
Bare minimum: set theory

Abstract

A condensed overview of set theory. Bare minima are meant to give
a rough overview, by no means complete, of the subject so that one at
least knows what there is to know. It is mainly intended as background
for those interested in participating in the Assumptions of Physics (https:
//assumptionsofphysics.org) project.

1 Introduction

Set theory is important for those working on Assumptions of Physics for at least
three reasons. First, it is a foundational framework in mathematics. Second, it
showcases a successful attempt at concept generalization. Third, it shows how a
formal system is bootstrapped.

There are roughly two branches of set theory: naive and axiomatic. Naive set
theory is built on intuitive concepts, and as such is not fully formalized and is
open to potential paradoxes. Axiomatic set theory provides a fully formalized
axiomatic system that aims to close those problems. We will start with naive set
theory, which is the best setting for defining all the basic notions and getting a
sense of how the framework works. Then we will turn our attention to axiomatic
set theory to get a sense of what problems it solves and how, and whether those
solutions mesh with foundational goals in physics.

For more details on set theory, see for example [1, 2].

2 Naive set theory

We take sets and elements as primitive objects, with no formal definition. This
is the only difference between naive and axiomatic set theory, therefore all the
formal definitions that follow apply to both. A set A is a collection of elements.
If an element e belongs to the set we say e is in A, noted e ∈ A. A set A can be
defined by listing the elements, noted A = {e1, e2, e3}. A set A can be defined by
specifying how to build the elements through a rule (i.e. predicate) P (e), and is
noted A = {e ∣P (e)}. The rule may include symbols like for all ∀, exists ∃, logical
connectors AND ∧, OR ∨ and NOT ¬.

Definition 1 (Common sets). The empty set ∅ is the set with no elements.Common sets:
∅, {a}, N, Z,
Q, R, C

A singleton is the set of a single element {a}. The set of natural numbers
N = {0,1,2, ...}. The set of positive natural numbers N+ = {n ∈ N ∣n > 0}.
The set of integer numbers Z = {...,−2,−1,0,+1,+2, ...}. The set of rational
numbers Q. The set of real numbers R. The set of complex numbers C. A
universe U is the set that, within a specific context, contains all entities under
study.

2.1 Basic definitions

A ⊂ B A

B
Definition 2 (Set relationships). Let A and B be two sets. If all elements in ASubset, super-

set: ⊆, ⊇ are also contained in B, we say A is a subset of B, noted A ⊆ B. In this case, we
also say B is a superset of A, noted B ⊇ A. Additionally, if B contains elements
that A does not contain, we say A is a strict subset of B, noted A ⊂ B, and B
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is a strict superset of A, noted B ⊃ A. If the two sets contain exactly the same
elements, then we say the sets are equal, noted A = B. If the two sets have no
element in common they are said to be disjoint.

Definition 3 (Power set). Given a set A, its power set, noted P(A) or 2A, isPower set:
P(A), 2A the set of all subsets of A. That is, P(A) = {B ∣B ⊆ A}.

A∪B

A∩B

A∖B

A∁

Definition 4 (Set operations). We define the following operations between twoSet operations:
∪, ∩, ∖, ∁ sets A and B:

Union. Noted A ∪ B, the union of A and B is the set of all elements that are
contained by A, B or both.

Intersection. Noted A∩B, the intersection of A and B is the set of all elements
that are contained by both.

Set difference (or relative complement). Noted A∖B, A minus B is the set
of all elements in A that are not contained by B.

Complement (or absolute complement). Noted A∁, represents all elements
that are not contained in A. Note that this operation is context specific: we
need to know that, within a certain context, U is the set of all elements under
study; then the complement of A ⊆ U is A∁ = U ∖A.

Let A ⊆ P(A) be a set of subsets of A. The operations of union ⋃
A∈A

A and

intersection ⋂
A∈A

A can be extended to span all elements.

Definition 5 (Ordered pair). Given two elements a and b, the ordered pair (a, b)Ordered pair:
(a, b) specifies two objects in that order. That is (a, b) ≠ (b, a). This can be constructed

by setting (a, b) = {{a},{a, b}}.

A

B

A ×B

Definition 6 (Cartesian product). Given two sets A and B, the CartesianCartesian
product: × product A × B = {(a, b) ∣ ∀a ∈ A, b ∈ B} is the set of all possible ordered pairs

between the elements of A and B.

Definition 7 (Disjoint union). Let A and B be two sets. The disjoint union A⊔B
is the union where the elements of the sets are always treated as distinct. That is,
given A ⊔B = ({0} ×A) ∪ ({1} ×B).

Remark. Ordered pairs and disjoint unions exemplify the effort in set theory
to construct all objects starting from just two primitives: set and set inclusion.
The downside is that the constructions do not map exactly to our intuition. For
example, we still think as an ordered pair as a set, so we want to write b ∈ (a, b),
though, looking at the definition b itself is not directly a member of (a, b).

2.2 Relations and functions

A

B

✓

✓

✓

✓

✓

✓

✓

✓

R

B

A

✓ ✓ ✓

✓ ✓ ✓

✓ ✓

R−1

Remark. Relations provide a common foundation for functions (i.e. the relation is
the set of pairs (x, f(x)) ), equivalences and order (i.e. the relation is the set of
pairs (a, b) such that a = b or a ≤ b respectively). This exemplifies the effort in set
theory to find general structures.

Definition 8 (Binary relation). Given a set A, called domain, and a set B,Binary
relation: aRb called codomain, a binary relation is a set R ⊆ A×B of ordered pairs. We say

a is R-related to b, noted aRb if (a, b) ∈ R. If A = B (i.e. domain and codomain
coincide) the relation is said to be homogeneous, heterogeneous if not.

Definition 9 (Image and preimage). If X ⊆ A, the image of X under R is theImage and
preimage set of all elements in B that are related to at least one element in X. The image

of R is the set of all elements in B that are related to at least one element in A
(i.e. the image of the full set A).
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If Y ⊆ B, the preimage of Y under R is the set of all elements in A that
are related to at least one element in Y . The preimage of R is the set of all
elements in A that are related to at least one element in B (i.e. the preimage of
the full set B).

Definition 10 (Converse relationship). Given a relationship R between A andConverse: R−1

B, the converse or inverse relationship R−1 ⊆ B × A is the relationship where
the order of the pairs (i.e. domain and codomain) is inverted. That is, R−1 =

{(b, a) ∣ (a, b) ∈ R}.

Definition 11 (Relation properties). Let R be a binary relation between A andRelation prop-
erties B. We define the following properties:

Functional or right-unique. An element a ∈ A is related to at most one ele-
ment b ∈ B. That is, if aRb and aRc then b = c.

Injective or left-unique. An element b ∈ B is related to at most one element
a ∈ A. That is, if aRb and cRb then a = c.

Serial or left-total. Every element a ∈ A is related to at least one element b ∈ B.
That is, for each a ∈ A there exists at least one b ∈ B such that aRb. In this
case, the preimage of R is the whole A.

Surjective or right-total. Every element b ∈ B is related to at least one element
a ∈ A. That is, for each b ∈ B there exists at least one a ∈ A such that aRb.
In this case, the image of R is the whole B.

From those basic properties, we define the following:

One-to-one. Injective and functional (i.e. left-unique and right-unique).
One-to-many. Injective and not functional (i.e. left-unique and not right-unique).
Many-to-one. Not injective and functional (i.e. not left-unique and right-unique).
Many-to-many. Not injective nor functional (i.e. not left-unique nor right-unique).

Definition 12 (Function). A partial function f ∶ A→ B is a binary relationship(Partial)
functions:
f ∶ A→ B

between A and B that is functional (i.e. right-unique). The graph of the function
G ⊂ A×B is the function expressed as ordered pairs. A total function, or simply
a function, is a partial function that is also serial (i.e. left-total, defined on the
whole domain). A function is bijective if it is injective and surjective.

When the functional form f(a) is known, this can be expressed as a ↦ f(a)
(read “a maps to f of a”).

Remark. Note that the domain and the codomain can be any set, including
scalar products. Therefore f ∶ R ×R→ R for which (x, y) ↦

√
x2 + y2 gives us the

Euclidean norm of a two dimensional vector.

Definition 13 (Identity function). Given a set A, the identity function IdA ∶ A→Identity: IdA
A is the function such that IdA(a) = a for all a ∈ A.

Proposition 14 (Inverse function). Let f ∶ A→ B be a function. The correspond-Inverse: f−1

ing converse relationship f−1 is a function if and only if f is bijective. In this case
f−1 ∶ B → A is also bijective and is called the inverse of f .

Definition 15 (Image/preimage functions). Let f ∶ A → B be a function. Thisf(X), f−1(Y )

induces a relation f ∶ P(A) → P(B) that associates each subset of A to its im-
age and a relation f−1 ∶ P(B) → P(A) that associates each subset of B with its
preimage.

Proposition 16 (Properties of image/preimage functions). The induced relations
f ∶ P(A) → P(B) and f−1 ∶ P(B) → P(A) are functions and satisfy the following
properties for all A ⊆ P(A) and B ⊆ P(B):

1. f( ⋃
U∈A

U) = ⋃
U∈A

f(U)
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2. f−1( ⋃
V ∈B

V ) = ⋃
V ∈B

f−1(V )

3. f−1( ⋂
V ∈B

V ) = ⋂
V ∈B

f−1(V )

Remark. With abuse of notation, f and f−1 indicate both the function between
elements and sets. Note that f−1 ∶ P(B) → P(A) always exists even if f is not
bijective. Also note that the image of the intersection is not in general the inter-
section of the image, and how maps that preserve set theoretic structures (e.g.
topologies and σ-algebras) are defined based on preimages.

Definition 17 (Fiber). Given a function f ∶ A→ B, the fiber of b ∈ B under fFiber
is the subset of A of where the function takes the value b. That is, the preimage
f−1({b}) of the singleton. Fibers over real functions are also called level sets.

Definition 18 (Restriction). Let f ∶ A → B be a function and let C ⊆ A. ThenRestriction:
f ∣C the restriction of f over C is the function f ∣C ∶ C → B such that f ∣C(c) = f(c)

for all c ∈ C.

Definition 19 (Composition). Let A, B and C be three sets. Let R be a binaryFunction and
relation com-
position: R○S,
f ○ g

relationship between A and B and S be a binary relationship between B and C.
Then the composition of R and S is the binary relationship S ○ R ⊆ A × C
between A and C such that (a, c) ∈ S ○R if we can find b ∈ B such that aRb and
bSc.

Remark. The order of composition follows those of functions: if f ∶ A→ B and
g ∶ B → C, composition leads to c = g(f(a)) = (g ○ f)(a).

Proposition 20 (Composition properties). Relation composition follows the fol-Composition
properties lowing properties:

• Composition is associative: R ○ (T ○ S) = (R ○ T ) ○ S
• Converse of composition: (R ○ S)−1 = S−1 ○R−1

• Composition of functional/injective/serial/surjective relations is
functional/injective/serial/surjective.

• If f ∶ A → B and g ∶ B → C are (partial) functions, then g ○ f is a (partial)
function.

• Let f ∶ A→ B be a bijective function, then f ○ f−1 = IdB and f−1 ○ f = IdA.

Definition 21 (Sets of functions). The set of all possible functions f ∶ A → B isSets of func-
tions: BA noted BA.

Proposition 22. Let 2 = {0,1} denote a set with two elements. Then P(A) and
2A are in one-to-one correspondence.

Remark. The notation for function sets is due to the cardinality. If A has n
elements and B has m elements, each function is given by choosing an element
of B for each element of A, that is m choices n times, that is mn. The power
set is noted 2A because each subset U ⊆ A can be identified by a unique function
f ∶ A→ {0,1}, where for all a ∈ A then f(a) = 0 corresponds to a ∉ U and f(a) = 1
corresponds to a ∈ U .

Definition 23 (Set closure under operations). Let f ∶ A1 ×A2 × ... ×An → B be
an n-ary function. We say a set A is closed under f if whenever the function
is applied to elements of A it returns an element of A. That is, A ⊆ Ai for all
1 ≤ i ≤ n, A ⊆ B and f(A,A, ...,A) ⊆ A.

Remark. For example, integers are closed under addition, subtraction and
multiplication but are not closed under division. Most mathematical structures
(groups, topologies, σ-algebras, vector spaces, ...) define sets closed under some
operations.
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2.3 Homogeneous relations, equivalences and orders

Remark. We will cover the notions of orders that are necessary for the definition
of ordinal and cardinal numbers. Orders will be treated more in detail in a Bare
Minimum dedicated to order theory.

Definition 24 (Homogeneous relation properties). Let R ⊆ A ×A be a homoge-Reflexivity,
symmetry,
transitivity, ...

neous binary relation between A and itself. We define the following properties:

Reflexive. Every element a ∈ A is related to itself. That is, aRa for all a ∈ A.
Irreflexive. No element a ∈ A is related to itself. That is, aRa for no a ∈ A.
Symmetric. If a is related to b, then b is related to a. That is, if aRb then bRa.
Antisymmetric. If a is related to b and b is related to a, then a and b are the

same element. That is, if aRb and bRa then a = b.
Transitive. If a is related to b and b is related to c, then a is related to c. That

is, if aRb and bRc then aRc.
Connected. Given two distinct elements, one is related to the other. That is,

given a ≠ b, either aRb or bRa.

Definition 25 (Orders and equivalence). A partial order (noted for exampleOrder, equiva-
lence: ≤, <, ≡ ≤, ≲, ⪯) is a homogeneous binary relationship that is reflexive, antisymmetric and

transitive. A linear order or total order is an order that is connected. An order
is strict (noted for example <, ≺) if it is irreflexive instead of reflexive. A strict
linear order or strict total order is an order that is strict and connected.

An equivalence relation (noted for example ≡, ∼) is a homogeneous binary
relationship that is reflexive, symmetric and transitive.

A

P1

P2

P3 P4

P5
Definition 26 (Partitions). A partition of a set A is a collection P ⊂ P(A) ofPartitions
disjoint subsets that cover all of A. That is:

1. ⋃
B∈P

B = A

2. B ∩C = ∅ for all B,C ∈ P where B ≠ C

Definition 27 (Equivalence classes and quotient set). Let A be a set and ∼ anEq. classes and
quotient set:
[a]∼, a/∼,A/∼

equivalence relation on A. Let a ∈ A. The equivalence class of a by ∼ is the set
[a]∼ = a/∼ = {b ∈ A ∣ b ∼ a} of all the elements of A equivalent to a. The quotient
set of A by ∼ A/∼ = {a/∼ ∣a ∈ A} is the set of all of the equivalence classes by ∼.

Proposition 28 (Quotient sets are partitions). Every quotient set is a partition,
and every partition is a quotient set. That is, let A be a set and ∼ an equivalence
class, then A/∼ is a partition. Conversely, let P be a partition of A, then ∼ =

{(a, b) ∣a, b ∈X for some X ∈ P} is an equivalence relation and A/∼ = P .

Definition 29. Given a function f ∶ A → B the equivalence relation deter-
mined by f is the relation Rf = {(a1, a2) ∣ f(a1) = f(a2)}.

Proposition 30 (Function canonical decomposition). Every function f ∶ A → B
can be written as the composition f = t ○ s ○ r of the following three functions:

r ∶ A→ A/Rf
defined as a↦ [a]Rf

; this function is surjective
s ∶ A/Rf

→ f(A) defined as [a]Rf
↦ f(a); this function is bijective

t ∶ f(A) → B defined as t(b) = b; this function is injective.

Remark. All the above concepts are of general use in all areas of mathematics.
Note that they are all constructed on two primitives: the notion of sets and of set
inclusion.
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2.4 Indexed families and sequences

Definition 31 (Families). An indexed family, or simply a family, {xi}i∈I isFamilies,
sequences:
{xi}i∈I ,
{xi}

∞
i=1

a collection of elements identified by an index set I. More formally, an indexed
family is a tuple (X,I, x) where X and I are sets and x ∶ I → X is a function
such that i ↦ xi. A sequence is a family for which the index set is a contiguous
interval of natural numbers. A finite sequence of n elements is noted {xi}

n
i=1

while an infinite sequence is noted {xi}
∞
i=1.

Definition 32 (Operations on families of sets). Let {Ai}i∈I be a family of sets,⋂
i∈I
Ai, ⋃

i∈I
Ai

the operations of intersection ⋂
i∈I
Ai and union ⋃

i∈I
Ai can be extended to span all

members.

Definition 33 (Set-theoretic limit). Let {Ai}
∞
i=1 be a sequence of sets. We de-Set limit:

lim
i→∞

Ai = A fine the limit infimum as lim inf
i→∞

Ai = ⋃
i≥1
⋂
j≥i
Aj and the limit supremum as

lim sup
i→∞

Ai = ⋂
i≥1
⋃
j≥i
Aj. If the two are equal to the same set then we say the se-

quence converges, the set-theoretic limit lim
i→∞

Ai = A exists and it is equal to

that set.

Ai ⊃ Ai+1

A1

A2

...

Definition 34 (Monotone sequence). A monotone sequence is a sequence ofMonotone se-
quence:
A1 ⊆ A2 ⊆ ...
A1 ⊇ A2 ⊇ ...

sets {Ai}
∞
i=1 where each set is a subset (or superset) of the preceding. More specif-

ically, we distinguish four cases:

Increasing when Ai ⊆ Ai+1 for all i ≥ 1
Decreasing when Ai ⊇ Ai+1 for all i ≥ 1
Strictly increasing when Ai ⊂ Ai+1 for all i ≥ 1
Strictly decreasing when Ai ⊃ Ai+1 for all i ≥ 1

Proposition 35 (Monotone convergence). All monotone sequences converge. ForMonotone con-
vergence increasing sequences the limit is given by lim

i→∞
Ai = ⋃

i≥1
Ai, while for decreasing

sequences the limit is given by lim
i→∞

Ai = ⋂
i≥1
Ai.

3 Axiomatic set theory

Axiomatic set theory was introduced to eliminate some technical problems that
would make naive set theory inconsistent. There is no single approach and there
is no single set of axioms. For example, constructive set theory, as all constructive
mathematics, rejects “nonconstructive proofs” in which the existence of an object
is proved with no explicit algorithm as to how to construct it. This will lead to
different choices than the ones outlined here. Much of the work on the foundations
of mathematics in set theory is to clarify the relationship between the axioms:
which ones are required to get certain results, which ones are independent and
which ones are inconsistent.

This is an important insight for those working on Assumptions of Physics:
the foundations of mathematics are not absolute. We have to be conscious of the
consequences of those choices and understand whether they are suitable for the
foundations of physics.

3.1 Paradoxes

While they are generally called paradoxes, the following are really contradictions
and that is why axiomatic set theory needs to avoid them. The first type of
paradoxes for naive set theory arises from the use of natural language and the
meaning of the words, typically when this is self-referential.

Berry’s paradox. Consider the expression “the smallest positive integer not
definable in under sixty letters.” Given that there are only twenty-six letters in the
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English language, there are finitely many phrases under sixty letters and therefore
only finitely many integers can be defined in under sixty letters. Therefore there
are integers not definable under sixty letters and, since the integers are ordered,
there will be a least one. However, the above expression contains fifty-seven letters.
We have a contradiction.

This type of paradoxes is solved by restricting to symbolic expressions of a for-
mal language, such as predicate logic. The consequence is that, at the foundational
level, mathematics does not keep track of what the symbols mean.

The second type of paradoxes is purely logical, so they can be constructed in
the formal system.

Russell’s paradox. Let R be the set of all sets that do not contain themselves.
That is, R = {x ∣x ∉ x}. Suppose R ∉ R then, by definition, R ∈ R. Suppose R ∈ R
then, by definition, R ∉ R. We have a contradiction.

These are solved by carefully specifying the rules that are allowed for the
creation of sets, by picking the “right” axioms. Part of the solution revolves around
the following concepts.

3.2 Classes, sets and elements

A class is any collection, therefore sets are classes. Some classes are not sets.

Class

Proper

class
Set

is a

containsThese are called proper classes and are exactly the collections that cannot be
elements of a class. Therefore, sets are classes that can be contained by other
classes, while proper classes cannot. The difference between sets and proper classes
is not in what they contain but in whether they can be contained. Proper classes
are “too large” to be sets in the following sense: given a class A, if we can find a set
B that contains all elements of A, then A will be a set as well. Therefore proper
classes can never be subclasses of sets, they are bigger than all sets. The class of
all sets, for example, is a proper class. So is the class of all cardinal numbers.

Note that axiomatic set theory does not distinguish between objects that can
or cannot contain other objects. All elements are classes, all elements can, in prin-
ciple, contain something. In fact, since equality of two objects coincides on whether
they have the same elements, two objects must contain something different to be
different. Numbers will be constructed as sets starting from the empty set. As
a consequence, the proposition 3 ∈ 4 is valid, and happens to be true if 3 and 4
are naturals, though it is not true if 3 and 4 are reals. From the perspective of
Assumptions of Physics, this is not great as the framework allows propositions
that are not physically meaningful. Radically different approaches to the founda-
tions of mathematics (e.g. through category theory) do not exhibit this particular
problem, though they exhibit others (e.g. identity of an object can be defined only
up to its relationships with other objects).

3.3 Axiomatization

One strategy for the axiomatization of set theory, refered to as ZermeloFraenkel
(ZFC), only defines sets. The C in ZFC stands for the addition of the axiom of
choice. It avoids paradoxes by restricting set construction to subsets only. Proper
classes are not objects that live in the framework.

Another strategy, refered to as von NeumannBernaysGdel (NBG), starts by
defining classes and then defines sets as those classes that can be elements of
classes. It avoids paradoxes by restricting set construction on predicates over sets.
Since a proper class cannot be an element, if the definition creates a contradiction
for an item x (i.e. we have both x ∈ S and x ∉ S) then it must be that the element
x is a proper class.

The two approaches are proved to be equivalent.
Axioms of set theory. Here are the axioms of a particular formulation ofSet theory ax-

ioms axiomatic set theory taken from [1] that follows NBG:
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1. Axiom of extent. If two classes have the same elements, then they are iden-
tical.

2. Axiom of class construction. Let P (x) be a predicate expressed in terms of
the symbols ∈,∨,∧,¬,⇒,∃,∀, brackets, variables x, y, z,A,B, ... Then there
exists a class C that consists of all the elements (i.e. sets) x which satisfy
P (x).

3. Every subclass of a set is a set.
4. ∅ is a set.
5. If a and b are sets, then {a, b} is a set.
6. If A is a set of sets, then, ⋃

A∈A
A is a set.

7. If A is a set, the power set P(A) is a set.
8. Axiom of foundation. If A ≠ ∅ is a set, there exists an element a ∈ A such

that a ∩A = ∅.
9. Axiom of replacement. If A is a set and f ∶ A → B is a surjective function,

then B is a set.
10. Axiom of choice. Every set has a choice function. That is, given a set A,

there exists a function f ∶ P(A) ∖ {∅} → A such that for all non-empty
B ⊆ A we have f(B) ∈ B.

11. Axiom of infinity. There exists a successor set (as defined in Definition 37).

Remark. Axiom 1 serves to define class equality. Axiom 2 defines how to define
classes based on predicates. Axioms 3-7 tell us that some classes, constructable
by axiom 2, are sets. Axiom 8 guarantees that we cannot have infinite sequences
{Ai}

∞
i=1 such that Ai+1 ∈ Ai. In particular, a set cannot be an element of itself.

Axiom 9 tells us that any set that is “smaller” than a set (i.e. we can map another
set onto it) is a set. Axiom 10, the axiom of choice, guarantees that we can always
pick an element from a set, though it does not tell us how. Axiom 11 tells us that
there are sets with infinite elements. Once the natural numbers are assumed to
exist, higher cardinality of infinity can be constructed through, for example, the
power set.

The axiom of choice has been the focus of particular investigation as it has been
regarded as controversial for some of its consequences. While most mainstream
mathematicians accept it, constructive mathematics rejects the axiom of choice
as it does not lead to constructive proofs: it claims some objects exist even though
they may not even be expressible or computable. It also implies the law of excluded
middle (i.e. a proposition is either true or not), which constructive mathematics
rejects. What does or does not require the axiom of choice is therefore ample
subject of study.

Proposition 36. The following statements are equivalent:

• Axiom of choice: every set has a choice function
• Well-ordering theorem: every set can be well ordered (defined below)
• Trichotomy: given two sets, either they have equal cardinality, or one has

lower cardinality than the other (i.e. ∣A∣ < ∣B∣, ∣A∣ = ∣B∣ or ∣A∣ > ∣B∣)
• Zorn’s lemma: every non-empty poset (i.e. partially ordered set) for which

every chain (i.e. linearly ordered subset) has an upper bound contains at
least one maximal element

• Every vector space has a basis

4 Numeric constructions

In set theory, numbers are defined to be sets with particular properties. These
constructions are instructive to gain insights into the foundations of mathematics.
Note that, for Assumptions of Physics, we found it more productive to understand
numbers as an order-theoretic concept (i.e. the integer numbers can be thought
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of as a linearly ordered set where each element has an immediate successor and
an immediate predecessor).

4.1 Standard numbers

Definition 37. Let A be a set. We define the successor A+ = A ∪ {A}. A set S
is called a successor set if it contains the empty set (i.e. ∅ ∈ S and if contains
the successor of every element (i.e. if X ∈ S then X+ ∈ S). The set of natural
numbers N is the intersection of all successor sets. The set of positive naturals
is N+ = N ∖ {∅}.

Remark. The set of the natural numbers exists only because the axiom of
infinity tells us it does. The negation of the axiom of infinity can be consistently
chosen, which would lead to a different version of set theory. The natural numbers
so constructed are known as von Neumann ordinals. They are as follows:

• 0 = {} = ∅

• 1 = {0} = {∅}

• 2 = {0,1} = {∅,{∅}}

• 3 = {0,1,2} = {∅,{∅},{∅,{∅}}}

• 4 = {0,1,2,3} = {∅,{∅},{∅,{∅}},{∅,{∅},{∅,{∅}}}}

• ...

It can be shown that they obey Peano’s axioms, another common way to axiom-
atize the natural numbers and their arithmetic.

Definition 38. The integers can be defined from the natural numbers as an
ordered pair of sign and value. That is, Z = ({0} ×N) ∪ ({1} ×N+).

Definition 39. The rationals can be defined from the integer numbers as the
equivalence class that leads to the same simplification. That is, let Q = Z × Z be
all pairs of integers. Let ∼⊂ Q ×Q be an equivalence relation such that (a1, b1) ∼
(a2, b2) if and only if a1b2 = a2b1 (i.e. the pairs are proportional). The set of
rationals is Q = Q/∼. Given two integers a, b ∈ Z, the rational number a

b
is the

equivalence class [(a, b)]∼.

Definition 40. The reals can be defined from the rationals as “cuts” that divide
the rationals in two contiguous sets. That is, let a real number be a partition (A,B)

such that A ∪B = Q, A ≠ ∅, B ≠ ∅ and a < b for all a ∈ A and b ∈ B. The set of
all reals R is the set of all such partitions.

Remark. Operations such as additions, multiplications, ... can be defined ap-
propriately as functions of the respective sets.

4.2 Ordinal numbers

To extend natural numbers beyond finite numbers we need to make a distinction.
Cardinal numbers (i.e. one, two, three, ...) identify the number of elements in a set.
Ordinal numbers (i.e. first, second, third) identify a position within a sequence.
Cardinals and ordinals are in one to one correspondence only for finite values. For
infinite values, cardinals are a subset of the ordinals.

Remark. To define ordinals, we extend the notion of sequences to arbitrary
levels of infinity through well-ordered sets. Note that we introduced the non-
standard symbols ⪯, ∼ and ⟨A⟩ to make the notation more compact.

Definition 41 (Poset). A partially ordered set, or poset, is a set with anPoset: (A,≤A)
associated partial order. That is, a tuple (A,≤A) where A is a set and ≤A is a
partial order over A. A linearly ordered set is a poset whose order is linear.

Definition 42 (Initial segment). The initial segment of a poset (A,≤A) deter-Initial segment
mined by a ∈ A is the set of all elements before a. That is, Sa = {x ∈ A ∣x < a}.
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Definition 43 (Order morphisms). Let (A,≤A) and (B,≤B) be two posets. AnOrder homo/
isomorphism order homomorphism is a function f ∶ A→ B that preserves the ordering. That

is, a1 ≤A a2 implies f(a1) ≤B f(a2). An order isomorphism is a bijective order
homomorphism whose inverse is also an order homomorphism (i.e. the posets have
identical order). That is, b1 ≤B b2 implies f−1(b1) ≤A f

−1(b2).

Definition 44 (Well-order). A well-ordered set is a linearly ordered set (A,≤A)Well-order
where each subset has a least (i.e. first) element. That is, for every B ⊆ A, there
exists an a ∈ B such that a ≤A b for all b ∈ B. Let A and B be two well-ordered
sets. We say A has lower or equal ordinality than B, noted A ⪯ B, if A is
orderwise identical to the beginning of B. That is, A is order isomorphic to an
initial segment of B. They have the same ordinality, noted A ∼ B, if they have
the same order. That is, they are order isomorphic.

Proposition 45 (Ordinality). If A and B are two well-ordered sets, one of them
has lower or equal ordinality than the other. That is, either A ⪯ B or B ⪯ A. If A
is a collection of well-ordered sets, then one element has least ordinality.

Remark. Simple examples of well-ordered sets:

• a finite sequence: (a1, a2, ..., an)
• an infinite sequence: (a1, a2, ...)
• an infinite sequence with elements afterwards: (a1, a2, ..., b1, b2, ..., b6)
• three infinite sequences, one after the other: (a1, a2, ..., b1, b2, ..., c1, c2, ...)

In a well-ordered set, every element always has an immediate successor, but not
necessarily an immediate predecessor (e.g. b1 in the third example).

Definition 46 (Ordinals). An ordinal is a set A that includes the previous andOrdinals:
ORD only the previous ordinals (this makes a ∈ A mean a ≺ A). That is, for all elements

a, b, c ∈ A (i.e. previous ordinals of A):

1. a ∉ a (each previous ordinal is not before itself)
2. a ∈ b implies b ∉ a (if a previous ordinal is before another, then the latter is

not before the former)
3. a ∈ b and b ∈ c implies a ∈ c (previous ordinals are transitive)
4. x ∈ a implies x ∈ A (an ordinal before a previous ordinal is a previous ordinal)

We note ORD as the class of all ordinals.

Proposition 47 (Natural numbers are ordinals). The natural numbers are ordi-
nals. That is, N ⊂ ORD.

Remark. Ordinal numbers so defined generalize the construction of von Neu-
mann ordinals (i.e. a natural number is a set that includes all previous natural
numbers) to all possible well-orders.

Proposition 48 (Ordinals are well-ordered). All ordinals are well-ordered sets.
That is, for each A ∈ ORD, (A,≤A) is a well-ordered set where a ≤A b if either
a ∈ b or a = b. Moreover, the class ORD is well ordered. That is, given a set of
ordinals, one has lower or equal ordinality than all others.

Proposition 49 (Well-orders are ordinals). For every well-ordered set A there⟨A⟩, ω
is a unique ordinal that fully characterizes its order. That is, there is a unique
⟨A⟩ ∈ ORD such that ⟨A⟩ ∼ A. We say ⟨A⟩ is the ordinality of A. The ordinality
of an infinite sequence is denoted by ω. That is, ω = (0,1,2, ...) = ⟨{xi}

∞
i=1⟩ for all

{xi}
∞
i=1.

Remark. As an example, consider the von Neumann ordinal 3 = (0,1,2) as
a well-ordered set. Similarly, the ordinality of the well-ordered set (a1, a2, a3) is
3 = (0,1,2) as they share the same ordering. The definitions are such that these
ideas extend to infinite sets.

10



Definition 50 (Ordinal addition). The addition of two ordinals is defined byOrdinal addi-
tion: ⟨A⟩ + ⟨B⟩ concatenating the first order with the second. Let (A,≤A) and (B,≤B) be two

well-ordered sets. Let (A ⊔B,≤) be the poset where:

• (0, a1) ≤ (0, a2) if a1 ≤A a2
• (1, b1) ≤ (1, b2) if b1 ≤B b2
• (0, a) ≤ (1, b) for all a ∈ A and b ∈ B.

Then (A⊔B,≤) is well-ordered and the ordinal ⟨A⊔B⟩ is fully determined by ⟨A⟩

and ⟨B⟩. Therefore we can define the ordinal addition ⟨A⟩ + ⟨B⟩ = ⟨A ⊔B⟩.

Remark. Addition is non-commutative (i.e. ⟨A⟩ + ⟨B⟩ ≠ ⟨B⟩ + ⟨A⟩) for infinite
ordinals. For example (a1, a2, ...)⊔(b1, b2, b3) = (a1, a2, ..., b1, b2, b3) is not the same
as (b1, b2, b3) ⊔ (a1, a2, ...) = (b1, b2, b3, a1, a2, ...) ∼ (c1, c2, ...). Therefore ω + 3 ≠

3 + ω = ω.

Definition 51 (Ordinal multiplication). The multiplication of two ordinals isOrdinal mul-
tiplication:
⟨A⟩⟨B⟩

defined by ordering their Cartesian product. Let (A,≤A) and (B,≤B) be two well-
ordered sets. Let (A ×B,≤) be the poset where:

• (a1, b1) ≤ (a2, b2) if b1 ≤B b2
• (a1, b) ≤ (a2, b) if a1 ≤A a2

Then (A×B,≤) is well-ordered and the ordinal ⟨A×B⟩ is fully determined by ⟨A⟩

and ⟨B⟩. Therefore we can define the ordinal multiplication ⟨A⟩⟨B⟩ = ⟨A×B⟩.

Remark. Muliplication is non-commutative (i.e. ⟨A⟩⟨B⟩ ≠ ⟨B⟩⟨A⟩) for infinite
ordinals. For example (a1, a2, ...) × (b1, b2) = ((a1, b1), (a2, b1), ..., (a1, b2), (a2, b2),
...) is not the same as (b1, b2) × (a1, a2, ..., an, ...) = ((b1, a1), (b2, a1), (b1, a2),
(b2, a2), ...) ∼ (c1, c2, ...). Therefore ω2 ≠ 2ω = ω.

With addition and multiplication, we can get a sense of how the ordinals
work. ω represents a countable sequence (i.e. ω = (0,1,2, ...) = (N,≤)). ω + 3 is a
countable sequence followed by three elements. ω + ω = ω2 represents a countable
sequence followed by a countable sequence. ω6 represents a sequence of 6 countable
sequences. ωω = ω2 represents a countable sequence of countable sequences. ω3

represents a countable sequence of countable sequences of countable sequences.
ωω extends the recursion infinitely many times and so on. There is no upper limit
to the ordinals.

Adding an ordinal of a lower power to the left does not change the ordinal.
Adding finitely many elements at the beginning of an infinite sequence still gives
us an infinite sequence (i.e. n+ω = ω). In the same way, adding an infinite sequence
before an infinite sequence of infinite sequences still gives us an infinite sequence
of infinite sequences (i.e. ω + ω2 = ω2).

Proposition 52 (Cantor normal form). Every ordinal number ⟨A⟩ can be written
as a sum of powers of ω. That is, ⟨A⟩ = ωα1c1 + ω

α2c2 + ... + ω
αncn where n ∈ N,

ci ∈ N+ for all 1 ≤ i ≤ n and αi ∈ ORD such that αi > αj for all i > j.

4.3 Cardinal numbers

Remark. The cardinality of a set (i.e. how many elements it contains) is defined in
terms of injection/bijection: a set is smaller than another if it can be injected into
it, and it is as big as another if it can be put into a one-to-one correspondence.
Note that we introduced the non-standard symbols ↪ and↔ to make the notation
more compact.

Definition 53 (Cardinal comparison). Let A and B be two sets. If there existsCardinality
a injective function f ∶ A → B then we say A has lower or equal cardinality
than B, noted A ↪ B. If there exists a bijective function we say they have the
same cardinality, noted A↔ B.
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Proposition 54 (Cardinal comparability of sets). Given two sets A and B, one
must have lower or equal cardinality than the other. That is, either A ↪ B or
B ↪ A. Additionally, there exists a bijective function between A and B if and only
if there exists an injective function in both directions. That is, A↔ B if and only
if A↪ B and B ↪ A.

Proposition 55 (Well-ordering theorem). Every set can be well-ordered.

Remark. The well-ordering theorem allows us to reuse ordinal numbers to quan-
tify cardinality. As two different well-ordered sets may have the same cardinality,
we’ll take the lowest ordinal between them.

Definition 56 (Cardinal number). A cardinal is an ordinal a ∈ ORD that hasCardinals:
CRD lower or equal ordinality than any ordinal that has the same cardinality. That is,

a ⪯ b for all b ∈ ORD such that a ↔ b. The class of all cardinals is noted CRD
and, by definition CRD ⊂ ORD.

Proposition 57 (Cardinality of a set). For every set A there is a unique cardinal∣A∣

that identifies the cardinality of A. That is, there exists a unique ∣A∣ ∈ CRD such
that ∣A∣ ↔ A. We say ∣A∣ is the cardinality of A.

Proposition 58 (Cantor’s theorem). A set has strictly lower cardinality than its
power set. That is, ∣A∣ < ∣P(A)∣. If α = ∣A∣ then we note ∣P(A)∣ = 2α

Proposition 59 (Aleph numbers). The infinite cardinals are well-ordered. TheyAleph
numbers: ℵα are noted ℵα where α ∈ ORD.

Definition 60 (Aleph-nought). The smallest infinite cardinal ℵ0 denotes count-ℵ0

able infinity.

Definition 61 (Cardinality of continuum). The cardinality of the continuum isContinuum:
2ℵ0 the cardinality of the powerset of a countable set 2ℵ0 .

Remark. Sets that have countable cardinality:

• natural N, integer Z and rational Q numbers
• ordinals such as ω, ω + 3, ω2, ωω

Sets that have cardinality of the continuum:

• powerset of natural, integers and rationals: P(N), P(Z), P(Q)

• real R and complex C numbers
• real and complex Euclidean spaces: Rn, Cn
• continuous functions over Euclidean spaces: C(Rn,Rm)

• standard topology and Borel algebra on Rn (i.e. the set of open sets and
Borel set respectively)

• countable sequences of numbers: NN, ZN, QN, RN, CN

Sets that have cardinality greater than the continuum:

• powerset of the real and complex numbers: P(R), P(C)

• set of all functions from Rn to Rm

We should note that all physically meaningful sets have at most the cardinality
of the continuum. This is not a coincidence. In science we are interested in objects
that can be experimentally identified. Every experimental test can acquire finite
information in finite time and, assuming arbitrarily long time, we can run at most
countably many tests. Countable sequences of numbers have the cardinality of
the continuum, which is therefore the best we can distinguish. Even if nature
allows for wider variety, it would be merged into equivalence classes of objects
that are experimentally indistinguishable. Many of the issues of higher cardinals
can therefore be safely set aside by those working on Assumptions of Physics.
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Definition 62 (Aleph-one). Let Ω be the set of all countable ordinal numbers. Itsℵ1

cardinality ∣Ω∣ = ℵ1 is the second aleph number.

Remark. While it can be proven that the cardinality of the continuum 2ℵ0 is
an aleph number, which one is undetermined in standard set theory.

Continuum hypothesis There is no infinite set with cardinality in betweenContinuum
hypothesis that of the continuum and countable infinity. That is, 2ℵ0 = ℵ1.

Remark. The continuum hypothesis is proven to be independent of the axioms
of set theory. It can be taken to be true or to be false without inconsistency. As
the axiom deals with sets of cardinality lower than the continuum, this aspect
of set theory may be interesting for those working on Assumptions of Physics. It
could be, in principle, that the distinguishable configurations in space-time have
a cardinality that is neither countable nor that of the continuum.
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