristic of
reference frames in which Gαβγ = 0? Do they exist in curved space-time?
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