
Bare minimum: order theory

Abstract

A condensed overview of order theory. Bare minima are meant to give
a rough overview, by no means complete, of the subject so that one at
least knows what there is to know. It is mainly intended as background
for those interested in participating in the Assumptions of Physics (https:
//assumptionsofphysics.org) project.

1 Introduction

Order theory studies partially ordered sets (posets): sets equipped with a notion
of order. These structures are pervasive in mathematics as they play a role in
logic, computer science, topology, measure theory, group theory, and beyond. Even
number types (i.e. integers, rationals and reals) can be characterized purely by
their order structure. Some physical concepts (e.g. part-whole inclusion) are also
naturally captured with order theory.

Roughly speaking, orders are transitive relationships that are not symmetric.
Order theory studies and catalogs these structures, together with order preserving
transformations. For more details on order theory, see for example [1, 2].

2 Orders

2.1 Basic definitions

Definition 1 (Partial orders and poset). A partial order ≤ is a binary relation-Partial order,
poset: (X,≤) ship over a set X that is:

Reflexive a ≤ a for all a ∈X
Antisymmetric if a ≤ b and b ≤ a then a = b for all a, b ∈X
Transitive if a ≤ b and b ≤ c then a ≤ c for all a, b, c ∈X.

A partially ordered set, or poset, is a tuple (X,≤) consisting of a set and a
partial order.

Example of posets: family of sets ordered by set inclusion ({x, y} ⊆ {x, y, z});
statements ordered by implication/narrowness/specificity (“Snoopy is a dog” ≼
“Snoopy is a mammal”); systems ordered by is-a-part-of (‘piston’ ⊆ ‘engine’ ⊆
‘car’); numbers ordered by magnitude (2 ≤ 3).

Definition 2 (Subposet). Given a poset (X,≤), a subposet is a poset (Y,≤Y )
where Y ⊆X and ≤Y =≤ ∣Y ×Y .

{x, y, z}

{x, y} {x, z} {y, z}

{x} {y} {z}

{∅}

Simple orders can be depicted using Hasse diagrams. Each element of theHasse diagram
poset is represented by a vertex. A line connects upwards an element to its imme-
diate successor, so that lowest elements are at the bottom.

Definition 3 (Linear order). A linear order, or total order, is a partial orderLinear order,
chain,
anti-chain

where every pair of elements is comparable. That is, given a, b ∈ X either a ≤ b
or b ≤ a. A chain typically refers to a subset of a partial order that is linearly
ordered. An anti-chain is a subset of a partial order in which elements are only
comparable to themselves.
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Definition 4 (Maximal subsets). A linearly ordered subset (i.e. a chain) is max-Maximal sub-
set imal if it is not a strict subset of another linearly ordered subset.

Proposition 5 (Kuratowski’s Lemma or Hausdorff maximal principle). Every
chain is the subset of some maximal chain (i.e. maximal linearly ordered subset).

Proposition 6. Kuratowski’s Lemma is equivalent to the axiom of choice.

The more intuitive notion of ‘before’ and ‘after’ would not include the equal.
The two notions can be shown to be equivalent.

Definition 7 (Strict order). A strict partial order < is a binary relationshipStrict order
over a set X that is:

Irreflexive a ≮ a for all a ∈X
Asymmetric if a < b then b ≮ a for all a, b ∈X
Transitive if a < b and b < c then a < c for all a, b, c ∈X.

Proposition 8. A strict partial order can be converted to a non-strict partial
order (or vice-versa) by adding (or removing) the identity relationship. That is,
given < we can define ≤ such that a ≤ b if a < b or a = b. On the other hand, given
≤ we can define < such that a < b if a ≤ b and a ≠ b.

Definition 9 (Predecessors and successors). A predecessor (or successor) ofPredecessor,
successor an element a ∈X is an element that comes strictly before (or strictly after) a. That

is, it is an element b ∈ X such that b < a (or a < b). A predecessor (or successor)
is immediate if there are no elements in between. That is, b < a (or a < b) and
there is no c ∈X such that b < c < a (or a < c < b).

Definition 10 (Dense order). An order is dense if for any two elements a < bDense order
we can always find a third element c ∈X between the two a < c < b.

Definition 11 (Discrete order). A discrete order is an order in which everyDiscrete order
element that has a predecessor/successor has an immediate predecessor/successor.
A discrete linear order is an order that is both linear and discrete. Be aware
that discrete order often refers to an anti-chain.

A more loose idea of order is a preorder, for which two different elements can
be in the same order position.

Definition 12 (Preorder). A preorder ≲ is a binary relationship over a set XPreorder
that is:

Reflexive a ≲ a for all a ∈X
Transitive if a ≲ b and b ≲ c then a ≲ c for all a, b, c ∈X.

Examples of preorders: multi-dimensional objects compared by a single vari-
able; sets compared by their cardinality; sets of integers compared by the sum of
the elements.

Proposition 13. A preorder induces a partial order on the set of equivalence
classes defined by the preorder. That is, define ∼ on X such that a ∼ b if a ≲ b and
b ≲ a. This is an equivalence relationship. Now define ≲ on X/∼ such that a/∼ ≲ b/∼
if a ≲ b. This is a partial order.

2.2 Morphisms

Definition 14. An increasing function (also called order preserving) is aIncreasing
function map between two posets (X,≤X) and (Y,≤Y ) that preserves the order. That is, a

map f ∶ X → Y such that a ≤X b Ô⇒ f(a) ≤Y f(b). It is strictly increasing if
a <X b Ô⇒ f(a) <Y f(b).
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Definition 15. A decreasing function (also called order reversing) is a mapDecreasing
function between two posets (X,≤X) and (Y,≤Y ) that reverses the order. That is, a map

f ∶ X → Y such that a ≤X b Ô⇒ f(b) ≤Y f(a). It is strictly decreasing if
a <X b Ô⇒ f(b) <Y f(a).

Definition 16. A monotonic function (also called monotone) is a map thatMonotonic
function is either increasing or decreasing.

Definition 17. An order embedding is a monotonic function where the imageOrder embed-
ding has the same ordering. That is, a map f ∶ X → Y such that a ≤X b ⇐⇒ f(a) ≤Y

f(b).

Definition 18. An order isomorphism is an invertible embedding (i.e. bijectiveOrder isomor-
phism increasing function whose inverse is increasing). Two posets are order isomor-

phic (or have the same order type) if there exists an order isomorphism between
them.

2.3 Bounds

Definition 19 (Top and bottom). The top element of an ordered set X, notedTop and bot-
tom: ⊺,� ⊺ or 1, is the greatest element, if it exists. That is, ⊺ ∈ X such that a ≤ ⊺ for all

a ∈X. Dually, the bottom element, noted � or 0, is the least element, if it exists.
That is, � ∈ X such that � ≤ a for all a ∈ X. An order that admits both a top
and a bottom is said bounded. Conversely, an order that admits neither is said
unbounded.

Definition 20 (Upper and lower bounds). Let X be an ordered set and let A ⊆X.Upper/Lower
bounds An upper bound (or lower bound) is an element x ∈X such that a ≤ x (or x ≤ a)

for all a ∈ A.

Proposition 21 (Zorn’s lemma). Every non-empty partially ordered set for which
every linearly ordered subset has an upper bound contains at least one maximal
element.

Proposition 22. Zorn’s lemma is equivalent to the axiom of choice.

Definition 23 (Supremum and infimum). The supremum, or least upperSupremum
and infimum bound of A is, if it exists, the least element within all upper bounds of A. Con-

versely, the infimum, or greatest lower bound of A is, if it exists, the greatest
element within all lower bounds of A.

Definition 24 (Join and meet). The join of two elements a, b ∈ X or of a setJoin and meet:
∨,∧ A ⊆ X, noted a ∨ b and ⋁A, is their supremum if it exists. The meet of two

elements a, b ∈ X or of a set A ⊆ X, noted a ∧ b and ⋀A, is their infimum, if it
exists.

Definition 25 (Complement). Let X be a bounded ordered set. Two elementsComplement:
¬ a, b ∈ X are complements of each other if a ∨ b = ⊺ and a ∧ b = �. If an element

a has a unique complement, it is noted as ¬a.

Definition 26 (Lattice - order theoretic). A lattice is a partially ordered set inLattice
(order) which every pair of elements has both a supremum/join and an infimum/meet. A

sublattice is a subposet of a lattice.

Proposition 27 (Connecting lemma). If X is a lattice then a ≤ b ⇐⇒ a ∨ b =
b ⇐⇒ a ∧ b = a.

Proposition 28. Every linearly ordered set is a lattice.

Definition 29 (Lattice properties). We define the following additional propertiesComplete, dis-
tributive, com-
plemented

on lattices:
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Completeness A lattice is complete if all subsets have joins and meet, not just
finite ones.

Modularity A lattice is modular if a ≤ b implies a ∨ (c ∧ b) = (a ∨ c) ∧ b
Distributivity A lattice is distributive if it satisfies

a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c)
a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c).

A complete lattice is infinitely distributive, or completely distributive
if the same holds over infinite operations.

Complemented A bounded lattice is complemented if every element has a
complement. It is uniquely complemented if the complement is unique.

Orthocomplemented A bounded lattice is orthocomplemented if for every
element a there is a complement a� such that a�� = a and if a ≤ b then
b� ≤ a�.

Orthomodular A lattice is orthomodular if it is orthocomplemented and if
a ≤ b implies a ∨ (a� ∧ b) = (a ∨ a�) ∧ b (i.e. modularity holds at least of
orthocomplements)

M3

⊺

a b c

�

N5

⊺
a

c

b

�

Proposition 30. Every distributive lattice is a modular. Every complete lattice
is bounded.

Proposition 31. A lattice is distributive if and only if it does not contain an M3

(diamond) or N5 (pentagon) sublattice.

Proposition 32. Every lattice admits a completion, the smallest complete latticeCompletion
that contains it. The completion is unique up to an order isomorphism.

Remark. The Dedekind-MacNeille completion is constructed by finding pairs
(A,B) of subsets A,B ⊆ X such that A is the set of lower bounds for B and B
is the set of upper bounds of A. For the rationals Q, these pairs correspond to
Dedekind cuts, and the completion of Q as a lattice is the lattice of the reals R.

2.4 Filters, ideals and other subsets

Definition 33. Let X be a poset. A subset A ⊆X is upward closed (or down-Upward and
downward
closed

ward closed), if it contains all elements greater (or less) than of its elements.
That is, if a ∈ A, then b ∈ A for all b ∈X such that a ≤ b (or b ≤ a).

Definition 34. Let X be a poset. A subset A ⊆ X is upward directed (orUpward and
downward
directed

downward directed), if any finite set has an upper (or lower) bound. That is, if
a, b ∈ A, then we can find c ∈ A such that a ≤ c and b ≤ c (or c ≤ a and c ≤ b).

Definition 35. Let X be a poset. A subset A ⊆ X is a filter if it is upwardFilters and
ideals closed and downward directed. It is a proper filter if A ≠ X. It is a principal

filter, noted ↑ a if it contains and only contains all elements greater than a ∈ X.
Conversely, A is an ideal if it is downward closed and upward directed. It is a
proper ideal if A ≠ X. It is a principal ideal, noted ↓ a if it contains and only
contains all elements less than a ∈X.

Definition 36. A filter (or ideal) is maximal if it is proper and no other filterMaximal
filters
and ideals

(or ideal) contains it. A maximal filter is also called an ultrafilter.

3 Lattices as algebras

Lattices can be equivalently defined as algebraic structures.

Definition 37 (Lattice - algebraic). An algebraic structure (X,∨,∧) consisting ofLattice
(algebra) a set X and two binary operations ∨ and ∧ is an (algebraic) lattice if it satisfies

the following properties:
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Associativity (a ∨ b) ∨ c = a ∨ (b ∨ c) and (a ∧ b) ∧ c = a ∧ (b ∧ c)
Commutativity a ∨ b = b ∨ a and a ∧ b = b ∧ a
Idempotency a ∨ a = a and a ∧ a = a
Absorption a ∨ (a ∧ b) = a and a ∧ (a ∨ b) = a

Proposition 38. Every order lattice is an algebraic lattice and every algebraic
lattice is an order lattice where a ≤ b if and only if a ∨ b = b.

Definition 39 (Boolean algebra). An algebraic structure (X,∨,∧,¬,�,⊺) is aBoolean
algebra Boolean algebra if it satisfies the following properties:

Lattice (X,∨,∧) is a lattice
Distributivity a ∨ (b ∧ c) = (a ∨ b) ∧ (a ∨ c) and a ∧ (b ∨ c) = (a ∧ b) ∨ (a ∧ c)
Identity a ∨ � = a and a ∧ ⊺ = a
Complementation a ∨ ¬a = ⊺ and a ∧ ¬a = �

Proposition 40. Every complemented distributive lattice is a Boolean algebra
and every Boolean algebra is a complemented distributive lattice.

Definition 41. Let X be a bounded lattice. The relative pseudo-complementPseudo-
complement of a with respect to b is the greatest element x such that a ∧ x ≤ b. The pseudo-

complement of a is the relative pseudo-complement with respect to �.

Definition 42. A Heyting algebra is a bounded lattice for which the relativeHeyting
algebra pseudo-complement always exists.

Proposition 43. All Heyting algebras are distributive lattices. Every Boolean
algebra is a Heyting algebra where the pseudo-complement coincides with the com-
plement. If a Heyting algebra is complemented then it is a Boolean algebra.

Remark. Boolean algebras are used to capture the two-valued (i.e. true, false)
classical logic. Heyting algebras are used to capture the three-valued (i.e. true,
false, undetermined) intuitionistic/constructivist logic. The order is the logical
implication. The complement is the negation, which always exists in classical logic
but not in intuitionistic (i.e. not true is not necessarily false).

4 Set representation of lattices

Proposition 44 (Stone’s representation theorem). Every bounded distributive
lattice is order isomorphic to a lattice of subsets ordered by inclusion.

Proposition 45 (Boolean algebras). Every Boolean algebra can be represented
by a collection of sets ordered by inclusion with the following correspondence:

Join represented by the union
Meet represented by the intersection
Complement represented by the set complement.

Conversely, every collection of sets closed under union, intersection and comple-
ment forms a Boolean algebra.

Proposition 46. Every distributive lattice (or a Heyting algebra in particular)
is a subalgebra a Boolean algebra since it is order isomorphic to a sublattice of a
power set.

Proposition 47 (Topology). Every topology, as a collection of sets ordered by
inclusion, is a complete Heyting algebra with the following correspondence:

Join represented by arbitrary union
Meet represented by the interior of arbitrary intersection
Pseudo-complement represented by the set exterior.
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Proposition 48 (Lattice of subgroups). Given a group, the set of its subgroups,
as a collection of sets ordered by inclusion, is a lattice with the following corre-
spondence:

Join represented by the subgroup generated by the union
Meet represented by the intersection.

Proposition 49 (Lattice of subspaces). Given a vector space, the set of its sub-
spaces, as a collection of sets ordered by inclusion, is a complemented lattice with
the following correspondence:

Join represented by the subspace spanned by the union
Meet represented by the intersection
Complement represented by the orthogonal subspace (for inner product spaces).

Remark. Note how the order theoretic operations (i.e. join, meet, complement),
except for Boolean algebras, do not always map to the set theoretic operations
(i.e. intersection, union, complement). This may be confusing when one tries to
attach intuition from one to the other.

In Heyting algebras the pseudo-complement is often called “negation” and
noted as ¬a because, in some formulas, plays the same formal role. However, it
is not a negation in a strict sense since the join of an element with its psuedo-
complement is not the top. Logically, the negation of “proposition a is proven to
be true” is “proposition a is not proven to be true” while the pseudo-complement
is “proposition a is proven to be false”.

Similarly, quantum logic takes the lattice of subspaces as the lattice of propo-
sitions. The lattice fails to be distributive on the join operation, and this is taken
to mean that the disjunction is not distributive. However, the join fails to map to
the union. Logically, the disjunction of “the spin of the system was prepared in the
z+ direction” and “the spin of the system was prepared in the z- direction” is “the
spin of the system was prepared in either the z+ or z- direction” while the join in
terms of subspaces is “the spin of the system was prepared in any direction”.

Understanding these differences is critical to give the correct physical interpre-
tation of the corresponding mathematical definitions and results.

5 Numbers as order types

All number types we use to represent the value of physical quantities can be
characterized by their ordering relationship. This includes their topology, as it is
the order topology in all cases. Note that the complex numbers do not fit this
pattern.

Proposition 50. Every discretely linearly ordered set with a lower bound and no
upper bound is order isomorphic to the naturals N.

Proposition 51. Every unbounded discretely linearly ordered set is order isomor-
phic to the integers Z.

Proposition 52 (Cantor’s isomorphism theorem). Every unbounded countable
dense linearly ordered set is order isomorphic to the rationals Q.

Proposition 53 (Cantor’s characterization of the real line). Every complete un-
bounded dense linearly ordered set which admits a countable dense subset is order
isomorphic to the reals R.

6 Closures and intersection structures

Definition 54. Given a poset (X,≤) a closure operator is a map cl ∶ X → XClosure
that satisfies the following for all a, b ∈X:
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1. extensive: a ≤ cl(a)
2. increasing: a ≤ b Ô⇒ cl(a) ≤ cl(b)
3. idempotent: cl(cl(a)) = cl(a).

Examples of closure operators: the ceiling function that returns the smallest
integer greater than a given real number; the span operator over a vector space;
the topological closure.

Definition 55. Given a set S, an intersection structure, or ⋂-structure, on SIntersection
structure is a family X ⊆ 2S of subsets of S that is closed under arbitrary intersection. That

is, ⋂Ai ∈ X for every non-empty family Ai ∈ X. A topped intersection structure
on S is an intersection structure such that S ∈X.

Examples of topped intersection structures: the lattice of subspaces of a given
vector space, the lattice of subgroups of a group, the family of closed subsets of a
topological space.

Proposition 56. Let C ∶ 2S → 2S be a closure operator. Then the set of closed
sets X = {A ⊆ S ∣C(A) = A} is a topped intersection structure. Conversely, Let X
be a topped intersection structure, C(A) = ⋂{B ∈X ∣A ⊆ B} is a closure operator.
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